Architecture 324 Structures II

Steel Column Analysis and Design

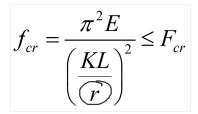
- · Failure Modes
- · Effects of Slenderness
- Stress Analysis of Steel Columns
- · Capacity Analysis of Steel Columns
- Design of Steel Columns

University of Michigan, TCAUP

Structures II

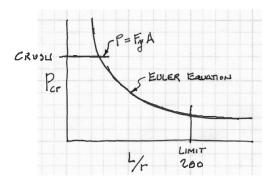
Slide 1 of 34

Leonhard Euler (1707 - 1783)

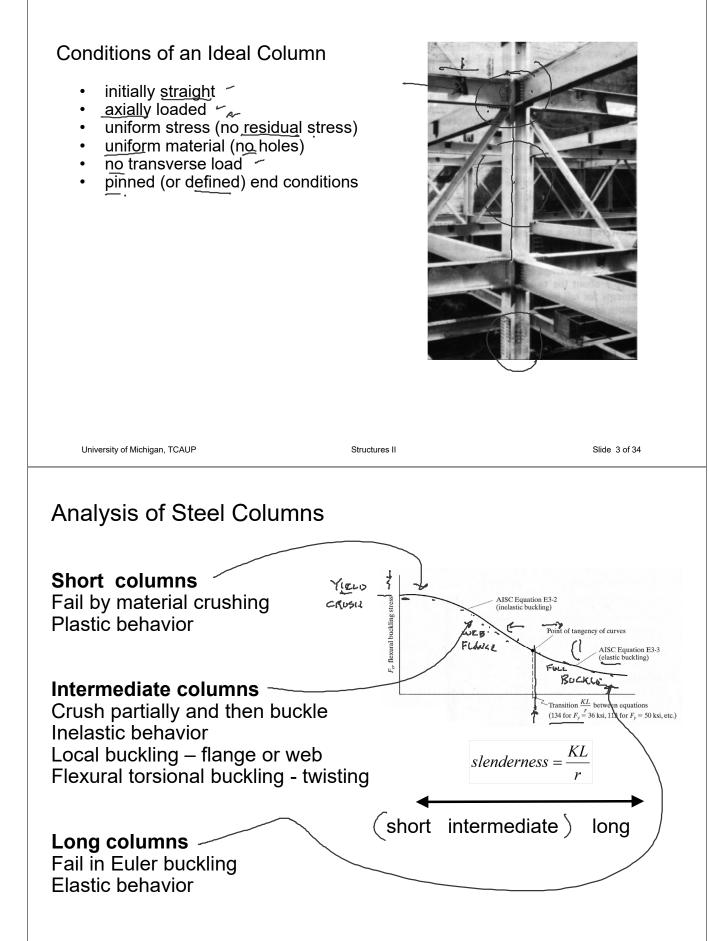

Euler Buckling (elastic buckling)

$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{KL^2}$$

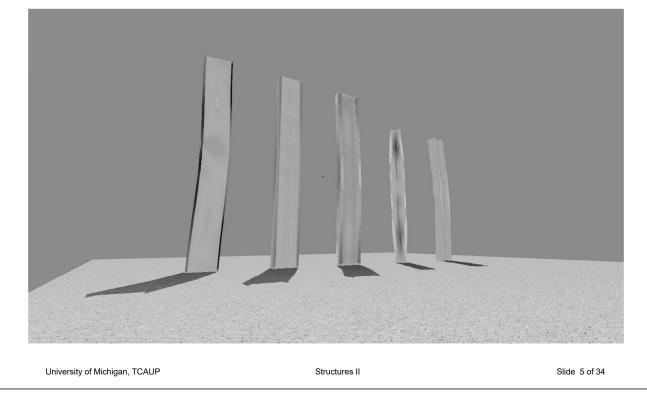
$$r = \sqrt{\frac{I}{A}}$$

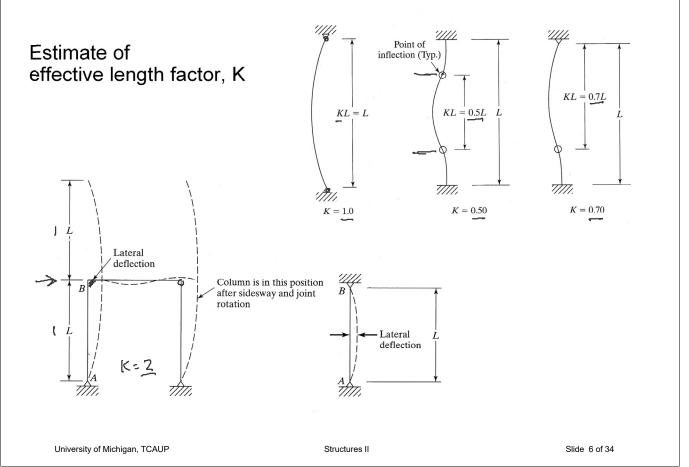

 $I = Ar^2$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)

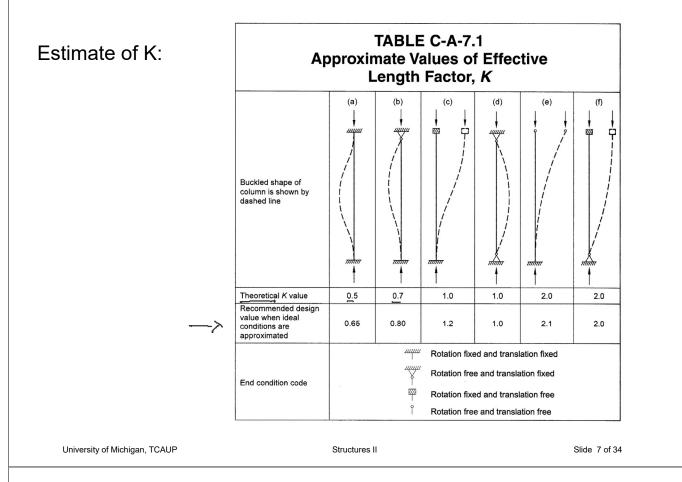


portrait by Emanuel Handmann,1753


Analysis of Steel Columns


Failure Modes

Column 1: Strong axis flexural buckling Column 2: Web local buckling – Column 3: Weak axis flexural buckling Column 4: Torsional buckling Column 5: Flange local buckling –


"Dancing Columns" Sherif El-Tawil

Analysis of Steel Columns

Analysis of Steel Columns

Determining K factors (BRACED) Sidesway inhibited by Alignment Charts

Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned: If Ic/Lc is large and Ig/Lg is small The connection is more pinned

More Fixed: If Ic/Lc is small and Ig/Lg is large The connection is more fixed

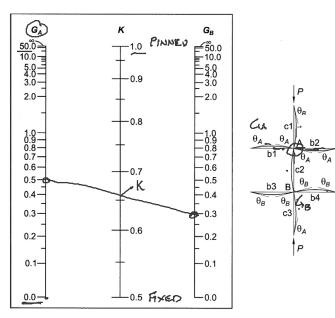
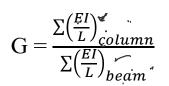
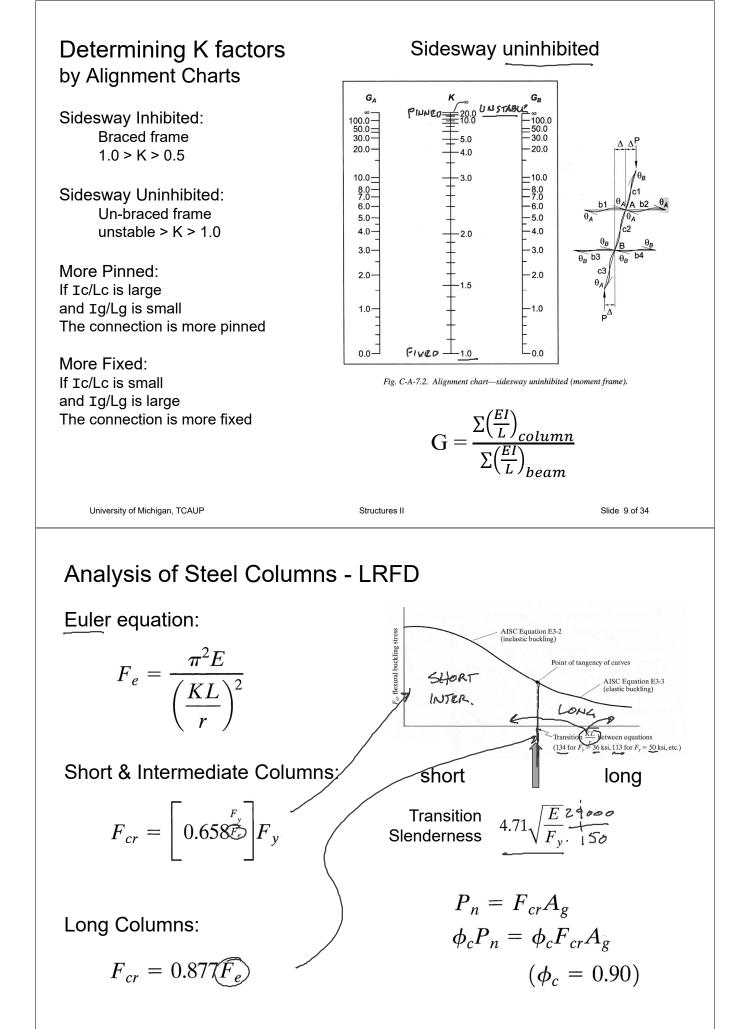
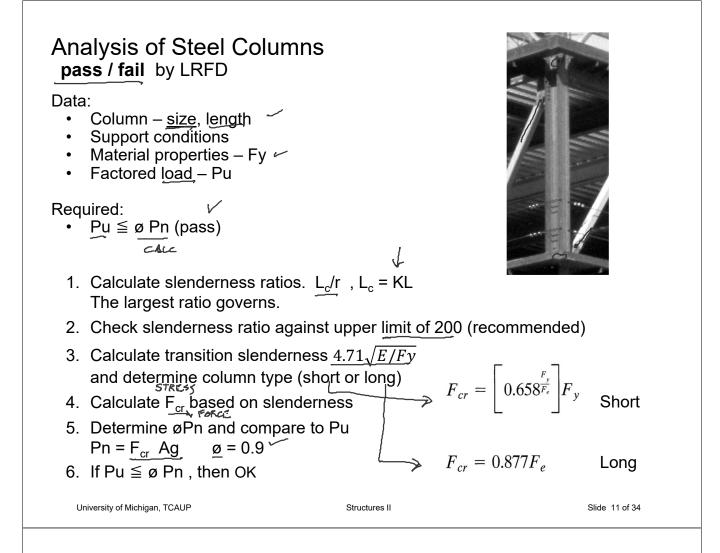
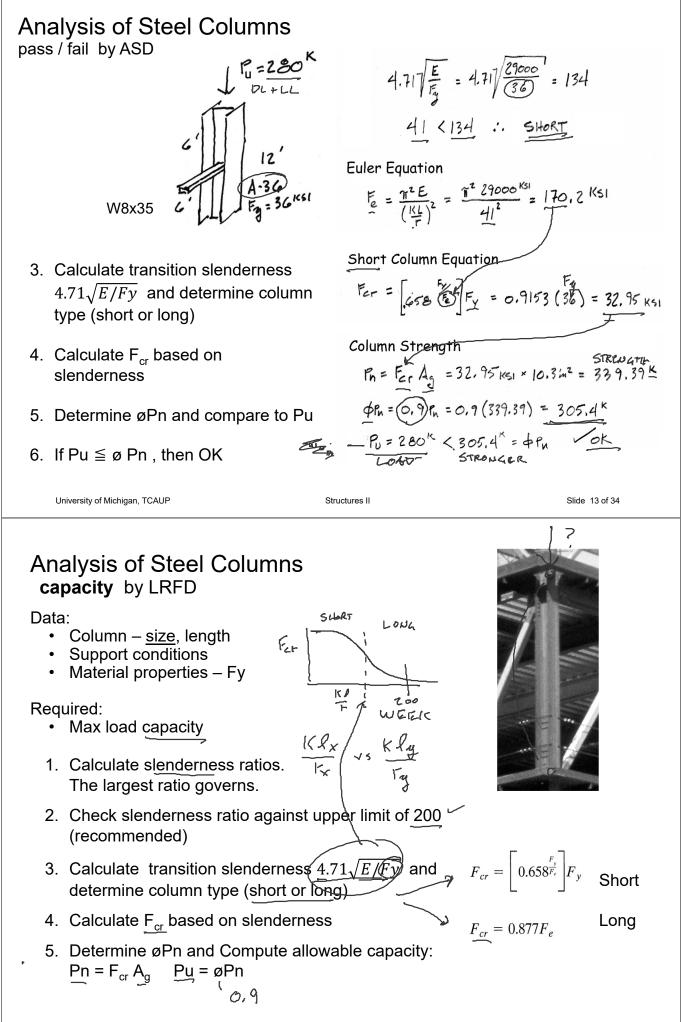





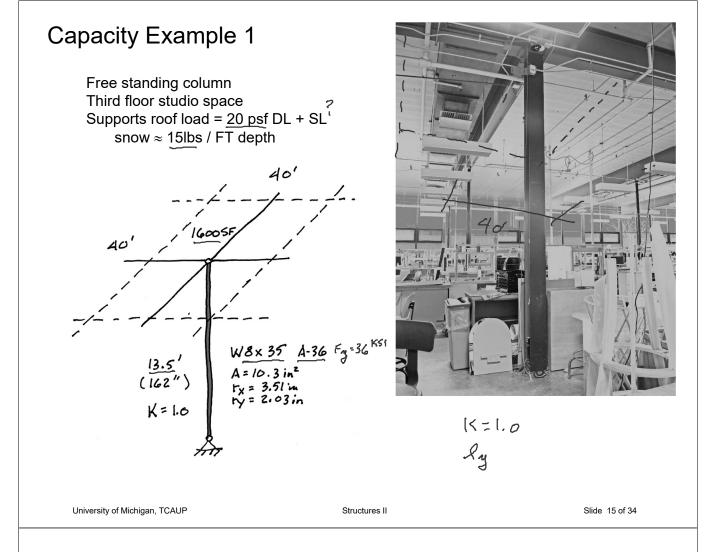
Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).

Analysis of Steel Columns

pass / fail by ASD


Data:

- Column <u>size</u>, length
- Support conditions
- Material properties Fy
- Factored Load Pu


Required:

- $Pu \leq ø Pn (pass)$
- 1. Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)

Pu = 280 K DATA : A-36 W 8×35 Fg = 36 KSI $\begin{array}{c} A15C \quad - 3T_{x} = 3.51'' \\ TABUZ \quad r_{y} = 2.03'' \\ VA = 10.3 \text{ m}^{2} \end{array}$ 12 lx = 12' ly = 6' $K_{x} = K_{y} = 1.0$ Y-Y AXIS X-X AXIS 144 3.51" 35.47 41.03 2200

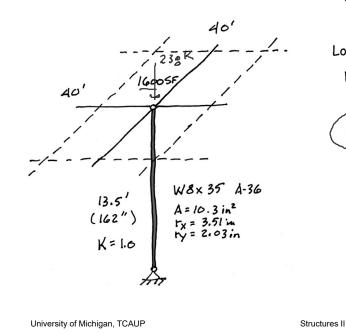
Structures II

Capacity Example 1

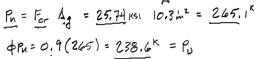
- 1. Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

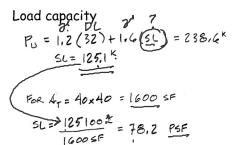
$$\frac{y - y}{y} \frac{Ax_{15}}{x_{15}} = \frac{1}{2.03} = \frac{79.8}{200} \times 200$$

Euler Buckling


$$F_{e} = \frac{\pi^{2}E}{(K_{F})^{2}} = \frac{\pi^{2} 29000}{79.8^{2}} = 44.94 \frac{\text{KSI}}{\text{KSI}}$$

Short Column Equation


$$F_{er} = \begin{bmatrix} 0.658 \end{bmatrix} F_{y} = \begin{bmatrix} 0.7151 \end{bmatrix} 36 = 25.74 \text{ ks}$$


Capacity Example 1

- DL = 20 psf
- 20 psf (1600 sf) = 32k on column

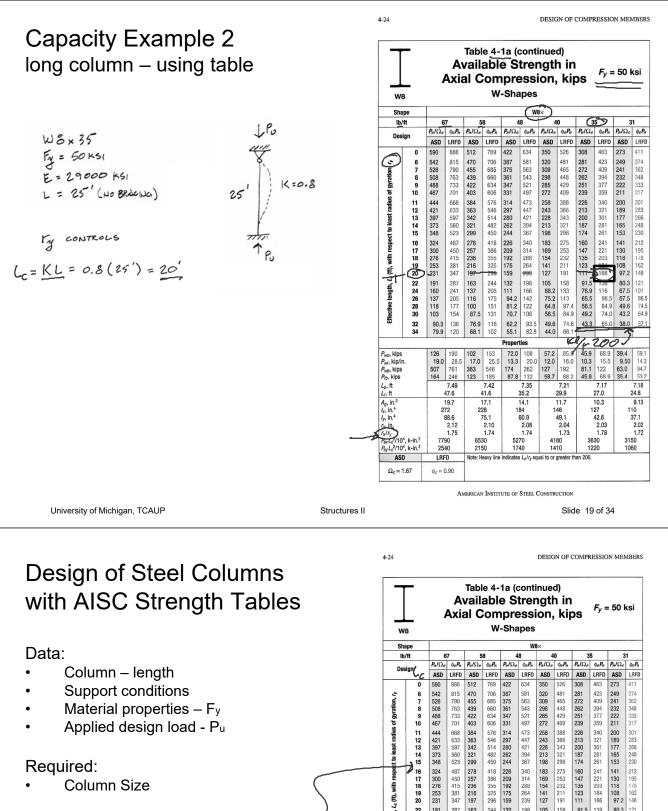
Column nominal strength

Slide 17 of 34

Capacity Example 2 long column – using equations

Find the capacity for the 25 ft. column shown.

r_x = 3.51 in. r_v = 2.03 in.


Table G1	Bucklir	ng Leng	gth Coe	fficien	ts, K _e	-
Buckling modes				-	+0	* * **********************************
Theoretical K_e value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design K_e when ideal conditions approximated	0.65	0.80	1.2	1.0	2.10	2.4
End condition code	# ₩ •	Rotat Rotat	ion fixed ion free, ion fixed ion free,	translatio , translat	on fixed ion free	

$$W \underbrace{8 \times 35}_{F_{y}} = \underbrace{50 \text{ KSI}}_{F_{y}} = \underbrace{50 \text{ KSI}}_{E = 29000 \text{ KSI}}_{E = 29000 \text{ KSI}}_{L = 25' (H0 BRJCHUG)} 25' K = \underbrace{118 \times 2}_{F_{y}} = \underbrace{25' (H0 BRJCHUG)}_{2.03} = \underbrace{118 \times 2}_{F_{y}} = \underbrace{113 \times 118 \times 2}_{2.03} = \underbrace{118 \times 2}_{F_{y}} = \underbrace{113 \times 118 \times 2}_{F_{y}} = \underbrace{113 \times 118 \times 2}_{F_{y}} = \underbrace{113 \times 118 \times 2}_{F_{y}} = \underbrace{100 \times 100}_{118 \times 2} = \underbrace{20.47}_{F_{y}} \text{ KSI}$$

Euler Buckling

$$\underbrace{F_{e}}_{F_{e}} = \frac{\pi^{2}E}{\left(\frac{K^{2}}{F}\right)^{2}} = \underbrace{11^{2} 29000}_{118 \times 2} = \underbrace{20.47}_{F_{y}} \text{ KSI}$$

Long Column Equation

$$\underbrace{F_{er}}_{F_{er}} = 0.877 (20.47) = 17.95 \text{ KSI}$$

Column strength

$$\varphi F_{h} = \varphi F_{er} A_{g} = 0.9 (17.95) (10.3) = 1666.4 \text{ K}$$

- 1. Enter table with height, $KL = \underline{Lc}$ -
- 2. Read allowable load for each section to find the smallest adequate size.
- Tables assume weak axis buckling. If the strong axis controls the length Lc must be divided by the ratio rx/ry
 Values stop in table (black line) at "x/ry
- 4. Values stop in table (black line) at slenderness limit, KL/r = 200

473 447 421 394 367 340 314 288 264 239 198 166 142 122 106 576 546 514 482 450 418 386 355 325 296 244 205 175 151 131 226 209 192 175 159 132 111 94.2 81.2 70.7 ength, L_c (ft), with 197 163 137 116 100 87.5 231 191 160 137 118 103 158 133 113 97.4 84.9 105 88.2 75.2 64.8 56.5 91.5 76.9 65.5 56.5 49.2 287 241 205 177 154 138 116 98.5 84.9 74.0 80.3 67.5 57.5 22 24 26 28 30 Effective 49.6 43.2 74.5 64.9 93.5 82.8 49.6 44.0 90.3 79.9 136 120 76.9 68.1 116 102 62.2 55.1 32 34 Properties 126 19.0 507 164 190 28.5 761 72.0 108 13.3 20 57.2 12.0 127 45.9 10.3 81.1 P_{wo} , kips P_{wl} , kip/in. P_{wb} , kips P_{fb} , kips 102 17.0 85.9 18.0 192 68.9 15.5 122 68.9 39.4 9.50 17.0 25.5 363 546 123 185 20.0 174 262 87.8 132 63.0 58.7 88 45.9 35.4 7.35 35.2 7.17 27.0 7.49 47.6 7.42 41.6 17.1 228 75.1 2.10 1.74 6530 2150 10.3 127 42.6 19.7 14.1 9.13 19.7 272 88.6 2.12 1.75 7790 2540 184 110 37.1 60.9 2.08 1.74 5270 1740 y, in.4 49.1 49.1 2.04 1.73 4180 2.03 2.02 r_x/r_y $P_{ex}L_c^2/10^4$, k-in.² $P_{av}L_c^2/10^4$, k-in.² 1. 3150 1060 3630 1220 LRFD $\Omega_{c} = 1.67$ $\phi_c = 0.90$

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

	-		A	vail	able om	pre	trer essi	ngtł	n in kip	لم 50	[, Fy =			<i>F</i> _y =	: 50 ks	^{si} A	Ava	able 4 ailab Co	ole S mpr	Strer essi	ngth	in	3	_	
W10	0				W	-Sha	pes			WI	0× (58						1	N-Sh	apes				W	V10
Shap							W1							Sha							0 ×				
lb/1	t	11		10		· ·	87	7		6	-	6		lb	/ft	5		4			5	39			33
Desi	gn	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	¢ <i>cPn</i> LRFD	P_n/Ω_c	φ _c P _n LRFD	Des	ign	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	¢ <i>cPn</i>	P_n/Ω_c	φ _c P _n	P_n/Ω_c	¢c/
	0	ASD 985	LRFD 1480	ASD 877	LRFD 1320	ASD 778	LRFD 1170	ASD 680	LRFD 1020	ASD 596	895	ASD 530	796		0	473	LRFD 711	431	LRFD 648	ASD 398	LRFD 598	ASD 344	LRFD 517	ASD 291	437
f gyration, <i>ry</i>	6 7 8 9 • 10 -	934 917 897 875 851	1400 1380 1350 1310 <u>1280</u>	831 815 797 777 755	1250 1230 1200 1170 <u>1130</u>	737 722 706 688 669	1110 1090 1060 1030 1000	643 630 615 599 582	966 946 925 900	563 552 539 525 509	846 829 810 789 765	500 490 479 466 452	752 737 719 700 679	of gyration, ry	6 7 8 9 10	446 437 427 415 403	671 657 642 624 605	407 398 388 378 366	611 598 584 568 550	363 350 337 322 307	545 527 507 485 461	313 302 290 277 263	470 454 436 416 396	263 253 243 232 220	395 381 365 348 330
o least radius of	11 12 13 14 15	825 798 769 739 708	1240 1200 1160 1110 1060	732 707 681 654 626	1100 1060 1020 983 941	647 625 602 578 553	973 940 905 868 831	563 543 522 501 479	846 816 785 753 720	493 475 457 438 419	741 714 687 658 629	437 421 405 388 370	657 633 608 583 556 530	to least radius o	11 12 13 14 15	389 375 361 345 330	585 564 542 519 495	354 341 327 313 299	532 512 492 471 449	291 274 256 239 222	437 411 385 359 333	249 234 219 203 188	374 352 329 306 283	207 194 181 168 155	311 292 272 253 233
, with respect to	16 17 18 19 20	677 645 613 580 548	1020 969 921 872 824	598 569 540 511 482	898 855 811 767 724	527 501 475 449 423	792 754 714 675 636	456 433 410 387 365	686 651 617 582 548	399 379 358 338 318	599 569 539 508 478	352 334 316 298 280	502 475 448 421	(ft), with respect t	16 17 18 19 20	314 297 281 265 249	471 447 422 398 374	284 269 254 239 224	427 404 382 360 337	204 188 171 155 140	307 282 257 234 211	173 158 144 130 118	260 238 217 196 177	142 130 117 106 95.4	214 195 177 159 143 118
Effective length, <i>L_c</i> (ft),	22 24 26 28 30 32	485 423 365 315 274 241	728 636 548 473 412 362	425 370 318 274 239 210	638 556 478 412 359 315	373 324 278 239 209 183	560 487 417 360 313 276	320 277 237 204 178 156	481 417 356 307 267 235	279 241 206 178 155 136	419 363 310 267 233 205	245 212 181 156 136 119	368 318 271 234 204 179	length, <i>Lo</i>	22 24 26 28 30 32	217 188 160 138 120 106	327 282 240 207 180 159	196 168 143 124 108 94.7	294 253 216 186 162 142	116 97.4 83.0 71.5 62.3 54.8	174 146 125 108 93.7 82.3	97.2 81.7 69.6 60.0 52.3 46.0	146 123 105 90.2 78.6 69.1	78.8 66.2 56.4 48.7 42.4 37.3	99 84 73 63 56
Effecti	34 36 38 40	213 190 171 154	321 286 257 232	186 166 149 134	279 249 224 202	162 145 130 117	244 218 195 176	139 124 111 100	208 186 167 150	121 108 96.5 87.1	181 162 145 131	106 94.2 84.5 76.3	159 142 127 115	Effective	34 36 38 40	93.5 83.4 74.8 67.6	141 125 112 102	83.9 74.8 67.2 60.6	126 112 101 91.1		ULIU	10.0			
0 1/2		000	000	104	075	Proper		101	182	00.5	149	82.6	124	O king		0.1	104	60.1	90.1	65.3	98.0	54.1	81.1	45.2	67
P _{wo} , kips P _{wi} , kip/in P _{wb} , kips P _{fb} , kips		220 25.2 949 292	330 37.8 1430 439	184 22.7 690 235	275 34.0 1040 353	150 20.2 487 183	225 30.3 732 276	121 17.7 328 142	26.5 494 213	99.5 15.7 229 111	23.5 344 167	82.6 14.0 163 86.5	21.0 245 130	P _{wo} , kips P _{wi} , kip/i P _{wb} , kips P _{fb} , kips	n.	69.1 12.3 112 70.8	18.5 168 106	00.1 11.3 86.6 58.7	17.0 130 88.2	11.7 94.2 71.9	17.5 142 108	10.5 68.7 52.6	15.8 103 79.0	45.2 9.67 53.7 35.4	14 80 53
.,, ft .,, ft			9.47 64.1		9.36 57.9		9.29 51.2		9.18 45.3		9.15 40.6		9.08 36.6	L_p, ft L_r, ft			9.04 33.6		8.97 31.6		7.10 26.9		6.99 4.2	1	6.85 21.8
A_{g} , in. ² I_{x} , in. ⁴ I_{y} , in. ⁴ I_{y} , in. r_{x}/r_{y} $P_{ex}L_{c}^{2}/10^{4}$ $P_{ey}L_{c}^{2}/10^{4}$, k-in.²	7 2 205 67	32.9 16 36 2.68 1.74 50	178	29.3 23 07 2.65 1.74	5	26.0 34 79 2.63 1.73 00	4	22.7 55 54 2.60 1.73 00	3	19.9 94 34 2.59 1.71 00	3	17.7 41 16 2.57 1.71 60	$\begin{array}{c} A_g, \text{ in.}^2 \\ I_{x}, \text{ in.}^4 \\ I_{y}, \text{ in.}^4 \\ r_y, \text{ in.}^4 \\ r_y, \text{ in.} \\ r_x/r_y \\ P_{ex}L_c^2/11 \\ P_{ey}L_c^2/11 \end{array}$	A_g , in. ² I_x , in. ⁴ I_y , in. ⁴ r_y , in.		15.8 303 103 2.56 1.71 8670 2950		14.4 72 93.4 2.54 1.71 90 70	28.9 13.3 248 53.4 2.01 2.15 7100 1530		11.5 209 45.0 1.98 2.16 5980 1290		17	9.71 71 36.6 1.94 2.16 90
ASD $\Omega_c = 1$		LR φ _c = 1	-	-											SD 1.67	$\phi_c =$		Note: Hea	ivy line ind	icates <i>L_c/r_j</i>	equal to o	r greater th	an 200.		

AISC Critical Stress Table

Γ

for previous example KI/r_y = 118.2

¥.,			1	Cor	npr	es	sior	M	em	nber	S		1	
	F _y = 35	ksi		F _y = 36	ksi	28.5	$F_{y} = 42$	csi		$F_{y} = 46$	csi	1	$F_y = 50$	ksi
	F_{cr}/Ω_c	¢cFcr		F_{cr}/Ω_c	¢ _c F _{cr}		F_{cr}/Ω_c	¢ _c F _{cr}		F_{cr}/Ω_c	¢cFcr		FerTac	OcFc.
KL	ksi	ksi	$\frac{KL}{r}$	kši	ksi	KL	ksi	ksi	$\frac{KL}{r}$	ksi	ksi	KL	ksi	ksi
30	ASD	LRFD		ASD	LRFD	1	ASD	LRFD	1	ASD	LRFD	1	ASD	LRF
1	21.0	31.5	19	21.6	32.4	1	25.1	37.8	1	27.5	41.4	1.	29.9	45.0
2	21.0	31.5	2	21.6	32.4	2	25.1	37.8	2	27.5	41.4	2	29.9	45.0
3	20.9	31.5	3	21.5	32.4	3	25.1	37.8	3	27.5	41.4	3	29.9	45.0
4	20.9	31.5	4	21.5	32.4	4	25.1	37.8	4	27.5	41.4	4	29.9	44.9
5	20.9	31.5	5	21.5	32.4	5	25.1	37.7	5	27.5	41.3	5	29.9	44.9
6	20.9	31.4	6	21.5	32.3	6	25.1	37.7	6	27.5	41.3	6	29.9	44.9
7	20.9	31.4	7	21.5	32.3	7	25.1	37.7	7	27.5	41.3	7	29.8	44.8
8	20.9	31.4	8	21.5	32.3	8	25.1	37.7	8	27.4	41.2	8	29.8	44.8
9	20.9	31.4	9	21.5	32.3	9	25.0	37.6	9	27.4	41.2	9	29.8	44.7
10	20.9	31.3	10	21.4	32.2	10	25.0	37.6	10	27.4	41.1	10	29.7	44.7
11	20.8	31.3	11	21.4	32.2	11	25.0	37.5	11	27.3	41.1	11	29.7	44.6
12	20.8	31.3	12	21.4	32.2	12	24.9	37.5	12	27.3	41.0	12	29.6	44.5
13	20.8	31.2	13	21.4	32.1	13	24.9	37.4	13	27.2	40.9	13	29.6	44.4
14	20.7	31.2	14	21.3	32.1	14	24.8	37.3	14	27.2	40.9	14	29.5	44.4
15	20.7	31.1	15	21.3	32.0	15	24.8	37.3	15	27.1	40.8	15	29.5	44.3
16	20.7	31.1	16	21.3	32.0	16	24.8	37.2	16	27.1	40.7	16	29.4	44.2
17	20.7	31.0	17	21.2	31.9	17	24.7	37.1	17	27.0	40.6	17	29.3	44.1
18	20.6	31.0	18	21.2	31.9	18	24.7	37.1	18	27.0	40.5	18	29.2	43.9
19	20.6	30.9	19	21.2	31.8	19	24.6	37.0	19	26.9	40.4	19	29.2	43.8
20	20.5	30.9	20	21.1	31.7	20	24.5	36.9	20	26.8	40.3	20	29.1	43.7
21	20.5	30.8	21	21.1	31.7	21	24.5	36.8	21	26.7	40.2	21	29.0	43.6
22	20.4	30.7	22	21.0	31.6	22	24.4	36.7	22	26.7	40.1	22	28.9	43.4
23	20.4	30.7	23	21.0	31.5	23	24.3	36.6	23	26.6	40.0	23	28.8	43.3
24	20.3	30.6	24	20.9	31.4	24	24.3	36.5	24	26.5	39.8	24	28.7	43.1
25	20.3	30.5	25	20.9	31.4	25	24.2	36.4	25	26.4	39.7	25	28.6	43.0
26	20.2	30.4	26	20.8	31.3	26	24.1	36.3	26	26.3	39.6	26	28.5	42.8
27	20.2	30.3	27	20.7	31.2	27	24.0	36.1	27	26.2	39.4	27	28.4	42.7
28	20.1	30.3	28	20.7	31.1	28	24.0	36.0	28	26.1	39.3	28	28.3	42.5
29	20.1	30.2	29	20.6	31.0	29	23.9	35.9	29	26.0	39.1	29	28.2	42.3
30	20.0	30.1	30	20.6	30.9	30	23.8	35.8	30	25.9	39.0	30	28.0	42.1
31	20.0	30.0 29.9	31	20.5	30.8 30.7	31	23.7	35.6	31	25.8	38.8	31	27.9	41.9
32 33	19.9 19.8	29.9	32 33	20.4 20.4	30.7	32 33	23.6 23.5	35.5 35.4	32 33	25.7	38.6 38.5	32	27.8	41.8
33	19.8	29.8	33	20.4	30.6	33	23.5	35.4	33	25.6	38.5	33 34	27.7	41.6
34 35	19.8	29.6	34	20.3	30.5	34	23.4	35.2	34	25.5 25.4	38.3	34	27.5	41.4
35	19.7	29.0	35	20.2	30.4	35	23.3	35.1	35	25.4	38.1	35	27.4 27.2	41.2
37	19.5	29.4	37	20.1	30.3	30	23.2	34.8	30	25.2	37.8	30	27.1	40.9
38	19.5	29.3	38	20.1	30.0	38	23.0	34.6	38	25.1	37.6	37	26.9	40.7
39	19.5	29.1	39	19.9	29.9	39	22.9	34.4	39	25.0	37.4	38	26.9	40.3
40	19.4	29.0	40	19.9	29.8	40	22.9	34.3	40	24.9	37.2	40	26.6	40.3
AS	N DI MARANA	LRFD		10.0	20.0	40	22.0	04.0	40	24.1	01.2	40	20.0	40.0

Table 4-22 (continued) Available Critical Stress for Compression Members

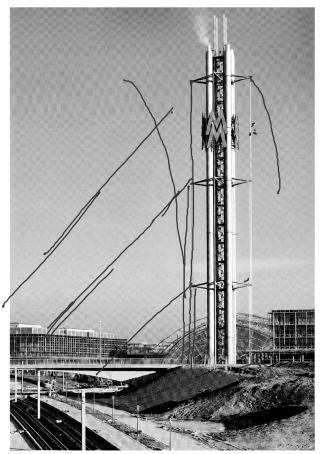
	$F_{y} = 35$	ksi		$F_y = 36$	ksi		$F_y = 42$	csi		$F_y = 46$	csi		$F_y = 50$			
	F_{cr}/Ω_c	¢ _c F _{cr}	~	F_{cr}/Ω_c	¢cFcr		F_{cr}/Ω_c	¢cFcr	-	F_{cr}/Ω_c	¢cFcr		F_{cr}/Ω_c	¢cFc		
KL	ksi	ksi	KL	ksi	ksi	$\frac{KL}{r}$	ksi	ksi	KL	ksi	ksi	KL	ksi	ksi		
r	ASD	LRFD	1	ASD	LRFD		ASD	LRFD	1	ASD	LRFD	1	ASD	LRFD		
41	19.2	28.9	41	19.7	29.7	41	22.7	34.1	41	24.6	37.0	41	26.5	39.8		
42	19.2	28.8	42	19.6	29.5	42	22.6	33.9	42	24.5	36.8	42	26.3	39.5		
43	19.1	28.7	43	19.6	29.4	43	22.5	33.7	43	24.3	36.6	43	26.2	39.3		
44	19.0	28.5	44	19.5	29.3	44	22.3	33.6	44	24.2	36.3	44	26.0	39.1		
45	18.9	28.4	45	19.4 2	29.1	45	22.2	33.4	45	24.0	36.1	45	25.8	38.8		
46	18.8	28.3	46	19.3	29.0	46	22.1	33.2	46	23.9	35.9	46	25.6	38.5		
47	18.7	28.1	47	19.2	28.9	47	22.0	33.0	47	23.8	35.7	47	25.5	38.3		
48	18.6	28.0	48	19.1	28.7	48	21.8	32.8	48	23.6	35.4	48	25.3	38.0		
49	18.5	27.9	49	19.0	28.5	49	21.7	32.6	49	23.4	35.2	49	25.1	37.7		
50	18.4	27.7	50	18.9	28.4	50	21.6	32.4	50	23.3	35.0	50	24.9	37.5		
51	18.3	27.6	51	18.8	28.3	51	21.4	32.2	51	23.1	34.8	51	24.8	37.2		
52	18.3	27.4	52	18.7	28.1	52	21.3	32.0	52	23.0	34.5	52	24.6	36.9		
53	18.2	27.3	53	18.6	28.0	53	21.2	31.8	53	22.8	34.3	53	24.4	36.7		
54	18.1	27.1	54	18.5	27.8	54	21.0	31.6	54	22.6	34.0	54	24.2	36.4		
55	18.0	27.0	55	18.4	27.6	55	20.9	31.4	55	22.5	33.8	55	24.0	36.1		
56	17.9	26.8	56	18.3	27.5	56	20.7		56	22.3	33.5	56	23.8	35.8		
57	17.7	26.7	57	18.2	27.3	57	20.6	31.0	57	22.1	33.3	57	23.6	35.5		
58	17.6	26.5	58	18.1	27.1	58	20.5	30.7	58	22.0.0	33.0	58	23.4	35.2		
59	17.5		59	17.9	27.0	59	20.3	30.5	59	21.8	32.8	59	23.2	34.9		
60	17.4	26.2	60	17.8	26.8	60	20.2	30.3	60	21.6	32.5	60	23.0	34.6		
61	17.3	26.0	61	17.7	26.6	61	20.0	30.1	61	21.4	32.2	61	22.8	34.3		
62	17.2	25.9	62	17.6	26.5	62	19.9	29.9	62	21.3	32.0	62	22.6	34.0		
63	17.1	25.7	63	17.5		63	19.7	29.6	63	21.1	31.7	63	22.4	33.7		
64	17.0	25.5	64	17.4	26.1	64	19.6	29.4	64	20.9	31.4	64	22.2	33.4		
65	16.9	25.4	65	17.3	25.9	65	19.4	29.2	65	20.7	31.2	65	22.0	33.0		
66	16.8	25.2	66	17.1	25.8	66	19.2	28.9	66	20.5	30.9	66	21.8	32.7		
67	16.7	25.0	67	17.0	25.6	67	19.1	28.7	67	20.4	30.6	67	21.6	32.4		
68	16.5	24.9	68	16.9	25.4	68	18.9	28.5	68	20.2	30.3	68	21.4	32.1		
69	16.4	24.7	69	16.8	25.2	69	18.8	28.2	69	20.0	30.1	69	21.1	31.8		
70	16.3	24.5	70	16.7	25.0	70	18.6	28.0	70	19.8	29.8	70	20.9	31.4		
71	16.2	24.3	71	16.5	24.8	71	18.5	27.7	71	19.6	29.5	71	20.7	31.1		
72	16.1.	24.2	72	16.4	24.7	72	18.3	27.5	72	19.4	29.2	72	20.5	30.8		
73	16.0	24.0	73	16.3	24.5	73	18.1	27.2	73	19.2	28.9	73	20.3	30.5		
74	15.8	23.8	74	16.2	24.3	74	18.0	27.0	74	19.1	28.6	74	20.1	30.2		
75	15.7	23.6	75	16.0	24.1	75	17.8	26.8	75	18.9	28.4	75	19.8	29.8		
76	15.6	23.4	76	15.9	23.9	76	17.6	26.5	76	18.7	28.1	76	19.6	29.5		
77	15.5	23.3	77	15.8	23.7	77	17.5 0	26.3	77	18.5	27.8	77	19.4	29.2		
78	15.4	23.1	78	15.6	23.5	78	17.3	26.0	78	18.3	27.5	78	19.2	28.8		
79	15.2	22.9	79	15.5	102	79	17.1	25.8	79	18.1	27.2	79	19.0	28.5		
80	15.1	22.7	80	15.4	23.1	80	17.0	25.5	80	17.9 0	26.9	80	18.8	28.2		
	SD	LRFD	1		123					1000		-		C-A		
-		c = 0.90	1											10.210		

University of Michigan, TCAUP

Slide 22 of 34

AISC Critical Stress Table					/aila Cor		C	ritic	al	Str	ess		r		
or previous example Kl/r _v = 118.2		F _v = 35 ksi			$F_{\rm V} = 36$ ksi			$F_y = 42$ ksi			<i>F</i> _y = 46 ks		17	$F_y = 50$ ksi	
· · · · · · · · · · · · · · · · · · ·	KL r	F _{cr} /S	i ksi	$\frac{KL}{r}$	ksi	¢ _c F _{cr} ksi	$\frac{KL}{r}$	<i>F_{cr}/Ω_c</i> ksi	ksi	KL	ksi	¢ <i>cFcr</i> ksi	KL	F _{cr} /S2 ₀ ksi	k
	81 82	ASI 15.0 14.9	22.5	81 82	ASD 15.3 15.1	22.9 22.7	81 82	ASD 16.8 16.6	25.3 25.0	81 82	ASD 17.7 17.5	26.6 26.3	81 82	ASD 18.5 18.3	LR 27. 27.
TO FIND CAPACITY:	83 84 85	14.7 14.6 14.5	22.1 22.0	83 84 85	15.0 14.9 14.7	22.5 22.3 22.1	83 84 85	16.5 16.3 16.1	24.8 24.5 24.3	83 84 85	17.3 17.1 16.9	26.0 25.8 25.5	83 84 85	18.1 17.9 17.7	27. 26. 26.
\$Fer = 16.2 M	86 87 88	14.4 14.2 14.1	21.6 21.4	86 87 88	14.6 14.5 14.3	22.0 21.8 21.6	86 87 88	16.0 15.8 15.6	24.0 23.7 23.5	86 87 88	16.7 16.6 16.4	25.2 24.9 24.6	86 87 88	17.4 17.2 17.0	26. 25. 25.
$\phi P_n = P_0 = \phi F_{cr} A_g$	89 90 91	14.0 13.8 13.7	20.8 20.6	89 90 91	14.2 14.1 13.9	21.4 21.2 21.0	89 90 91	15.5 15.3 15.1	23.2 23.0 22.7	89 90 91	16.2 16.0 15.8	24.3 24.0 23.7	89 90 91	16.8 16.6 16.3	25. 24. 24.
TO FIND CAPACITY: $\phi F_{cr} = \frac{16.2}{10.2}$ rsi $\phi F_{ln} = F_{U} = \phi F_{cr} A_{g}$ $F_{U} = 16.2 (10.3) = 166.8^{K}$	92 93 94	13.6 13.5 13.3	5 20.2 3 20.0	92 93 94	13.8 13.7 13.5	20.8 20.5 20.3	92 93 94	15.0 14.8 14.6 14.4	22.5 22.2 22.0	92 93 94 95	15.6 15.4 15.2 15.0	23.4 23.1 22.8 22.6	92 93 94 95	16.1 15.9 15.7 15.5	24. 23. 23. 23.
<u></u>	95 96 97 98	13.2 13.1 13.0 12.8	19.7 19.5	95 96 97 98	13.4 13.3 13.1 13.0	20.1 19.9 19.7 19.5	95 96 97 98	14.4 14.3 14.1 13.9	21.7 21.5 21.2 21.0	95 96 97 98	14.8 14.6 14.4	22.0 22.3 22.0 21.7	95 96 97 98	15.3 15.0 14.8	23. 22. 22. 22.
	99 100 101	12.7 12.6	7. 19.1 5 18.9	99 100 101	12.9 12.7	19.3 19.1 18.9	99 100 101	13.8 13.6 13.4	20.7 20.5 20.2	99 100 101	14.2 14.1 13.9	21.4 21.1 20.8	99	14.6 14.4	22.
	102 103 104	12.3 12.2	18.5 18.3	102 103 104	12.5 12.3	18.7 18.5 18.3	102 103 104	13.3 13.1	20.0 19.7 19.5	102 103 104	13.7 13.5 13.3	20.6 20.3 20.0	102 103	14.0 13.8 13.6	21. 20. 20.
	105 106 107		3. 17.7	105 106 107	11.9	18.1 17.9 17.7	105 106 107	12.8 12.6 12.4	19.2 19.0 18.7	105 106 107	13.1 12.9 12.8	19.7 19.4 19.2	106 107	13.4 13.2 13.0	20. 19. 19.
	108 109 110	11.4 11.3	4 17.2 3 17.0	108 109 110	11.5 11.4	17.5 17.3 17.1	108 109 110	12.3 12.1 12.0	18.5 18.2 18.0	108 109 110	12.6 12.4 12.2	18.9 18.6 18.3	109 110	12.8 12.6 12.4	19. 18. 18.
	111 112 113	11.0) 16.6 16.4	111 112 113	11.1 11.0	16.9 16.7 16.5	111 112 113	11.5	17.7 17.5 17.3	111 112 113	12.0 11.8 11.7	18.1 17.8 17.5	113	12.0 11.8	18. 18. 17.
	114 115 116 117	10.7	7 16.0 5 15.8	114 115 116 117	10.7 10.6	16.3 16.2 16.0 15.8	114 115 116 117	11.2	17.0 16.8 16.5 16.3	114 115 116 117	11.5 11.3 11.1 11.0	17.3 17.0 16.7 16.5	115	11.6. 11.4 11.2 11.0	17. 17. 16.
	118 119		3 15.5 2 15.3	118 119	10.4	15.6 15.4 15.2	117 118 119 120	10.7 10.5	16.1 15.8 15.6	117 118 119 120	10.8 10.6 10.4			10.8	16. 15
	A	SD	$LRFD \phi_c = 0.90$			TOLE			1010	1.25			1.20		020
University of Michigan, TCAUP	Structures	II										Slid	e 23	8 of 34	1

Steel Frame Construction


University of Michigan - North Quad

Steel Frame Construction Messe Leipzig – 1996

Congress Centre – Gerkan, Marg und Partner Glass Hall – Ian Ritchie Architects Tower - Schlaich, Bergermann und Partner

Messe Leipzig - Glass Hall - Ian Ritchie Architects University of Michigan, TCAUP

Messe Leipzig – Cable braced tower. Jörg Schlaich

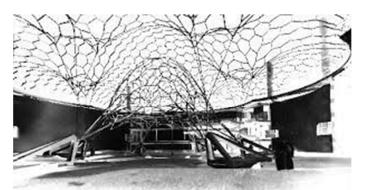
Structures II

Slide 25 of 34

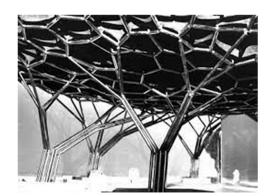
Steel Frame Construction

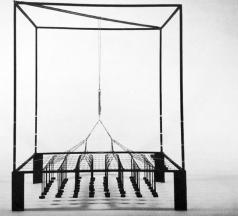
Messe Leipzig Glass Hall - Ian Ritchie Architects

Steel Frame Construction

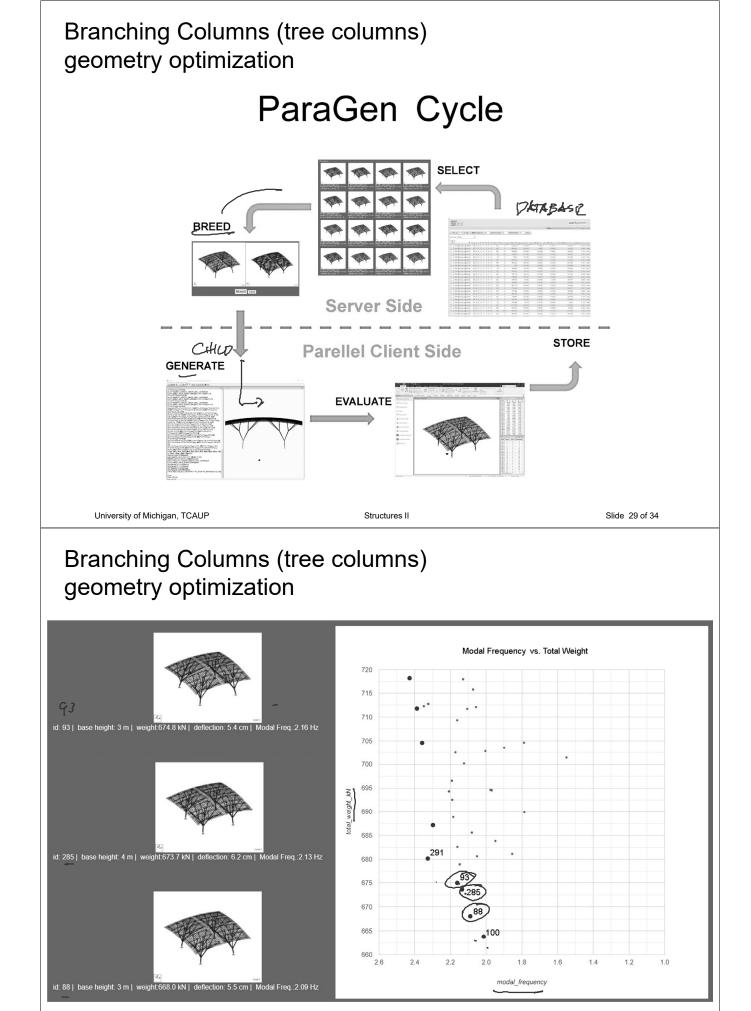


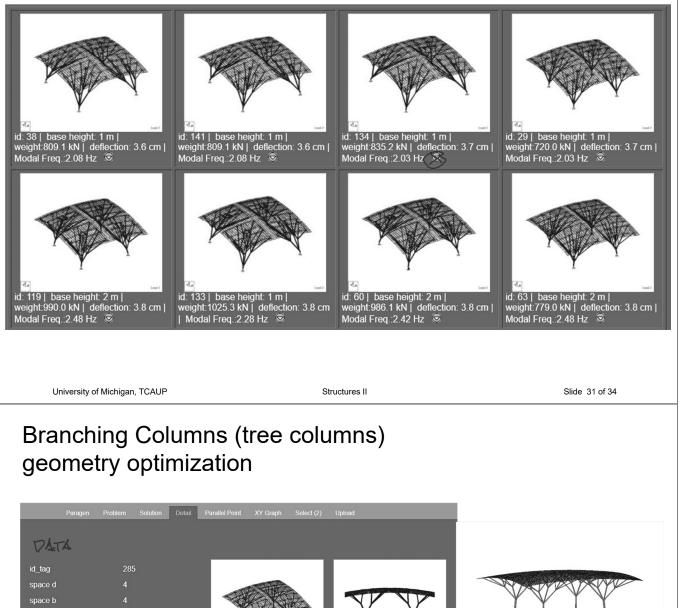
University of Michigan, TCAUP


Structures II


Slide 27 of 34

Branching Columns (tree columns) Frei Otto





University of Michigan, TCAUP

Slide 28 of 34

Branching Columns (tree columns) geometry optimization

id_tag space d space b base height mid height top height	285 4 4 4 m 5 m 3 m			YYYY
base location - x base location - y Parent_1 Parent_2 total weight in kN total weight in tons greatest defelction cm	9 m 9 m 74 256 673.668 kN 67.6101 ton 6.15796 cm	Te (12)		
greatest defeiction inches weight*deflection factor modal frequency pareto ipaddress time	2.4244 in 109.398 kN/cm 2.133 Hz 1 75.134.185.143 2021-07-05 08:03:00	Ariac warmed	BENDING	W.

University of Michigan, TCAUP

Branching Columns (tree columns)

bridge in Pragsattel, Stuttgart, 1992 Schlaich, Bergermann und Partner

University of Michigan, TCAUP

Structures II

Slide 33 of 34

Branching Columns (tree columns)

