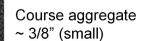

Reinforced Concrete

- Material Properties
 - Aggregate
 - Cement
 - Water
 - Reinforcement
- Strength
 - · Compression, f'c
 - Tension, f't
- PCA Concrete Fundamentals



University of Michigan, TCAUP Structures II Slide 1 of 12

Constituents of Concrete

- Aggregate
- Cement
- Water

Fine aggregate (Sand) ≤ 1/4"

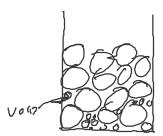
Course aggregate ~ 1.5" (large)

Photos by Emadrazo

Constituents of Concrete

- Aggregate
- Cement
- Water

Characteristics:


- Abrasion resistance
- Freezing resistance
- Sulfate resistance
- Alkali resistance
- Shape and texture
- Grading –
- Void content ~
- Density
- Moisture absorption
- · Flexural strength

crushed stone

smooth "river rock"

University of Michigan, TCAUP

Structures II

Slide 3 of 12

Constituents of Concrete

- Aggregate
- Cement —
- Water

Ingredients:

- Limestone
- Cement rock
- Clay
- Iron ore

WINTER

- + (after firing and grinding)
- gypsum

Cement Types

- Type 1 *
 normal portland cement. Type 1 is a general use cement.
- Type 2
 is used for structures in water or soil
 containing moderate amounts of sulfate,
 or when heat build-up is a concern.
- Type 3 high early strength. Used when high strength are desired at very early periods.
- Type 4
 <u>low heat</u> portland cement. Used where the amount and rate of heat generation must be kept to a minimum.
- Type 5
 <u>Sulfate resistant</u> portland cement. Used where water or soil is high in alkali.
- Types IA, IIA and IIIA are cements used to make air-entrained concrete.

Constituents of Concrete

- Aggregate
- Cement
- Water

"potable"

No sulfates or organic impurities

- Air-entraining
- Water-reducing ~
- Plasticizers —
- Accelerating ~
- Retarding -
- · Hydration control
- · Shrinkage reducer
- Alkali-silicate inhibitor
- Coloration
- Bonding
- Foaming
- · And others...

University of Michigan, TCAUP

Structures II

Slide 5 of 12

Constituents of Concrete

PCA batch tables

 $\frac{\omega}{c} \frac{10}{25} = 0.4$

Table 9-16 (Inch-Pound). Proportions by Mass to Make One Cubic Foot of Concrete for Small Jobs

	Nominal maximum size coarse aggregate, in.	Air-entrained concrete				Non-air-entrained concrete			
		Cement,	Wet fine aggregate, lb	Wet coarse aggregate, lb*	Water, Ib	Cement,	Wet fine aggregate, Ib	Wet coarse aggregate, lb	Water, Ib
	%	29	53	46	10	29	59	46	11
	1/2	27	46	55	10	27	53	55	11
+	→ ¾	25	42	65	(9)	25	47	65	10
	1	24	39	70	9	24	45	70	10
	1½	23	38	75	9	23	43	75	9

^{*}If crushed stone is used, decrease coarse aggregate by 3 lb and increase fine aggregate by 3 lb.

Table 9-17. Proportions by Bulk Volume* of Concrete for Small Jobs

Nominal	Air-entrained concrete				Non-air-entrained concrete				
maximum size coarse aggregate, mm (in.)	Cement	Wet fine aggregate	Wet coarse aggregate	Water	Cement	Wet fine aggregate	Wet coarse aggregate	Water	
9.5 (%)	1	21/4	11/2	1/2	1	21/2	11/2	1/2	
12.5 (½)	1	21/4	2	1/2	1	21/2	2	1/2	
19.0 (¾)	1	21/4	21/2	1/2	1	21/2	21/2	1/2	
25.0 (1)	1	21/4	23/4	1/2	1	21/2	23/4	1/2	
37.5 (1½)	1	21/4	3	1/2	1	21/2	3	1/2	

^{*}The combined volume is approximately % of the sum of the original bulk volumes.

Workability

Measured in inches of "slump" of a molded cone of fresh mix.

- range 1" to 4" with vibration
- 2" to 6" without vibration

Water/Cement Ratio

- range 0,4 to 0.7 <
- for strength: higher is weaker
- · for workability: higher is more workable

Cement Content

- · LBS per cubic yard
- range 400-800 lbs/yd³
- · dependent on aggregate
- increases cost

Photos by Tano under cc license

University of Michigan, TCAUP Structures II Slide 7 of 12

Reinforcing

Grade = Yield strength

- gr. 40 is 40 ksi —
- gr. 60 is 60 ksi 🖛
- gr. 75 is 75 ksi เมเนเม

Size in 1/8 inch increments

- #4 is ½ inch dia.
- #6 is 3/4 inch dia.

{}

Deformation Patterns

· add to bond with concrete

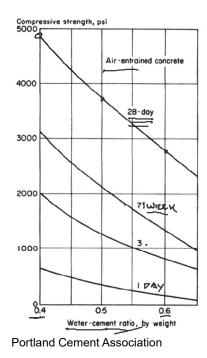
Minimum Spacing

- between bars (horizontal) the greatest of the 3 is the minimum Bar diameter
 - 1"

5/4 x max agg.

- between layers (vertical)
 - 1"
- coverage

3" against soil 1.5"-2" exterior 3/4" interior



Reinforcement of Weidatalbrücke

photo by Störfix

Curing

Strength increases with age. The "design" strength is 28 days.

Compressive strength, psi

6000

Non-air - entrained concrete

5000

28-day

1000

2000

7

Water - cement ratio, by weight

University of Michigan, TCAUP

Structures II

Slide 9 of 12

Strength Measurement

Compressive strength

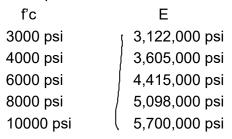
- 12"x6" cylinder
- 28 day moist cure
- · Ultimate (crushing) strength

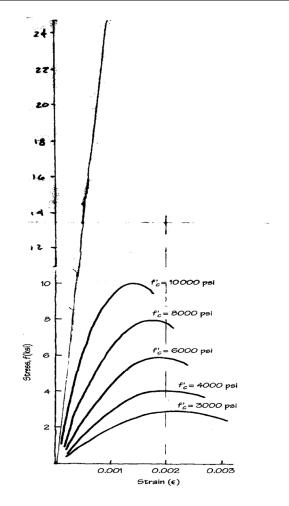
Tensile strength

12"x6" cylinder

- 28 day moist cure
- Ultimate (failure) strength
- · Split cylinder test
- ca. 10% of f'c

Young's Modulus


Depends on density and strength


$$E_c = \underline{w_c^{1.5}} 33\sqrt{\underline{f_c'}}$$

For normal (144 PCF) concrete

$$E_c = 57000 \sqrt{f_c'}$$

Examples:

University of Michigan, TCAUP Structures II Slide 11 of 12

