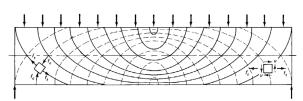
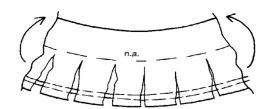

Architecture 324 Structures II

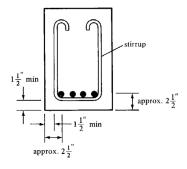
Reinforced Concrete Beams Ultimate Strength Design (ACI 318 - 2019)

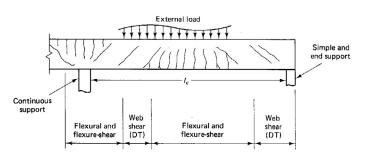
- Flexure in Concrete
- Ultimate Strength Design (LRFD)
- Failure Modes
- Flexure Equations
- Analysis of Rectangular Beams
- Design of Rectangular Beams
- Analysis of Non-rectangular Beams

University of Michigan, TCAUP Structures II Slide 1 of 51


Flexure


The stress trajectories in this simple beam, show principle tension as solid lines.


Reinforcement must be placed to resist these tensile forces


In beams continuous over supports, the stress reverses (negative moment). In such areas, tensile steel is on top.

Shear reinforcement is provided by vertical or sloping stirrups.

University of Michigan, TCAUP Structures II Slide 2 of 51

Ultimate Strength – (LRFD)

Nominal Strength ≥ Design Strength (strength of member ≥ required by loads)

LRFD uses 2 safety factors: γ and ϕ ϕ nominal strength $\geq \gamma$ required strength

- γ increases the required strength of the member and is placed on the loads
- reduces the member strength capacity and is
 placed on the calculated force

Loads increased:

γ Factors: DL=1.2 LL=1.6 U is the required strength U=1.2DL+1.6LL (factors from ASCE 7)

Strength reduced:

φ Factors: e.g. flexure = 0.9 in tension-controlled beams

Table 21.2.1—Strength reduction factors ϕ

Ac	tion or structural element	ф	Exceptions
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21,2.2	Near ends of pretensioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	_
(d)	Bearing	0.65	_
(e)	Post-tensioned anchorage zones	0.85	_
(f)	Brackets and corbels	0.75	_
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and- tie method in Chapter 23	0.75	_
(h)	Components of connec- tions of precast members controlled by yielding of steel elements in tension	0.90	_
(i)	Plain concrete elements	0.60	
(j)	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	_

University of Michigan, TCAUP

Structures II

Slide 3 of 51

Ultimate Strength – (ACI 318)

Reduced Nominal Strength ≥ Factored Load Effects

ΦSn ≥ U

γ Factored Loads (see ACSE 7)

1) 1.4D

2) 1.2D + 1.6L + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W)

4) 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + 1.0L + 0.2S

6)0.9D + 1.0W

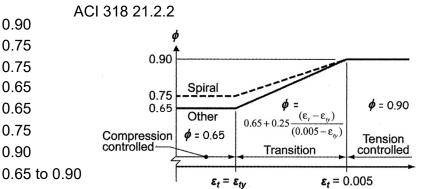
7) 0.9D + 1.0E

D = service dead loads

L = service live load

Lr = service roof live load

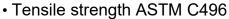
S = snow loads

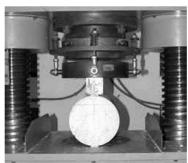

W = wind loads

R = rainwater loads

E = earthquake loads

Strength Reduction Factors, Φ


Mn	Flexural (€ > 0.005)	0.90
Vn	Shear	0.75
Pn	Compression (spiral)	0.75
Pn	Compression (other)	0.65
Bn	Bearing	0.65
Tn	Torsion	0.75
Nn	Tension	0.90
Combin	0.65 to	


University of Michigan, TCAUP Structures II Slide 4 of 51

Strength Measurement

- Compressive strength
 - 12" x 6" cylinder
 - 28 day moist cure
 - Ultimate (failure) strength
 - − Usable strain ϵ_{cu} = 0.003 (ACI 318)

- 12" x 6" cylinder
- 28 day moist cure
- Ultimate (failure) strength
- Split cylinder test
- ca. 10% of f'c
- Neglected in flexure analysis

University of Michigan, TCAUP

Structures II

Slide 5 of 51

Failure Modes Based on As

No Reinforcing

- Less than As min
- o Brittle failure

• Reinforcing < balance (use this)

- Steel yields before concrete fails
- o ductile failure
- (~As min) $0.06 \ge \epsilon_t \ge 0.004$ (As max)
- ϵ_t ≥ 0.005 for tension controlled

Reinforcing = balance

- Concrete fails just as steel yields
- ϵ_t at balance = 0.00207 for Gr 60

Reinforcing > balance

- Concrete fails before steel yields
- Low ductility
- Sudden failure

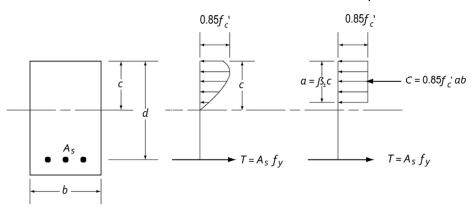
$$\rho = \frac{A_s}{hd}$$

As,min: greater of a and b

(a)
$$\frac{3\sqrt{f_c'}}{f_v}b_w d$$

(b)
$$\frac{200}{f_v}b_w d$$

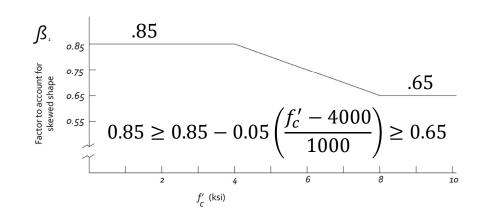
As_{max} when
$$\varepsilon_t = 0.004$$


$$\rho_{bal} = \left(\frac{0.85\beta_1 f_c'}{f_v}\right) \left(\frac{87000}{87000 + f_v}\right)$$

 $As > As_{max}$ SuddenDeath!!

ACI Stress Block

 eta_1 is a factor to account for the non-linear shape of the compression stress



Actual stress block

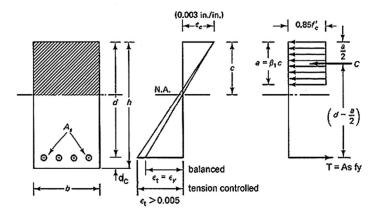
psi

block.

f'c	β1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

University of Michigan, TCAUP

Structures II


Slide 8 of 51

ACI equivalent stress

Flexure Equations

strain

ACI equivalent stress block

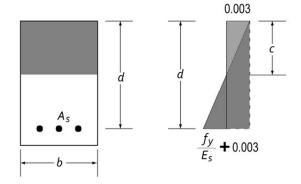
$$C = T$$
$$0.85f_c'ab = A_s f_v$$

solving for a, $a = \frac{A_s f_y}{0.85 f_s' b} = \frac{\rho f_y d}{0.85 f_s'}$

$$\epsilon_t = \frac{d-c}{c}(0.003)$$
 $\rho = \frac{A_s}{bd}$

$$M_n = T\left(d - \frac{a}{2}\right) = A_s f_y \left(d - \frac{a}{2}\right)$$

$$M_u = \phi M_n$$


$$M_{u} = \phi M_{n} = \phi A_{s} f_{y} \left(d - \frac{a}{2} \right)$$

$$M_{u} = \phi A_{s} f_{y} d \left(1 - 0.59 \frac{\rho f_{y}}{f_{c}'} \right)$$

Balance Condition

From similar triangles at balance condition:

$$\frac{c}{d} = \frac{0.003}{0.003 + (f_y/E_s)} = \frac{0.003}{0.003 + (f_y/29 \times 10^6)}$$
$$c = \frac{87,000}{87,000 + f_y}d$$

Strain diagram for balanced condition.

Use equation for a. Substitute into $c = a / \beta_1$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

$$\rho = \frac{A_s}{b d}$$

$$c = \frac{a}{\beta_1} = \frac{\rho f_y d}{0.85 \beta_1 f_c'}$$

Table A.8 Balanced Ratio of Reinforcement ρ_b for Rectangular Sections with Tension Reinforcement Only

	f_{c}^{\prime}	2,500 psi	3,000 psi	4,000 psi	5,000 psi	6,000 psi
		(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(34.5 MPa)	(41.4 MPa)
$f_{\mathbf{y}}$		$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.80$	$\beta_1 = 0.75$
Grade 40	ρ_b	0.0309	0.0371	0.0495	0.0582	0.0655
40,000 psi	$0.75\rho_b$	0.0232	0.0278	0.0371	0.0437	0.0492
(275.8 MPa)	$0.50\rho_b$	0.0155	0.0186	0.0247	0.0291	0.0328
Grade 50	ρ_b	0.0229	0.0275	0.0367	0.0432	0.0486
50,000 psi	$0.75\rho_b$	0.0172	0.0206	0.0275	0.0324	0.0365
(344.8 MPa)	$0.50\rho_b$	0.0115	0.0138	0.0184	0.0216	0.0243
Grade 60	ρ_b	0.0178	0.0214	0.0285	0.0335	0.0377
60,000 psi	$0.75\rho_b$	0.0134	0.0161	0.0214	0.0252	0.0283
(413.7 MPa)	$0.50\rho_b$	0.0089	0.0107	0.0143	0.0168	0.0189
Grade 75	ρ_b	0.0129	0.0155	0.0207	0.0243	0.0274
75,000 psi	$0.75\rho_b$	0.0097	0.0116	0.0155	0.0182	0.0205
(517.1 MPa)		0.0065	0.0078	0.0104	0.0122	0.0137

Equate expressions for c:

$$\frac{\rho f_y d}{0.85 \beta_1 f_c'} = \frac{87,000}{87,000 + f_y} d$$

$$\rho_b = \left(\frac{0.85 \beta_1 f_c'}{f_y}\right) \left(\frac{87,000}{87,000 + f_y}\right)$$

University of Michigan, TCAUP

Structures II

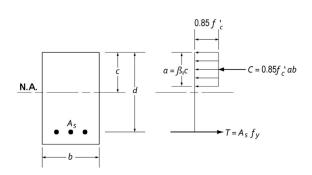
Slide 7 of 51

Rectangular Beam Analysis

Data:

- Section dimensions b, h, d, (span)
- Steel area As
- Material properties f'c, fy

Required:


- Nominal Strength (of beam) Moment Mn
- Required (by load) Design Moment Mu
- Load capacity

greater of a and b.

- 1. Calculate d
- 2. Check As min
- Calculate a

- (a) $\frac{3\sqrt{f_c'}}{f_c}b_w d$
- (b) $\frac{200}{f_{v}}b_{w}d$

- 4. Determine c
- 5. Check that $\epsilon_t \ge 0.005$ (tension controlled)
- 6. Find nominal moment, Mn
- 7. Calculate required moment, ϕ Mn \geq Mu (if $\epsilon_t \ge 0.005$ then phi = 0.9)
- 8. Determine max. loading (or span)

$$c = \frac{a}{\beta_1} \qquad \varepsilon_t = \frac{d-c}{c} 0.003 \ge 0.005$$

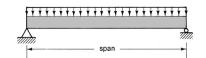
$$a = \frac{A_s f_y}{0.85 f_c' b} \qquad M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

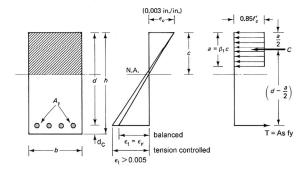
$$\phi M_n \ge M_n$$

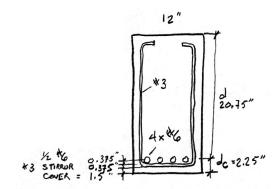
$$M_{u} = \frac{(1.2w_{DL} + 1.6w_{LL})l^{2}}{8}$$
$$1.6w_{LL} = \frac{M_{u}8}{l^{2}} - 1.2w_{DL}$$

Rectangular Beam Analysis

Data:


- dimensions 12"x23"
- Steel $-4 \times #6$ fy = 60ksi
- Concrete f'c = 6000 psi
- Stirrup # 3 cover 1.5" Agg ¾"


Required:


- 1. Calculate d

$$dc = coveR + *3 + ½(*6)$$

$$= 1.5 + 0.375 + \frac{0.75}{2} = 2.75$$

University of Michigan, TCAUP

Structures II

Slide 11 of 51

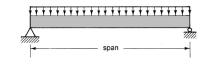
Rectangular Beam Analysis cont.

Data:

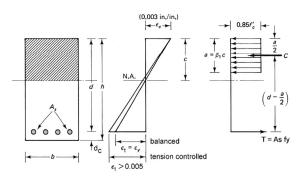
Steel $-4 \times #6 - As = 1.76 \text{ in}^2$

f'c = 6000 psi fy = 60 ksi

Table A 2 Designations	Arone	Perimeters	and Weights	of Standard Bars


	! Ci	ustomary Uni	SI Units			
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

2. Check As,min


Rectangular Beam Analysis cont.

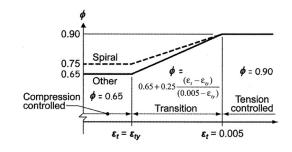
Data:

dimensions - 12"x23"Steel $- 4 x \# 6 - As = 1.76 in^2$ f'c = 6000 psi fy = 60ksi

f'c	β1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

$$a = \frac{Asfy}{0.85f_c^2b} = \frac{(1.76)(60)}{.85(6)(12)} = 1.725''$$

$$C = \frac{d}{\beta_1} = \frac{1,725}{0.75} = 2.300''$$


University of Michigan, TCAUP

Structures II

Slide 12 of 51

Rectangular Beam Analysis cont.

- 5. Check that As is < As max $\epsilon_{\rm t} \geq 0.004$
- 6. Check that $\epsilon_{\rm t} \geq 0.005$ (for tension controlled section) $\phi = 0.9$
- 7. Find nominal moment, Mn

$$E_{t} = \frac{d-C}{c} 0.003 = \frac{20.75-2.3}{2.3} 0.003$$

$$= 0.02406 > 0.004 : ... \times$$

$$= 0.02406 > 0.005 : tension controlled$$

$$T = A_S f_g = 1.76^{12} (60 \text{ KSI}) = 105.6 \text{ K}$$

$$Mn = T(d - \frac{d}{2}) = 105.6(20.75 - \frac{1.725''}{2})$$

 $Mn = 2100 K-11$

$$\phi_{Mu} = 0.9(2100) = 1890 \text{ K-1}$$
 $M_U = \phi_{Mu} = 1890/12 = 157.5 \text{ K-1}$

Slab Analysis

Data:

- Span = 18 ft
- h = 11" take b = 12"
- Steel #8 @ 18" o.c.
- f'c = 3000 psi
- fy = 60 ksi

Required:

- Design moment capacity Mu
- Maximum LL in PSF

1. Find d

$$A_{S} = \frac{12''}{18''} (0.79 \text{m}^{2})$$

$$= 0.5267 \text{ in}^{2}/\text{FT}$$

2. Find As

Check As, min

$$Ag = 11" \times 12" = 132 in^2$$

[0.0018(60)/60] 132 = 0.237 in²

$$0.0014 (132) = 0.1848 in^2$$

0.527 > 0.237 ok

University of Michigan, TCAUP

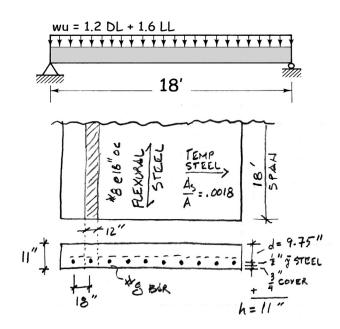


Table 7.6.1.1—A_{s,min} for nonprestressed one-way

Reinforcement type	f_y , psi		$A_{s,min}$	
Deformed bars	< 60,000	$0.0020A_g$		
Deformed bars or welded wire	≥ 60,000	Greater of:	$\frac{0.0018\times60,000}{f_y}A_g$	
reinforcement			$0.0014A_{g}$	

Slab Analysis

3. Find a

f'C	β1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

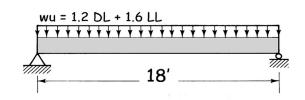
4. Find
$$c = \beta_1$$
 a

- 5. Check failure mode $\epsilon_{t} \ge 0.005$ for tension controlled
- 6. Find force T
- 7. Find moment arm z
- 8. Find nominal strength moment, Mn

$$a = \frac{A_{5}f_{y}}{.85f_{c}^{2}b} = \frac{0.5267(60)}{.85(3)(12)} = 1.033''$$

$$C = \frac{\partial}{\beta_1} = \frac{1.033''}{0.85'} = 1.215''$$

$$E_t = \frac{0.003 \, d}{C} - 0.003$$


ACI 318-14

$$\epsilon_{t} = \frac{0.003 (9.75'')}{1.215''} - 0.003 = 0.021 ''/4$$

$$T = A_s fy = 0.5267(60) = 31.6 K$$

 $E = d - \frac{9}{2} = 9.75 - \frac{1.033}{2} = 9.23$

Slide 14 of 51

Slab Analysis

- 9. Find required moment, Mu
- Mu= \$Mn = 0.9 (291.8) 1000 = 218851-4

10. Find slab DL

WPL = 2 1/2 = 150 1/2 = 137.5 PSF

11. Determine max. loading

$$M_0 = 21885^{1-16} = \frac{(1.2 \, \omega_{DL} + 1.6 \, \omega_{LL}) \, A^2}{8}$$

$$\frac{21885 \, (8)}{(18^7)^2} = 1.2 \, (137.5) + 1.6 \, (\omega_{LL})$$

$$540.37 = 165 + 1.6 \, (\omega_{LL})$$

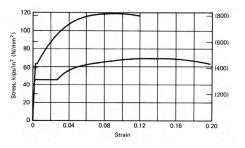
$$W_{LL} = 234.6 \, PSF$$

University of Michigan, TCAUP

Structures II

Slide 16 of 51

Details of Reinforcement

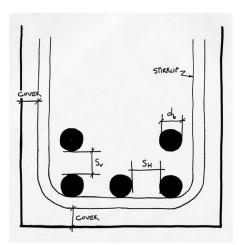

Size

Nominal 1/8" increments

Grade

- 40 40 ksi
- 60 60 ksi
- 75 75 ksi

Bar size designa- tion	Nominal cross section area, sq. in.	Weight, lb per ft	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
#8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

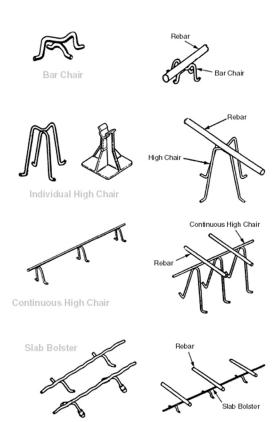

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

- cover (ACI 20.6.1)
- horizontal spacing in beams (ACI 25.2.1)
 1 inch
 d_b
 4/3 max aggregate
- vertical spacing in beams (ACI 25.2.2)
 1 inch

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in	and walls	No. 11 bar and smaller	3/4
contact with ground	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2



University of Michigan, TCAUP Structures II Slide 18 of 51

Details of Reinforcement

ACI 318 Chapter 25 Placement of Reinforcement

- Chairs
- Bolsters

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter

factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} , in.	Type of standard hook	
	No. 3 through No. 8	$6d_b$		Point at which bar is developed	
90-degree	No. 9 through No. 11	8 <i>d</i> _b	124	90-degree bend	
hook	No. 14 and No. 18	10 <i>d_b</i>	12 <i>d_b</i>	Diameter	
	No. 3 through No. 8	6 <i>d</i> _b		Point at which bar is developed	
180-degree	No. 9 through No. 11	$8d_b$	Greater of	d _b	
hook	No. 14 and No. 18	10 <i>d</i> _b	4 <i>d_b</i> and 2.5 in.	Diameter bend	

¹¹A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} , in.	Type of standard hook
90-degree	No. 3 through No. 5	4 <i>d</i> _b	Greater of 6d _b and 3 in.	90-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
135-degree	No. 3 through No. 5	4d _b	Greater of $6d_b$ and	135-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	3 in.	Diameter - Lext
180-degree	No. 3 through No. 5	4 d _b	Greater of	d _b -
hook	No. 6 through No. 8	6 <i>d</i> _b	4d _b and 2.5 in.	Diameter bend

IIIA standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

University of Michigan, TCAUP

Structures II

Slide 20 of 51

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

- 12" minimum
- based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
$\begin{array}{c} Lightweight \\ \lambda \end{array}$	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
n (II)	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
factor Lightweight λ Epoxy ^[1] Ψ_e	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
0.00	No. 6 and smaller bars and deformed wires	0.8
position ^[1]	More than 12 in. of fresh con- crete placed below horizontal reinforcement	1.3
Ψ_t	Other	1.0

^[1]The product $\psi_t \psi_e$ need not exceed 1.7.

Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\left(\frac{f_{y}\psi_{t}\psi_{e}}{25\lambda\sqrt{f_{c}^{\prime}}}\right)d_{b}$	$\left(\frac{f_y \psi_i \psi_e}{20 \lambda \sqrt{f_c'}}\right) d_b$
Other cases	$\left(\frac{3f_{y}\psi_{i}\psi_{e}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$	$\left(\frac{3f_y\psi_i\psi_e}{40\lambda\sqrt{f_c'}}\right)d_b$

Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

Custo	mary Units	SIU	SI Units		
f _c ' (psi)	E _c (psi)	f _c ' (MPa)	E _c (MPa)		
3,000	3,140,000	20.7	21 650		
3,500	3,390,000	24.1	23 373		
4,000	3,620,000	27.6	24 959		
4,500	3,850,000	31.0	26 545		
5,000	4,050,000	34.5	27 924		

Jack C McCormac, 1978
Design of Reinforced Concrete,

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	C	ustomary Uni	ts	_	SI Units	
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

Table A.4 Areas of Groups of StandardBars (in.2)

	Number of Bars													
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4	
4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75	
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30	
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19	
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42	
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00	
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72	
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87	
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50	
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00	

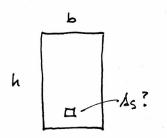
University of Michigan, TCAUP

Structures II

Slide 21 of 51

Rectangular Beam Design

Two approaches:

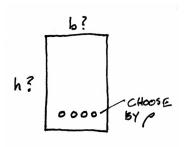

Method 1:

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions: h and b

Required:

Steel area - As


Method 2:

Data:

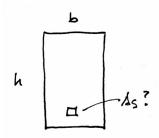
- Load and Span
- Some section dimensions h or b
- Material properties f'c, fy
- ρ

Required:

- Steel area As
- Beam dimensions b and h

Rectangular Beam Design - method 1

Data:


- Load and Span
- Material properties f'c, fy
- All section dimensions b and h

Required:

- · Steel area As
- Calculate the factored load and find factored required moment, Mu
- 2. Find $d = h cover stirrup d_b/2$ (one layer)
- 3. Estimate moment arm z = jd. For beams j \approx 0.9 for slabs j \approx 0.95
- 4. Estimate As based on estimate of jd.
- 5. Use As to find a
- 6. Use a to find As (repeat...until 2% accuracy)
- 7. Choose bars for As and check As max & min
- 8. Check that $\epsilon_t \ge 0.005$
- 9. Check Mu $\leq \phi$ Mn (final condition)
- 10. Design shear reinforcement (stirrups)
- 11. Check deflection, crack control, steel development length.

University of Michigan, TCAUP

Structures II

$$M_u = \frac{(\gamma \ W_{DL} + \gamma \ W_{LL})l^2}{8}$$

$$A_{s} = \frac{M_{u}}{\phi f_{y} \left(d - \frac{a}{2} \right)}$$

$$a = \frac{A_s f_y}{0.85 f_c' b}$$

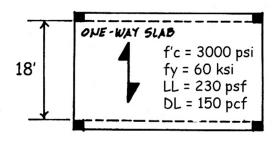
$$M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

Slide 22 of 51

Rectangular Slab Design

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width


Required:

Steel area - As

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.

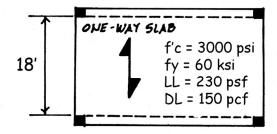

PLAN VIEW

Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs

Support condition	Minimum $h^{[1]}$
Simply supported	€/20
One end continuous	€/24
Both ends continuous	ℓ/28
Cantilever	ℓ/10

THICKNESS, h, BASED ON DEFLECTION
$$h = \frac{9}{20} = \frac{18 \times 12}{20} = 10.8" \text{ USE II"}$$

Rectangular Slab Design

PLAN VIEW

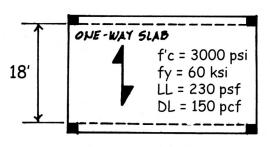
Calculate the dead load and find required Mu

FACTOR LOADS
$$DL = \frac{11''}{12}(150) = 137.5 \text{ PSF}$$

$$LL (41VEN) = 230 \text{ PSF}$$

$$W_0 = 1.2(137.5) + 1.6(230) = 533$$

$$M_{0} = \frac{w_{0} f^{2}}{8} = \frac{533 \text{ PLF} (18')^{2}}{8} = 21587'-*$$


$$= 259''-K$$

University of Michigan, TCAUP

Structures II

Slide 24 of 51

Rectangular Slab Design

PLAN VIEW

2. Estimate moment arm $z \approx 0.95 \text{ d}$

Rectangular Slab Design

- 3. Estimate As based on estimate of jd.
- 4. Use As to find a
- 5. Use a to find As (repeat...)

TRIAL I
$$A_5 = \frac{M_0}{\phi f_y(z)} = \frac{259''^{-15}}{0.9(60 \text{ Ks}_1)(9.5)''} = 0.505 \text{ in}^2$$

$$a = \frac{A_5 f_y}{.85 f_c' b} = \frac{0.505(60)}{.85(3)(12)} = 0.99''$$

TRIAL 2
$$A_{5} = \frac{H_{0}}{\phi f_{3}(d - \frac{e_{1}^{2}}{2})} = \frac{259}{0.9(60)(10 - \frac{.99}{2})}$$

$$A_{5} = 8.5046h^{2} \quad \text{WITHIM 2\%}$$

University of Michigan, TCAUP

Structures II

Slide 29 of 51

Rectangular Slab Design

Choose bars for As required:
 either
 choose bars and calculate spacing
 or
 choose spacing and find bar size

If the bar size changes, re-calculate to find new d. Then re-calculate As...

7. Check As,min (for slabs As,min from ACI Table 7.6.1.1)

Table 7.6.1.1— $A_{s,min}$ for nonprestressed one-way slabs

Reinforcement type	f_y , psi		$A_{s,min}$
Deformed bars	< 60,000		$0.0020A_g$
Deformed bars or welded wire	≥ 60,000	Greater of:	$\frac{0.0018 \times 60,000}{f_y} A_{\xi}$
reinforcement			$0.0014A_{g}$

CHOOSE BARS

:, USE
$$A''o.c.$$
 (always round down)
 $A_5 = 0.60 \text{ in}^2/\text{FT} > 0.505 \text{ }$

ALTERNATE FOR MAX.
$$S = 18''$$

$$\frac{0.505}{12''} : \frac{A_b}{18''} \qquad A_b = 0.75 \text{ in}^2$$

$$\frac{A_b}{12''} : \frac{A_b}{18''} \qquad \frac{A_b}{8} = 0.79$$

$$i. USE \qquad \frac{8}{5}e \quad 18'' \quad 0.c.$$

$$A_5 = 0.526 \text{ in}^2/\text{FT} > 0.505 \text{ V}$$

Check As, min

As min = 0.0018 bh = 0.0018(12)(11")
= 0.24
$$m^2 < 0.526m^2$$
 V or

Rectangular Slab Design

8. Check that $\epsilon_t \ge 0.005$

RE-CALC 2 FOR
$$A_5 = 0.6 \frac{m^3}{FT}$$

$$a = \frac{A_5 f_{yy}}{0.85 f_{z}^2 L} = \frac{0.6(60)}{0.85(3)(12)} = 1.176''$$

$$C = \frac{2}{B_1} = \frac{1.176}{0.85} = 1.384''$$

$$C_{z} = \frac{d - c}{c} 0.003 = \frac{1.384''}{0.003} = 0.01759$$

$$1.384''$$

$$0.01759 > 0.005$$

$$1.764510A CONTROLLED$$

University of Michigan, TCAUP

Structures II

Slide 31 of 51

Rectangular Slab Design

 Check Mu ≤ φ Mn (final condition)
 As = As,used

Mn = Tz

 Check deflection, crack control, steel development length. $M_n = A_s f_y \left(d - \frac{27}{2}\right)$ $M_n = 0.6(60)(9.5'' - \frac{1.176}{2})$ $M_n = 36(8.911'') = 320.8 K - 11$ $M_n = 0.9(320.8) = 288.7 K - 11$ $M_0 = 259 K - 11 < 288.7 K - 11$ $M_0 < d_{M_n}$ $M_0 < d_{M_n}$

Rectangular Beam Design – method 2

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'c, fy

Required:

- Steel area As
- Beam dimensions b and h
- 1. Estimate the dead load (h \approx L/12) and find Mu
- 2. Choose ρ (equation assumes $\epsilon_t = 0.0075$)
- size

h is between L/12 to L/18 and b:h \approx 1:2 to 2:3

- 5. Estimate h and correct weight and Mu
- 6. Find As = ρ b d
- 7. Choose bars for As and determine spacing and cover. Recheck h and weight.
- 8. Check that $\epsilon_t \ge 0.005$ (if not, increase h and reduce As)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length.

University of Michigan, TCAUP

Structures II

$$M_u = \frac{(\gamma \ W_{DL} + \gamma \ W_{LL})l^2}{8}$$

$$\rho = \frac{\beta_1 f_c'}{4f_v}$$

3. Calculate bd²
4. Choose b and solve for d (or d and solve b) b is based on form size – matches column
$$b \ d^2 = \frac{M_u}{\phi \rho f_y (1 - 0.59 \, \rho (fy / f_c))}$$

$$A_s = \rho b d$$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

Slide 33 of 51

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'c, fy

Required:

- Steel area As
- Beam dimensions b and d

Estimate b and h to get beam selfweight.

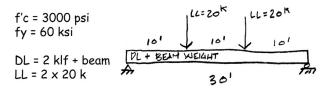

 Estimate the dead load (h ≈ L/12) and find Mu.

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $h^{[1]}$
Simply supported	€/16
One end continuous	€/18.5
Both ends continuous	€/21
Cantilever	ℓ/8

^[1]Expressions applicable for normalweight concrete and $f_{\nu}=60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

2. Choose ρ (equation assumes ϵ_t = 0.0075)

ASSUME
$$h \approx \frac{L}{12} = \frac{360''}{12} = 30''$$

ASSUME $b:h \approx 1:2 : b \approx 15''$
BELM $PL = 150 \frac{15 \times 30}{144} = 469 PLF$

ESTIMATE MU
$$M_{0} = P_{0} + \frac{\omega f^{2}}{8}$$

$$= 1.6(20)(10^{1}) + \frac{1.2(2.469 \text{ K/F})(30^{1})^{2}}{8}$$

$$= 320 + 333.3 = 653.3 \text{ K}-1$$

CHOOSE P
$$P = \frac{\beta_1 f_2^2}{4 f_3} = \frac{0.85(3)}{4(60)} = 0.010$$

Rectangular Beam Design cont.

$$bd^{2} = \frac{M_{0}}{4p f_{y} (1 - 0.59 p (f_{3/f_{c}}))}$$

$$bd^{2} = \frac{653.3 (12)}{0.01(0.9)60 [1 - 0.59(0.01)(\frac{60}{3})]}$$

$$bd^2 = \frac{7840}{0.573(0.882)} = 15492 \text{ in}^3$$

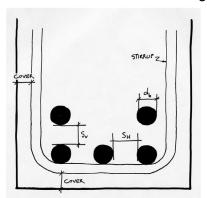
- 4. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h is between L/12 to L/18 and b:h ≈ 1:2 to 2:3
- 5. Estimate h and correct weight and Mu

University of Michigan, TCAUP

Structures II

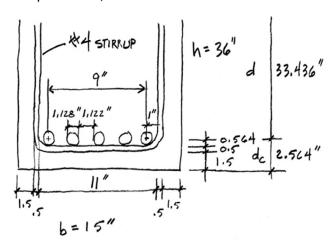
Slide 35 of 51

Rectangular Beam Design cont.


- 6. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h is between L/12 to L/18 and b:h ≈ 1:2 t
- 7. Estimate h and correct weight and Mu

REVISE bd
$$bd^2 = \frac{666(12)}{0.505} = 15814 \text{ m}^3$$

8. Find As =
$$\rho$$
 bd = $(0.01)(15^{\circ})(32.5^{\circ})$
As = 4.87 in^2


Rectangular Beam Design

9. Choose bars for As and determine spacing and cover. Recheck h and weight.

If bars do not fit in one layer, d is measured to the centroid of the pattern.

CHOOSE BLAS (SEE THEIR 4.4)

$\sum \mathbf{A} \vee \mathbf{A}$					Table A	.4 Areas	of Groups	s of Stand	lardBars	(in. ²)				
$\bar{x} = \frac{\sum \mathbf{A} \times a_x}{\sum}$	Number of Bars													
$\mathbf{x} - \mathbf{\Sigma} \mathbf{A}$	Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
	4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
	5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
	6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
	7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
	8	1.57	2.35	3.14	2.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
_	9	2.00	3.00	4.00	(5.00)	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
	10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
	11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
Jack C McCormac, 1978	14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
Design of Reinforced Concrete,	18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 37 of 51

Rectangular Beam Design

7. Choose bars for As and determine spacing and cover. Recheck h and weight.

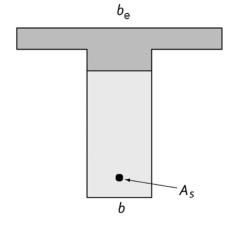
Make final check of Mn using final d and Check that Mu ≤ Ø Mn

- 1=33.436" $a = \frac{As fy}{.85f'_{1} h} = \frac{.5(60)}{.85(3)15} = 7.843''$ $H_n = A_s f_y \left(d - \frac{2}{2} \right) = 5(60) \left(33.436 - \frac{7.843}{2} \right)$ Mn = 8854 K-11 = 737.8 K-1 bHu = 0,9 (737,8) = 664 K-1 Mu=653,3 < 664 VOK
- 8. Check that $\varepsilon_t \ge 0.005$ (if not, increase h and reduce As)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length.

$$C = \frac{d}{\beta_1} = \frac{7.843''}{0.85} = 9.227''$$

$$\epsilon_{t} = \frac{d-c}{c}(0.003)$$

$$\epsilon_{t} = \frac{33.436 - 9.227}{9.227}(0.003)$$


Non-Rectangular Beam Analysis

Data:

- Section dimensions b, be, h, (span)
- · Steel area As
- Material properties f'c, fy

Required:

- Required Moment Mu (or load, or span)
- 1. Find T=As fy and C= 0.85 f'c Ac
- 2. Set T = C and solve for Ac
- 3. Draw and label diagrams for section and stress
 - 1. Determine b effective (for T-beams)
 - 2. Locate T and C (or C₁ and C₂)
- 4. Determine the location of a.
 - Working from the top down, add up area to make Ac
- 5. Find moment arms (z) for each block of area
- 6. Find Mn = Σ C z
- 7. Find Mu = ϕ Mn
- 8. Check As min < As < As max
- 9. Check that $\epsilon_t \ge 0.005$

University of Michigan, TCAUP

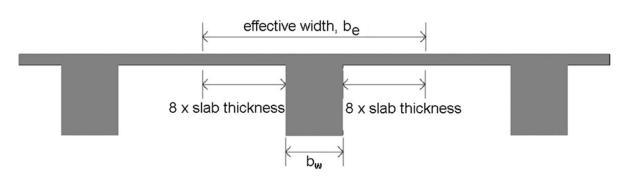
Structures II

Slide 39 of 51

Effective Flange Width, be

Slab on one side:

b_e least of either (total width) or (overhang + stem)


- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam

6 x slab depth or 1/2 clear span

Slab on both sides:

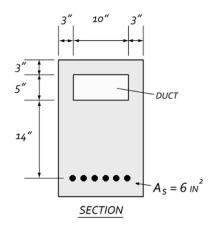
b_e least of either (total width) or (2 x overhang + stem)

- Total width: ¼ of the beam span
- Overhang: 8 x slab thickness
- Overhang: ½ the clear distance to next beam (i.e. the web on center spacing)

Non-rectangular shape - example

Given: f'c = 3000 psi

fy = 60 ksi


 $As = 6 \times #9 = 6 \text{ in}^2$

Req'd: Capacity, Mu

1a. Find T

1b. Find C in terms of Ac

2. Set T = C and solve for Ac

$$T = A_{S} f_{y} = 6 i^{2} (60000_{pi})$$

$$T = 360000^{4} = 360^{K}$$

$$C = 0.85 f_{c} A_{c} = 0.85 (3000_{pi}) A_{c} in^{2}$$

$$C = (2550 A_{c})^{4} = (2.55 A_{c})^{K}$$

$$T = C$$

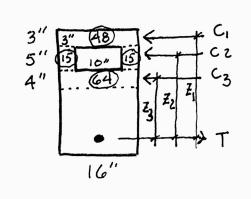
$$360^{K} = 2.55 A_{c}^{K}$$

$$A_{c} = 142 in^{2}$$

University of Michigan, TCAUP

Structures II

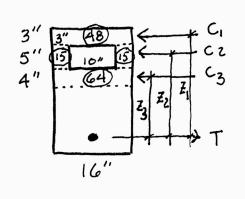
Slide 41 of 51


Non-rectangular shape (cont.)

- 3. Draw section and determine areas to make Ac
- 4. Find the location of a. a = 3"+5"+4"

C = 0.85 f'c Ac

f'c = 3 ksi


$$Ac_1$$
= 48 in²
 Ac_2 = 30 in²
 Ac_3 = 64 in²

$$A_{c} = 142 \text{ in}^{2} = A_{c_{1}} + A_{c_{2}} + A_{c_{3}}$$
 $142 = 48 + 30 + A_{c_{3}}$
 $A_{c_{3}} = 64 \text{ in}^{2}$
 $C_{1} = 48(2.55) = 127.4 \text{ K}$
 $C_{2} = 30(2.55) = 76.5 \text{ K}$
 $C_{3} = 64(2.55) = 163.2 \text{ K}$

Non-rectangular shape (cont.)

- 5. Determine moment arms to areas, z. (d = 22")
- 6. Calculate Mn by summing the Cz moments.
- 7. Find $Mu = \phi Mn$

$$Z_1 = 22 - 1.5 = 20.5$$
"

 $Z_2 = 22 - (3+2.5) = 16.5$ "

 $Z_3 = 22 - (8+2) = 12.0$ "

 $M_n = \sum C Z$
 $M_n = (C_1 Z_1) + (C_2 Z_2) + (C_3 Z_3)$
 $M_n = 2509 + 1262 + 1959$
 $M_n = 5730$
 $M_n = 4 M_n = 0.9(5730) = 5157 K-1$

University of Michigan, TCAUP

Structures II

Slide 43 of 51

Non-rectangular shape (cont.)

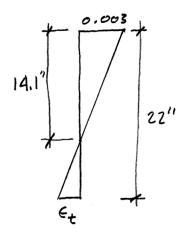
8. Check As, min

$$3 \frac{\sqrt{f'c}}{fy}$$
 bw d = $3 \left(\frac{\sqrt{3000}}{60000}\right) 22 (16) = 0.964 \text{ in}^2$

$$(200/f_y) b_w d = (200/60000) (16x22) = 1.17 in^2$$

As,min is the greater

(a)
$$\frac{3\sqrt{f_c'}}{f_y}b_w d$$


(b)
$$\frac{200}{f_y}b_w d$$

9. Check $\epsilon_t \ge 0.005$

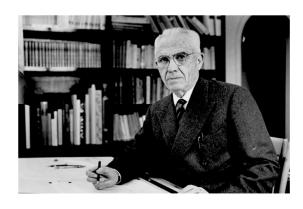
Find c =
$$a/\beta_1$$

Check that $\epsilon_t \ge 0.005$ (tension controlled)
And $\epsilon_t \ge 0.004$ (As max)

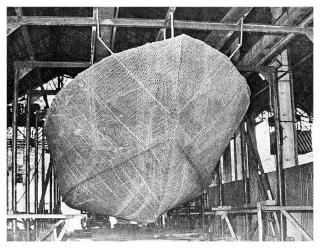
When As > As,max, ϵ_t must be increased: Reduce As (but would also reduce Mn) Add compression steel Increase h Increase f'c

$$C = \frac{\partial}{\beta_1} = \frac{12''}{0.85} = 14.1176''$$

$$E_{+} = \frac{d-c}{c} 0.003 = \frac{22-14.1}{14.1}$$


$$E_{+} = 0.00168$$

$$0.00168 < 0.004$$


$$... NG!$$

Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking

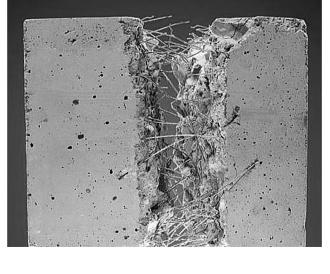
University of Michigan, TCAUP Structures II Slide 45 of 51

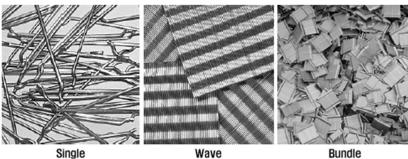
Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking
- Low-tech applications

Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata

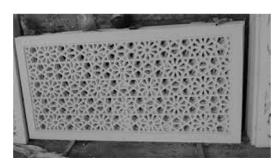
Palazetto dello Sport, Rome, 1957. P.L. Nervi


Fiber Reinforced Concrete


Several different fiber types:

- Steel (SFRC)
- Glass (GFRC)
- Plastic e.g. polypropylene
- Carbon
- Organic e.g. bamboo

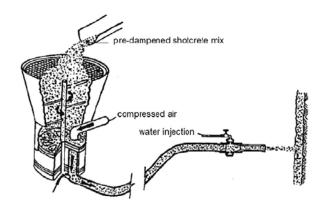
Better crack control Secondary reinforcement


University of Michigan, TCAUP Structures II Slide 47 of 51

Glass Fiber Reinforced Concrete - GFRC

Carbon Fiber

Bamboo


University of Michigan, TCAUP Structures II Slide 49 of 51

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- Reinforced with bars
- Soil stabilization, tunnels

Textile Reinforced Concrete (TRC)

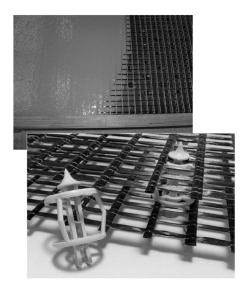


Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

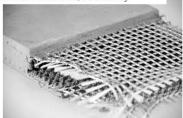


Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]

Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

University of Michigan, TCAUP Structures II Slide 51 of 51