Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-2019)

- Flexure in Concrete
- Ultimate Strength Design (LRFD)
- Failure Modes
- Flexure Equations
- Analysis of Rectangular Beams
- Design of Rectangular Beams
- Analysis of Non-rectangular Beams

Flexure

The stress trajectories in this simple beam, show principle tension as solid lines.

Reinforcement must be placed to resist these tensile forces

In beams continuous over supports, the stress reverses (negative moment). In such areas, tensile steel is on top.

Shear reinforcement is provided by vertical or sloping stirrups.

Ultimate Strength - (LRFD)

Nominal Strength \geq Design Strength (strength of member \geq required by loads)

LRFD uses 2 safety factors: γ and ϕ ϕ nominal strength $\geq \boldsymbol{\gamma}$ required strength
γ increases the required strength of the member and is placed on the loads
ϕ reduces the member strength capacity and is placed on the calculated force

Loads increased:
γ Factors: DL=1.2 LL=1.6
U is the required strength U=1.2DL+1.6LL
(factors from ASCE 7)
Strength reduced:
ϕ Factors: e.g. flexure $=0.9$
in tension-controlled beams

Table 21.2.1-Strength reduction factors ϕ

Action or structural element		ϕ	Exceptions
(a)	Moment, axial force, or combined moment and axial force	$\begin{gathered} 0.65 \text { to } \\ 0.90 \text { in } \\ \text { accordance } \\ \text { with 21.2.2 } \end{gathered}$	Near ends of pretensioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	-
(d)	Bearing	0.65	-
(e)	Post-tensioned anchorage zones	0.85	-
(f)	Brackets and corbels	0.75	-
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-andtie method in Chapter 23	0.75	-
(h)	Components of connections of precast members controlled by yielding of steel elements in tension	0.90	-
(i)	Plain concrete elements	0.60	-
(j)	Anchors in concrete elements	0.45 to 0.75 in accordance with Chapter 17	-

Ultimate Strength - (ACI 318)

Reduced Nominal Strength \geq Factored Load Effects

$$
\Phi S n \geq U
$$

γ Factored Loads (see ACSE 7)

1) 1.4 D
2) $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
3) $1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+(1.0 \mathrm{~L}$ or 0.5 W$)$
4) $1.2 \mathrm{D}+1.0 \mathrm{~W}+1.0 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
5) $1.2 \mathrm{D}+1.0 \mathrm{E}+1.0 \mathrm{~L}+0.2 \mathrm{~S}$
6) $0.9 \mathrm{D}+1.0 \mathrm{~W}$
7) $0.9 D+1.0 E$

Strength Reduction Factors, Φ

Mn	Flexural $\left.^{\text {Shear }} \boldsymbol{>} 0.005\right)$	0.90
Vn	0.75	
Pn	Compression (spiral)	0.75
Pn	Compression (other)	0.65
Bn	Bearing	0.65
Tn	Torsion	0.75
Nn	Tension	0.90
Combined stress	0.65 to 0.90	

D = service dead loads
L = service live load
Lr = service roof live load
$S=$ snow loads
W = wind loads
$R=$ rainwater loads
$E=$ earthquake loads

Strength Measurement

- Compressive strength
- 12 " x 6 " cylinder
- 28 day moist cure
- Ultimate (failure) strength
- Usable strain $\epsilon_{c u}=0.003(\mathrm{ACI} 318)$
- Tensile strength ASTM C496
- 12 " x 6 " cylinder
- 28 day moist cure

$$
f_{t}^{\prime}
$$

- Ultimate (failure) strength
- Split cylinder test
- ca. 10% of f'c
- Neglected in flexure analysis

Failure Modes Based on As

- No Reinforcing

β_{1} is a factor to account for the non-linear shape of the compression stress block.

$$
a=\beta_{1} c
$$

psi

$\mathbf{f}^{\prime} \mathbf{C}$	$\beta 1$
0	0.85
1000	1
2000	0.85
3000	0.85
4000	$\underline{0.85}$
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

strain $\quad \mathrm{ACl}$ equivalent stress block

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\frac{\rho f_{y} \underline{d}}{0.85 f_{c}^{\prime}}
$$

$$
\epsilon_{t}=\frac{d-c}{c}(0.003) \quad \rho=\frac{A_{s}}{b d} \frac{\epsilon_{c}}{c}: \frac{\epsilon_{t}}{\delta-c} \quad M_{u}=\phi A_{s} f_{y} d\left(1-0.59 \frac{\left(\rho f_{y}\right.}{f_{c}^{\prime}}\right)
$$

Balance Condition

From similar triangles at balance condition:
$\frac{c}{d}=\frac{0.003 \cdot}{\underbrace{0.003+\left(f_{y} / E_{s}\right)}}=\frac{0.003}{0.003+\left(f_{y} / 29 \times 10^{6}\right)}$
$\partial=\frac{87,000}{87,000+f_{y}} d$

Use equation for a . Substitute into $\mathrm{c}=\mathrm{a} / \beta_{1}$

Table A. 8 Balanced Ratio of Reinforcement ρ_{b} for Rectangular Sections with

Rectangular Beam Analysis

Data:

- Section dimensions - b, h, d, (span)
- Steel area-As $\sqrt{\sim}$
- Material properties -f'c, fy

Required:

- Nominal Strength (of beam) Moment - Mn
- Required (by load) Design Moment - Mu

- Load capacity

1. Calculate d

As,min
greater of a and b .

$$
c=\frac{a}{\beta_{1}} \quad \varepsilon_{1}=\frac{(d) c}{c} 0.003 \geq 0.005
$$

2. Check As min
(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
3. Calculate a
(b) $\frac{200}{f_{y}} b_{w} d$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \quad M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

4. Determine C

$$
\phi M_{n} \geq M_{u}
$$

5. Check that $\epsilon_{\mathrm{t}} \geq 0.005$ (tension controlled)
6. Find nominal moment, Mn
7. Calculate required moment, $\phi \mathrm{Mn} \geq \mathrm{Mu}$

$$
M_{u}=\frac{\left(1.2 w_{D L}+1.6 w_{L L}\right) l^{2}}{8}
$$

$$
\text { (if } \epsilon_{t} \geq 0.005 \text { then phi }=0.9 \text {) }
$$

8. Determine max. loading (or span)

Rectangular Beam Analysis

Data: b h

- dimensions - 12 "x23"
- Steel $-4 x \# 6$ fy $=60 \mathrm{ksi}$
- Concrete fec = 6000 psi
- Stirrup \# 3 cover 1.5 " Ag $3 / 4$

Required:

- Required Moment $-\underline{\mathrm{Mn}=\mathrm{Mu} \text { (capacity) }) ~(c) ~}$

1. Calculate d^{r}

$$
\begin{aligned}
d_{c} & =\text { COVER }+{ }^{*} 3+1 / 2(* 6) \\
& =1.5+0.375+\frac{0.75}{2}=2.25^{\prime \prime} \\
d & =h-d_{c}=23^{\prime \prime}-2.25=20.75^{\prime \prime}
\end{aligned}
$$

Rectangular Beam Analysis cont.

Data:
dimensions - 12"x23"
Steel $-4 \mathrm{x} \# 6-\mathrm{As}=1.76 \mathrm{in}^{2}$.
$\mathrm{f}^{\prime} \mathrm{C}=6000 \mathrm{psi}$ fy $=60 \mathrm{ksi}$

$$
4 \times 0.44=
$$

2. Check As, min

$$
\begin{aligned}
& \frac{A_{s, \text { min }}}{1(1)} \frac{3 \sqrt{f_{c}^{\prime}} b d}{f_{y}}=\frac{3 \sqrt{6000}}{60000}(12 \times 20.75)=0.964 \mathrm{~m}^{2}<1.76^{2} \underset{\text { courkas }}{\leftarrow} \\
& \text { (2) } \frac{200 b d}{f_{y}}=\frac{200(12)(20.75)}{60000}=0.83 \mathrm{~m}^{2} \\
& \therefore A_{s \text { min }}=0.964 \mathrm{~m}^{2} \\
& \left.A_{s}=A_{b}(N . B)\right)=0.44(4)=1.76 \mathrm{~m}^{2} \quad 1>0.964 \mathrm{~m}^{2}
\end{aligned}
$$

Rectangular Beam Analysis cont.
Data:
dimensions - 12"x23"
Steel $-4 \mathrm{x} \# 6-\mathrm{As}=1.76 \mathrm{in}^{2}$
$\mathrm{f}^{\prime} \mathrm{C}=6000 \mathrm{psi} \mathrm{fy}=60 \mathrm{ksi}$
3. Find a

$f^{\prime} c$	$\beta 1$
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

6 Ksi

$$
0.00
$$

er

4. Find C

$$
a=\frac{A_{s}^{\prime} f_{y}^{\prime}}{0.85 f_{c}^{\prime} b}=\frac{(1.76)^{m^{2}}(60)^{\mathrm{kss}}}{.85(6)(12)^{\prime \prime}}=\underline{k s 1} \mathbf{1 . 7 2 5 ^ { \prime \prime }}
$$

$$
\beta_{1}=0.85-0.05 \frac{f_{c}^{\prime}-4000}{1000}=0.85-0.1=0.75
$$

$$
c=d / \beta_{1}=\frac{1,725}{0.75}=2.300^{11}
$$

Rectangular Beam Analysis cont.

5. Check that As is < As max
$\epsilon_{t} \geq 0.004$

6. Check that $\epsilon_{\mathrm{t}} \geq 0.005$
(for tension controlled section)
$\phi=0.9$

$$
\begin{aligned}
\epsilon_{t} & =\frac{d-c}{c} 0.003=\frac{20.75-2.3}{2.3} 0.003 \\
\epsilon_{+} & =0.02406>0.004 \therefore \text { ok V } \\
& =0.02406>0.005 \therefore \text { tension controlled }
\end{aligned}
$$

7. Find nominal moment, Mn
8. Calculate required moment $\phi \mathrm{Mn} \geq \mathrm{Mu}$

$$
\begin{aligned}
\gamma \frac{w l^{2}}{8} \rightarrow M_{n} & =0.9(2100)=1890 \mathrm{K-11} \\
M_{u} & =\operatorname{dN}_{n}=1890 / 12=157.5 \mathrm{k}-1
\end{aligned}
$$

Slab Analysis

Data:

- Span $=18 \mathrm{ft}$
- $\mathrm{h}=11^{\prime \prime}=$ $d i 2=\frac{8}{88}=1^{\prime \prime}$ take $\mathrm{b}=12^{\prime \prime}$
- Steel \#8 @ 18" oc.
- $\mathrm{f}^{\prime} \mathrm{c}=3000 \mathrm{psi}$
- $\mathrm{fy}=60 \mathrm{ksi}$

Required:

- Design moment capacity - Mu LOAD
- Maximum LL in PSF

$$
d=11^{\prime \prime}-\frac{1}{2}-\frac{3}{4}=9.75^{\prime \prime}
$$

1. Find d
2. Find As Check As, min
Ag = $11^{\prime \prime} \times 12 "=132 \mathrm{in}^{2}$

$$
[0.0018(60) / 60] 132=0.237 \mathrm{in}
$$

$$
0.0014(132)=0.1848 \mathrm{in}^{2}
$$

$0.527>0.237$ ok
University of Michigan, TCAUP

Slab Analysis

3. Find a
4. Find $\mathrm{c}=\beta_{1} \mathrm{a}$
5. Check failure mode

$\boldsymbol{f}^{\prime} \mathbf{C}$	$\boldsymbol{\beta} \boldsymbol{1}$
0	0.85
1000	0.85
2000	0.85
3000	0.85
$\underline{4000}$	$\underline{0.85}$
5000	$\underline{0.8}$
6000	0.75
7000	0.7
$\underline{8000}$	$\underline{0.65}$
9000	0.65
10000	0.65

$$
\begin{aligned}
& a=\frac{A_{s} f y}{.85 f_{s}^{\prime} b}=\frac{0.5267(60)}{.85\left(\frac{3}{k s}\right)\left(12^{2}\right)}=1.033^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& C=\frac{a}{\beta_{1}}=\frac{1.033^{\prime \prime}}{0.85^{\prime}}=1.215^{\prime \prime} \\
& \epsilon_{t}=\frac{0.003 d}{c}-0.003 \\
& \epsilon_{t}=\frac{0.003\left(9.75^{\prime \prime}\right)}{1.215^{\prime \prime}}-0.003=0.021 \mathrm{\prime} \mathrm{\prime} /
\end{aligned}
$$

6. Find force T
7. Find moment arm z

$$
T=A_{S} f y=0.5267(68)=31.6^{\mathrm{A}}
$$

8. Find nominal strength moment, Mn $\epsilon_{\mathrm{t}} \geq 0.005$ for tension controlled

$$
\epsilon_{t}=0.021>0.005 \therefore \text { TENSION CONTROLLED }
$$

$$
z=\underset{d}{d}-\frac{d}{2}=9.75^{\prime \prime}-\frac{1.033^{\prime \prime}}{2}=9.23^{\prime \prime}
$$

$$
M_{n}=T_{z}=31.6(9.23)=291.8^{k-11}
$$

Table 7.6.1.1- $A_{s, \text { min }}$ for nonprestressed one-way slabs

ACI 318-14
,

Slab Analysis
9. Find required moment, Mu
10. Find slab DL
11. Determine max. loading

Details of Reinforcement

Size

- Nominal $1 / 8^{\prime \prime}$ increments

Grade

- $\left.\quad \begin{array}{lll}40 & 40 \mathrm{ksi} \\ \text { - } & 60 & 60 \mathrm{ksi} \\ \text { - } & 75 & 75 \mathrm{ksi}\end{array}\right)$

Details of Reinforcement
ACI 318 Chapter 25.2
Placement of Reinforcement

- cover
(ACI 20.6.1)
- horizontal spacing in beams (ACl 25.2.1)

1 inch -
$\frac{d_{b}}{4 / 3}$ max aggregate $\frac{3}{4} 3=1^{\prime \prime}$

- vertical spacing in beams (ACl 25.2.2)

1 inch

Table 20.6.1.3.1-Specified concrete cover for cast-in-place nonprestressed concrete members

Details of Reinforcement

ACI 318 Chapter 25
Placement of Reinforcement

- Chairs
- Bolsters

Continuous High Chair

ACI 318 Chapter 25

Minimum bend diameter - factor $\times \mathrm{d}_{\mathrm{b}}$

Hooks for bars in tension

- ACI Table 25.3.1
- Inside diameter

Bends for stirrups

- ACI Table 25.3.2

Table 25.3.1-Standard hook geometry for development of deformed bars in tension BEARAS

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

- 12" minimum
- based on table 25.4.2.2

Table 25.4.2.4-Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
Lightweight λ	Lightweight concrete	0.75
	Lightweight concrete, where $f_{c t}$ is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
$\frac{\text { Epoxy }^{[1]}}{\psi_{e}}$	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3 d_{b}$ or clear spacing less than $6 d_{b}$	$\begin{aligned} & 1.5 \\ & = \end{aligned}$
	Epoxy-coated or zinc and epoxy dualcoated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
$\begin{gathered} \text { Size } \\ \psi_{s} \end{gathered}$	N0. No. 7 and larger bars	1.0
	No. 6 and smaller bars and deformed wires	0.8
Casting position ${ }^{[1]}$ ψ_{t}	More than 12 in . of fresh concrete placed below horizontal reinforcement	1.3
	Other	1.0

${ }^{[1]}$ The product $\psi_{t} \psi_{e}$ need not exceed 1.7.

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_{b}, clear cover at least d_{b}, and stirrups or ties throughout ℓ_{d} not less than the Code minimum or	$\left(\frac{f_{y} \psi_{t} \psi_{e}}{25 \lambda \sqrt{f_{c}^{\prime}}}\right) d_{b}$	$\left(\frac{f_{y} \Psi_{t} \psi_{e}}{20 \lambda \sqrt{f_{c}^{\prime}}}\right) d_{b}$
Clear spacing of bars or wires being developed or lap spliced at least $2 d_{b}$ and clear cover at least d_{b}	$\left(\frac{3 f_{y} \Psi_{t} \psi_{e}}{50 \lambda \sqrt{f_{c}^{\prime}}}\right) d_{b}$	$\left(\frac{3 f_{y} \psi_{t} \psi_{e}}{\left.40 \lambda \sqrt{f_{c}^{\prime}}\right)} d_{b}\right.$
Other cases		

Other Useful Tables:

Table A. 2 Designations, Areas, Perimeters, and Weights of Standard Bars

Table A. 1 Values of Modulus of Elasticity for Normal-Weight Concrete

Customary Units		SI Units	
f_{c}^{\prime} (psi)	E_{c} $(\mathrm{ps1})$	f_{c}^{\prime} (MPa)	\boldsymbol{E}_{c} (MPa)
3,000	$3,140,000$	20.7	21650
3,500	$3,390,000$	24.1	23373
4,000	$3,620,000$	27.6	24959
4,500	$3,850,000$	31.0	26545
5,000	$4,050,000$	34.5	27924

Jack C McCormac, 1978
Design of Reinforced Concrete,

Table A. 4 Areas of Groups of StandardBars (in. ${ }^{2}$)

Rectangular Beam Design

Two approaches:

Method 1:

Data:

- Load and Span
- Material properties - fec, fy
- All section dimensions: h and b

Required:

- Steel area - As

Method 2:

Data:

- Load and Span
- Some section dimensions - h or b
- Material properties - fec, fy
- ρ

Required:

- Steel area - As ${ }^{\swarrow}$

- Beam dimensions - b and h

Rectangular Beam Design - method 1

Data:

- Load and Span
- Material properties - fec, fy
- All section dimensions - b and h

Required:

- Steel area - As

1. Calculate the factored load and find factored required moment, Mu -
2. Find dd $=h^{2}-$ cover $-\mathrm{stirrup}-\mathrm{d}_{\mathrm{b}} / 2 \quad$ (one layer) $\quad M_{u}=\frac{\left(\gamma w_{D L}+\gamma w_{L L}\right) l^{2}}{8}$ for slabs $\mathrm{j} \approx 0.95$
3. Estimate As based on estimate of jd.
4. Use As to find a
5. Use a to find As (repeat... until 2\% accuracy)
6. Choose bars for As and check As max \& min
7. Check that $\epsilon_{\mathrm{t}} \geq 0.005$
8. Check $\mathrm{Mu} \leq \phi \mathrm{Mn}$ (final condition)

9. Design shear reinforcement (stirrups)
10. Check deflection, crack control, steel development length.

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

Rectangular Slab Design

Data:

- Load and Span
- Material properties - fec, fy
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width

Required:

- Steel area - As

First estimate the slab thickness, h.
Try first the recommended minimum.
Deeper sections require less steel, but of course more concrete.

Table 7.3.1.1 -Minimum thickness of solid nonprestressed one-way slabs,

\rightarrow| Support condition | Minimum $h^{[1]}$ |
| :--- | :---: |
| Simply supported | $\ell / 20$ |
| One end continuous | $\ell / 24$ |
| Both ends continuous | $\ell / 28$ |
| Cantilever | $\ell / 10$ |

Tilickness, h, Bise ON DEFLICTION

$$
h=\frac{l}{20}=\frac{18 \times 12}{20}=10.0^{\prime \prime} \text { USE } 11^{\prime \prime}
$$

Rectangular Slab Design

1. Calculate the dead load and find required Mu

$$
\begin{aligned}
& \text { FaCTOR LOrDS } P_{C E} \\
& D L=\frac{111^{\prime \prime}}{12}(150)^{P C F}=137.5 \mathrm{PSF} \\
& L L(\text { LiveN })=230 \text { PSF } \\
& \omega_{0}=1.2(137.5)+1.6(230)=533 \\
& M_{u}=\frac{\omega_{0} l^{2}}{8}=\frac{533^{2 \operatorname{PLF}(18)^{2}}}{8}=21587!-* \\
& \phi M_{n}=259^{\prime \prime}-k
\end{aligned}
$$

Rectangular Slab Design

2. Estimate moment arm $z \approx 0.95 \mathrm{~d}$

$$
\text { FOR } j \approx 0.95, \begin{aligned}
& d=h^{\prime}-\text { COVER }-1 / 2 B A R \\
& d=11^{\prime \prime}-3 / 4^{\prime \prime}-1 / 2(1 / 2) 8^{\prime \prime} \\
& d=11^{\prime \prime}-1^{\prime \prime}=10^{\prime \prime} \\
& z \approx j d \approx 0.95\left(10^{\prime \prime}\right)=9.5^{\prime \prime}
\end{aligned}
$$

3. Estimate As based on estimate of jd.
4. Use As to find a

Truth 1

TRIM 2
$A_{s}=\frac{H_{0}}{\phi f_{y}\left(d-\frac{0}{2}\right)}=\frac{259}{0.9(60)\left(10-\frac{.99}{2}\right)}$

Rectangular Slab Design

6. Choose bars for As required: either
choose bars and calculate spacing or
choose spacing and find bar size

If the bar size changes, re-calculate to find new d. Then re-calculate As...
7. Check As, min
(for slabs As, min from ACI Table 7.6.1.1)

Table 7.6.1.1- $A_{s, \text { min }}$ for nonprestressed one-way slabs

Reinforcement type	$f_{y}, \mathbf{p s i}$	$\boldsymbol{A}_{s, \text { min }}$		
Deformed bars	$<60,000$	$0.0020 A_{g}$		
Deformed bars or welded wire reinforcement	$\geq 60,000$	Greater of:	$\frac{0.0018 \times 60,000}{f_{y}} A_{g}$	

CHOOSE BARS

$$
\begin{aligned}
& \text { Using } \frac{0.505}{12^{\prime \prime}}: \frac{0.2}{s^{\prime \prime}} \quad s=4.75^{\prime \prime} \frac{12}{4} \frac{6}{12} \\
& \therefore \text { USE } 4^{\prime \prime} 0 . c, \quad(\text { always round down }) \\
& A_{s}=0.60 \mathrm{~m}^{2} / \mathrm{FT}>0.505
\end{aligned}
$$

SLTENATIE For MAX. $S=18^{\prime \prime}$

$$
\begin{aligned}
& \frac{0.505}{12^{11}}: \frac{A_{b}^{7}}{18^{\prime \prime}} \quad A_{b}=0.755^{2} \\
& x_{0}=0.79
\end{aligned}
$$

$$
\therefore \text { USE せE 18"o.c. }
$$

$$
A_{s}=0.526 \mathrm{~m}^{2} / \mathrm{FT}>0.505
$$

Check As,min -

$$
\begin{aligned}
A_{s \text { mir }} & =0.0018 \mathrm{bh}=0.0018(12)\left(11^{\prime \prime}\right) \\
& =0.24 \mathrm{~m}^{2}<\frac{0.526 \mathrm{~m}^{2}}{.6} \mathrm{ok}
\end{aligned}
$$

Rectangular Slab Design

8. Check that $\epsilon_{\mathrm{t}} \geq 0.005$

Rectangular Slab Design

9. Check $\mathrm{Mu} \leq \phi \mathrm{Mn}$
(final condition)
As = As, used
$M n=T z$
10. Check deflection, crack control, steel development length.
Mn = T z
*4 © 4"O.
RE-CALC ${ }^{2}$ FOR $A_{s}=0.6 \mathrm{~m}^{2} / \mathrm{FT}$ $\partial=\frac{A_{5} f_{y}}{0.85 f_{c}^{\prime} \mathrm{L}}=\frac{0.6(60)}{0.85(3)(12)}=1.176^{\prime \prime}$ $C=\frac{\partial}{\beta_{1}}=\frac{1.176}{0.85}=1.384^{\prime \prime}$ $\epsilon_{t} \leq \frac{d-c}{d e} 0.003=$
$=\frac{9.5^{\prime \prime}-1.384^{\prime \prime}}{1.384^{\prime \prime}} 0.003=0.01759$
$0.01759>0.005$
\therefore TENSION CONTROL LED T

$$
\begin{aligned}
& M_{n}=\frac{A_{s}}{\hbar} F_{y}\left(d-\frac{R}{2}\right) \\
& M_{n}=0.6(60)\left(9.5^{\prime \prime}-\frac{1.176}{2}\right) \\
& H_{n}=36\left(8.91^{\prime \prime}\right)=320.8 \mathrm{~K}=11 \\
& d_{M_{n}}=0.9(320.8)=288.7^{\mathrm{k-1} \mathrm{\prime}} \\
& M_{u}=259^{\mathrm{k-} \mathrm{\prime}}<288.7^{\mathrm{k} \mathrm{\prime} \mathrm{\prime}} \\
& M_{u}<d H_{n} \checkmark \text { ox }
\end{aligned}
$$

Rectangular Beam Design - method 2

Data:

- Load and Span
- Some section dimensions - b or h
- Material properties - fec, fy

$$
M_{u}=\frac{\left(\gamma w_{D L}+\gamma w_{L L}\right) l^{2}}{8}
$$

Required:

- Steel area - As
- Beam dimensions - b and h

1. Estimate the dead load ($\mathrm{h} \approx \mathrm{L} / 12$) and find Mu

$$
\rho=\frac{\beta_{1} f_{c}^{\prime}}{4 f_{y}}
$$

2. Choose ρ (equation assumes $\epsilon_{\mathrm{t}}=0.0075$)
3. Calculate bd ${ }^{2}$
$\begin{aligned} & \text { 4. Choose } \mathrm{b} \text { and solve for } \mathrm{d} \text { (or d and solve b) } \\ & \mathrm{b} \text { is based on form size }- \text { matches column }\end{aligned} \quad b d^{2}=\frac{\mathrm{m}_{u}}{\phi \rho f_{y}\left(1-0.59 \rho\left(f y / f_{c}^{\prime}\right)\right)}$ size
h is between $L / 12$ to $L / 18$ and $b: h \approx 1: 2$ to $2: 3$
4. Estimate h and correct weight and Mu
5. Find As $=\rho \mathrm{b}$ d

$$
A_{s}=\rho b d
$$

7. Choose bars for As and determine spacing and cover. Recheck h and weight.
8. Check that $\epsilon_{t} \geq 0.005$ (if not, increase h and reduce As)
9. Design shear reinforcement (stirrups)
$a=\frac{\rho f_{y} d}{0.85 f_{c}^{\prime}}$
10. Check deflection, crack control, steel development length.

Rectangular Beam Design

Data:

- Load and Span
- Material properties - fec, fy

Required:

- Steel area - As
- Beam dimensions - b and d

Estimate b and h to get beam selfweight.

1. Estimate the dead load ($h \approx L / 12$) and find Mu.

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $\boldsymbol{h}^{[\mathbf{1]}}$
Simply supported	$\ell / 16$
One end continuous	$\ell / 18.5$
Both ends continuous	$\ell / 21$
Cantilever	$\ell / 8$

${ }^{[1]}$ Expressions applicable for normalweight concrete and $f_{y}=60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.
2. Choose ρ (equation assumes $\epsilon_{\mathrm{t}}=0.0075$)

$$
\begin{aligned}
& \text { ASSUME } h \approx \frac{L}{12}=\frac{360^{\prime \prime}}{12}=30^{\prime \prime} \\
& \text { ASSUME } b: h \approx 1: 2 \therefore b \approx 15^{\prime \prime} \\
& \text { BEAM PL }=150 \frac{15 \times 30}{144}=469 \mathrm{PLF}
\end{aligned}
$$

Estimprre Mu

$$
M_{U}=P_{a}+\frac{w f^{2}}{\varepsilon}
$$

$$
=1.6\left(20^{k}\right)\left(10^{\prime}\right)+\frac{1.2(2.469 \mathrm{kLF})\left(30^{\prime}\right)^{2}}{8}
$$

$$
=320+333.3=653.3 \mathrm{k}-1
$$

CHoose ρ

$$
\rho=\frac{\beta_{1} f_{c}^{\prime}}{4 f_{y}}=\frac{0.85(3)}{4(60)}=0.010
$$

Rectangular Beam Design cont.

$$
b d^{2}=\frac{M_{0}}{\phi p f_{y}\left(1-0.59 p\left(f_{y} / f_{c}^{\prime}\right)\right)}
$$

3. Calculate bd^{2}

$$
\mathrm{bd}^{2}=\frac{653.3(12)}{0.01(0.9) 60\left[1-0.59(0.01)\left(\frac{60}{3}\right)\right]}
$$

$$
b d^{2}=\frac{7840}{0.573(0.882)}=15492 \mathrm{~m}^{3}
$$

4. Choose b and solve for d (or d and solve for b)
b is based on form size - matches column size
h is between $L / 12$ to $L / 18$ and $b: h \approx 1: 2$ to 2:3

TRY			
b	d	$h \approx 1.12 d$	A
$14^{\prime \prime}$	$33.27^{\prime \prime}$	$38^{\prime \prime}$	532
$15^{\prime \prime}$	$32.14^{\prime \prime}$	$36^{\prime \prime}$	540
$16^{\prime \prime}$	$31.11^{\prime \prime}$	$35^{\prime \prime}$	560

5. Estimate h and correct weight and Mu

$$
\text { CHOOSE } 15 \times 36
$$

Rectangular Beam Design cont.

6. Choose b and solve for d
(or d and solve for b)
b is based on form size - matches column size h is between $L / 12$ to $L / 18$ and $b: h \approx 1: 2 t$
7. Estimate h and correct weight and Mu
8. Find As $=\rho$ bd

USE 15×36
REVISE $O L=150 \frac{540}{144}=563$ OLE
Check Mu
$H_{\nu}=320+\frac{1.2(2.563) 30^{2}}{8}=666 \mathrm{k}-1$
Revise bd
$\mathrm{bd}^{2}=\frac{666(12)}{0.505}=15814 \mathrm{im}^{3}$
FOR $b=15^{\prime \prime} \quad d=32.5^{\prime \prime}$
$A_{S}=\rho b d=(0.01)\left(15^{\prime \prime}\right)\left(32.5^{\prime \prime}\right)$
$A_{s}=4.87 \mathrm{~m}^{2}$

Rectangular Beam Design

9. Choose bars for As and determine spacing and cover. Recheck h and weight.

If bars do not fit in one layer, d is measured
 to the centroid of the pattern.

$$
\bar{x}=\frac{\sum \mathbf{A} \times d_{x}}{\sum \mathbf{A}}
$$

Jack C McCormac, 1978 Design of Reinforced Concrete,

TRY $5 \times$ * BARS $\quad A_{s}=5,0 \mathrm{~m}^{2}$

Rectangular Beam Design

7. Choose bars for As and determine spacing and cover. Recheck h and weight.

Make final check of Mn using final d and
Check that $\mathrm{Mu} \leq \varnothing \mathrm{Mn}$

$$
\begin{aligned}
& d=33.436^{\prime \prime} \\
& d=\frac{A_{s} f_{y}}{.85 f_{c}^{\prime} b}=\frac{5(60)}{.85(3) 15}=7.843^{\prime \prime} \\
& H_{n}=A_{s} f_{y}\left(d-\frac{d}{2}\right)=5(60)\left(33.436-\frac{7.843}{2}\right) \\
& M_{n}=8854 \mathrm{k}-11=737.8 \mathrm{k}-1 \\
& \phi A_{n}=0.9(737.8)=664 \mathrm{k} \cdot 1 \\
& H_{u}=653.3<664 \mathrm{~K} \\
& c=\frac{d}{\beta_{1}}=\frac{7.843^{\prime \prime}}{0.85}=9.227^{\prime \prime} \\
& \epsilon_{t}=\frac{d-c}{c}(0.003) \\
& \epsilon_{t}=\frac{33.436-9.227}{9.227}(0.003) \\
& \epsilon_{t}=0.00787>0.005 \Omega 6 \mathrm{~K}
\end{aligned}
$$

9. Design shear reinforcement (stirrups)
10. Check deflection, crack control, steel development length.
11. Check that $\varepsilon_{t} \geq 0.005$ (if not, increase h and reduce As)

Non-Rectangular Beam Analysis

Data:

- Section dimensions - b, be, h, (span)
- Steel area - As
- Material properties - f'c, fy

Required:

- Required Moment - Mu (or load, or span)

1. Find $T=A s$ fy and $C=0.85 f^{\prime} \mathrm{c} A c$
2. Set T=C and solve for Ac
3. Draw and label diagrams for section and stress
4. Determine b effective (for T-beams)
5. Locate T and C (or C_{1} and C_{2})

6. Determine the location of a.

Working from the top down,
add up area to make Ac
5. Find moment arms (z) for each block of area
6. Find $\mathrm{Mn}=\Sigma \mathrm{C}$ z
7. Find $\mathrm{Mu}=\phi \mathrm{Mn}$
8. Check As min < As < As max
9. Check that $\epsilon_{\mathrm{t}} \geq 0.005$

Effective Flange Width, b_{e}

Slab on one side:

$\mathbf{b}_{\mathbf{e}}$ least of either (total width) or (overhang + stem)

- Total width: $1 / 12$ of the beam span
- Overhang: 6 x slab thickness
- Overhang: $1 / 2$ the clear distance to next beam

Slab on both sides:

$\mathbf{b}_{\mathbf{e}}$ least of either (total width) or (2 x overhang + stem)

- Total width: $1 / 4$ of the beam span
- Overhang: 8 x slab thickness
- Overhang: $1 / 2$ the clear distance to next beam (i.e. the web on center spacing)

Non-rectangular shape - example
Given: $\quad f^{\prime} \mathrm{c}=3000 \mathrm{psi}$
fy $=60 \mathrm{ksi}$
As $=6 x \# 9=6 \mathrm{in}^{2}$
Req'd: Capacity, Mu

1a. Find T
1b. Find C in terms of $A c$
2. Set T = C and solve for Ac

Non-rectangular shape (cont.)

3. Draw section and determine areas to make Ac
4. Find the location of a.

$$
\begin{aligned}
& a=3 "+5^{\prime \prime}+4^{\prime \prime} \\
& C=0.85 f^{\prime} \mathrm{C} \mathrm{Ac}
\end{aligned}
$$

$\mathrm{f}^{\prime} \mathrm{c}=3 \mathrm{ksi}$
$\mathrm{Ac}_{1}=48 \mathrm{in}^{2}$
$\mathrm{Ac}_{2}=30 \mathrm{in}^{2}$
$\mathrm{Ac}_{3}=64 \mathrm{in}^{2}$

SECTION

$$
\begin{aligned}
& T=A_{s} f_{y}=6 i^{2}\left(600000_{p i}\right) \\
& T=360000{ }^{*}=360^{k} \\
& C=0.85 f_{c}^{\prime} A_{c}=0.85(3000 \mathrm{pi}) A_{c} \mathrm{~m}^{2} \\
& C=\left(2550 A_{c}\right)^{*}=\left(2.55 A_{c}\right)^{k} \\
& T=C \\
& 360^{k}=2.55 A_{c}^{k} \\
& A_{c}=142 \mathrm{~m}^{2}
\end{aligned}
$$

5. Determine moment arms to areas,
z. $(d=22$ ")
6. Calculate Mn by summing the Cz moments.
7. Find $\mathrm{Mu}=\phi \mathrm{Mn}$

$$
\begin{aligned}
& z_{1}=22-1.5=20.5^{\prime \prime} \\
& z_{2}=22-(3+2.5)=16.5^{\prime \prime} \\
& z_{3}=22-(8+2)=12.0^{\prime \prime} \\
& M_{n}=\sum C_{z} \\
& M_{n}=\left(C_{1} z_{1}\right)+\left(C_{2} z_{2}\right)+\left(C_{3} z_{3}\right) \\
& M_{n}=2509+1262+1959 \\
& M_{n}=5730 \\
& M_{u}=\phi M_{n}=0.9(5730)=5157^{\mathrm{k}-1}
\end{aligned}
$$

Non-rectangular shape (cont.)
8. Check As, min

$$
\begin{aligned}
& 3 \frac{\sqrt{f^{\prime} c}}{f y} \text { bw d }= \\
& 3\left(\frac{\sqrt{3000}}{60000}\right) 22(16)=0.964 \mathrm{in}^{2}
\end{aligned}
$$

$$
\left(200 / f_{y}\right) b_{w} d=
$$

$$
(200 / 60000)(16 \times 22)=1.17 \mathrm{in}^{2}
$$

9. Check $\epsilon_{t} \geq 0.005$

Find $c=a / \beta_{1}$
Check that $\epsilon_{\mathrm{t}} \geq 0.005$ (tension controlled)
And $\epsilon_{t} \geq 0.004$ (As max)

When As > As, max, ϵ_{t} must be increased:
Reduce As (but would also reduce Mn)
Add compression steel
Increase h
Increase fec

As, min is the greater

$$
c=\frac{a}{\beta_{1}}=\frac{12^{11}}{0.85}=14.1176^{11}
$$

(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
(b) $\frac{200}{f_{y}} b_{w} d$

$$
\begin{aligned}
& \epsilon_{t}=\frac{d-c}{c} 0.003=\frac{22-14.1}{14.1} \\
& \epsilon_{t}=0.00168 \\
& 0.00168<0.004 \\
& \therefore \mathrm{~N} 4!
\end{aligned}
$$

Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes - no formwork
- Well suited for thin shells
- Less cracking

Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes - no formwork
- Well suited for thin shells
- Less cracking
- Low-tech applications

Palazetto dello Sport, Rome, 1957. P.L. Nervi

Fiber Reinforced Concrete

Several different fiber types:

- Steel (SFRC)
- Glass (GFRC)
- Plastic e.g. polypropylene
- Carbon
- Organic e.g. bamboo

Better crack control
Secondary reinforcement

University of Michigan, TCAUP

Single

Wave

Bundle

Glass Fiber Reinforced Concrete - GFRC

Carbon Fiber

Bamboo

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- Reinforced with bars
- Soil stabilization, tunnels

Textile Reinforced Concrete (TRC)

Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

Figure 13: Mamufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]

Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

