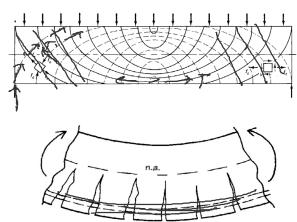
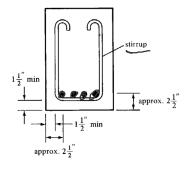

Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318 - 2019)

- Flexure in Concrete
- Ultimate Strength Design (LRFD)
- Failure Modes
- Flexure Equations
- Analysis of Rectangular Beams
- Design of Rectangular Beams
- Analysis of Non-rectangular Beams

University of Michigan, TCAUP Structures II Slide 1 of 51


Flexure


The stress trajectories in this simple beam, show principle tension as solid lines.

Reinforcement must be placed to resist these tensile forces

In beams continuous over supports, the stress reverses (negative moment). In such areas, tensile steel is on top.

Shear reinforcement is provided by vertical or sloping stirrups.

University of Michigan, TCAUP Structures II Slide 2 of 51

Ultimate Strength – (LRFD)

Nominal Strength ≥ Design Strength (strength of member ≥ required by loads)

LRFD uses 2 safety factors: γ and ϕ ϕ nominal strength $\geq \gamma$ required strength

- γ increases the required strength of the member and is placed on the loads
- reduces the member strength capacity and is
 placed on the calculated force

Loads increased:

γ Factors: DL=1.2 LL=1.6
U is the required strength
U=1.2DL+1.6LL
(factors from ASCE 7)

Strength reduced:

φ Factors: e.g. flexure = 0.9 in tension-controlled beams

Table 21.2.1—Strength reduction factors ϕ

Ac	tion or structural element	ф	Exceptions
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21,2.2	Near ends of pretensioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	_
(d)	Bearing	0.65	_
(e)	Post-tensioned anchorage zones	0.85	_
(f)	Brackets and corbels	0.75	_
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and- tie method in Chapter 23	0.75	_
(h)	Components of connec- tions of precast members controlled by yielding of steel elements in tension	0.90	_
(i)	Plain concrete elements	0.60	
(j)	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	_

University of Michigan, TCAUP

Structures II

Slide 3 of 51

Ultimate Strength – (ACI 318)

Reduced Nominal Strength ≥ Factored Load Effects

ΦSn ≥ U

γ Factored Loads (see ACSE 7)

1) 1.4D

2) 1.2D + 1.6L + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W)

4) 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + 1.0L + 0.2S

6)0.9D + 1.0W

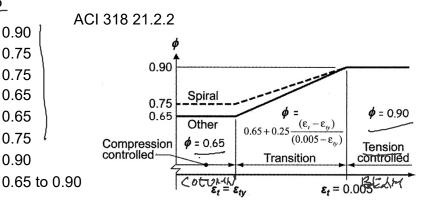
7) 0.9D + 1.0E

D = service dead loads

L = service live load

Lr = service roof live load

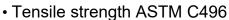
S = snow loads


W = wind loads

R = rainwater loads

E = earthquake loads

Strength Reduction Factors, Φ


Mn	<u>Flexural</u> (€ > 0.005)	0.90 }
Vn	Shear	0.75 \
Pn	Compression (spiral)	0.75
Pn	Compression (other)	0.65
Bn	Bearing	0.65
Tn	Torsion	0.75
Nn	Tension	0.90
Combin	0.65 to 0	

University of Michigan, TCAUP Structures II Slide 4 of 51

Strength Measurement

- Compressive strength
 - 12" x 6" cylinder
 - 28 day moist cure
 - Ultimate (failure) strength
 - Usable strain $\epsilon_{\text{CII}} = 0.003$ (ACI 318)

- 12" x 6" cylinder
- 28 day moist cure
- Ultimate (failure) strength
- Split cylinder test
- ca. 10% of f'c
- Neglected in flexure analysis

University of Michigan, TCAUP

Structures II

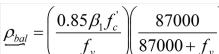
Slide 5 of 51

Failure Modes Based on As

- Less than As min
- Brittle failure

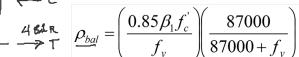
As,min: greater of a and b

- Reinforcing < balance (use this)
 - Steel <u>vields before concrete fails</u>
 - o ductile failure
 - (~As min) $0.06 \ge \epsilon_t \ge 0.004$ (As max)
 - $\epsilon_{\rm t} \geq 0.005$ for tension controlled


- (a) $\frac{3\sqrt{f_c'}}{f_y}b_w d$
 - (b) $\frac{200}{f_{w}}b_{w}d$

As_{max} when $\varepsilon_t = 0.004$

- Reinforcing = balance
 - Concrete fails just as steel yields
 - ϵ_{t} at balance = 0.00207 for Gr 60


3 BGR

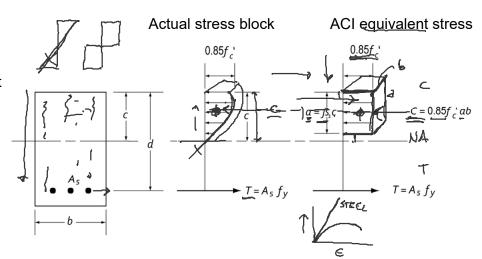
Reinforcing > balance

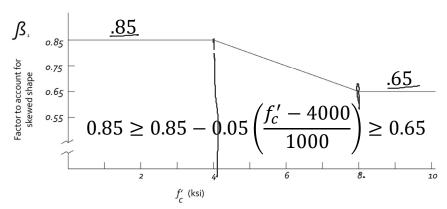
- Concrete fails before steel yields
- Low ductility
- Sudden failure

5 BAR

 $As > As_{max}$

SuddenDeath!!

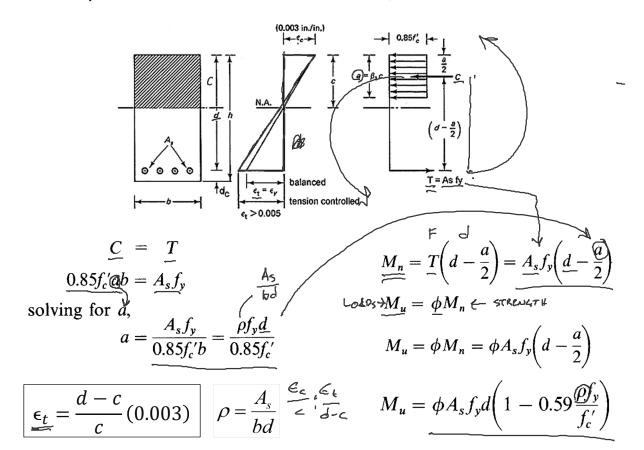

ACI Stress Block


 β_1 is a factor to account for the non-linear shape of the compression stress block.

$$a = \beta_1 c$$

psi

f'c	β1
0	0.85
1000 1	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000 ′	0.65

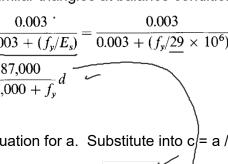

University of Michigan, TCAUP

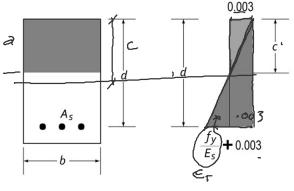
Structures II

Slide 8 of 51

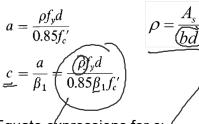
Flexure Equations

strain ACI equivalent stress block


Balance Condition


From similar triangles at balance condition:

$$\frac{\frac{c}{d}}{g} = \frac{0.003}{0.003 + (f_y/E_s)} = \frac{0.003}{0.003 + (f_y/29 \times 10^6)}$$


$$g = \frac{87,000}{87,000 + f_y} d$$

Use equation for a. Substitute into $c = a / \beta_1$

Strain diagram for balanced condition.

Equate expressions for c:

$$\frac{\rho f_y d}{0.85 \beta_1 f_c'} = \frac{87,000}{87,000 + f_y} d$$

$$\overbrace{\rho_b} = \left(\frac{0.85\beta_1 f_c'}{f_y}\right) \left(\frac{87,000}{87,000 + f_y}\right)$$

Table A.8 Balanced Ratio of Reinforcement ρ_b for Rectangular Sections with Tension Reinforcement Only

	$f_{c}^{'}$	2,500 psi	3,000 psi	4,000 psi	5,000 psi	6,000 psi
		$(17.2 \mathrm{MPa})$	(20.7 MPa)	$(27.6 \mathrm{MPa})$	(34.5 MPa)	(41.4 MPa)
$f_{\mathbf{y}}$		$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.80$	$\beta_1 = 0.75$
Grade 40	ρ_b	0.0309	0.0371	0.0495	0.0582	0.0655
40,000 psi	$0.75\rho_{b}$	- 0.0232	0.0278	0.0371	0.0437	0.0492
(275.8 MPa)	$0.50\rho_b$	0.0155	0.0186	0.0247	0.0291	0.0328
Grade 50	ρ_b	0.0229	0.0275	0.0367	0.0432	0.0486
50,000 psi	$0.75\rho_{b}$	0.0172	0.0206	0.0275	0.0324	0.0365
(344.8 MPa)	$0.50\rho_b$	0.0115	0.0138	0.0184	0.0216	0.0243
Grade 60	ρ_b	0.0178	0.0214	0.0285	0.0335	0.0377
60,000 psi	$0.75\rho_b$	0.0134	0.0161	(0.0214	0.0252	0.0283
(413.7 MPa)	$0.50\rho_b$	0.0089	0.0107	0.0143	0.0168	0.0189
Grade 75	ρ_b	0.0129	0.0155	0.0207	0.0243	0.0274
75,000 psi	$0.75\rho_{b}$	0.0097	0.0116	0.0155	0.0182	0.0205
(517.1 MPa)	$0.50\rho_b$	0.0065	0.0078	0.0104	0.0122	0.0137

University of Michigan, TCAUP

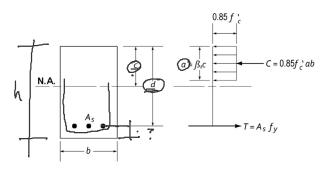
Structures II

Slide 7 of 51

Rectangular Beam Analysis

Data:

- Section dimensions b, h, d, (span)
- Steel area As
- Material properties f'c, fy


Required:

- Nominal Strength (of beam) Moment Mn
- Required (by load) Design Moment Mu
- Load capacity

As.min greater of a and b.

- 1. Calculate d
- 2. Check As min

- Calculate a
- 4. Determine c
- 5. Check that $\epsilon_t \ge 0.005$ (tension controlled)
- 6. Find nominal moment, Mn
- 7. Calculate required moment, ϕ Mn \geq Mu (if $\epsilon_t \ge 0.005$ then phi = 0.9)
- 8. Determine max. loading (or span)

$$c = \frac{a}{\beta_1} \qquad \underbrace{\varepsilon_1} = \frac{\widehat{\mathcal{O}}_{\mathcal{O}}}{c} 0.003 \ge 0.005$$

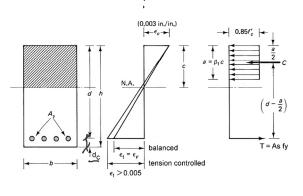
(a)
$$\frac{3\sqrt{f_c'}}{f_y}b_wd$$
(b) $\frac{200}{f_y}b_wd$

$$a = \frac{A_sf_y}{0.85f_c'b}$$

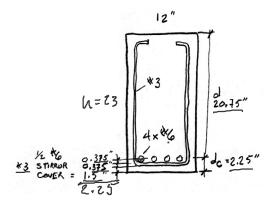
$$M_n = A_sf_y\left(d - \frac{a}{2}\right)$$

$$\phi M_n \ge M_u \smile$$

$$M_{u} = \frac{(1.2w_{DL} + 1.6w_{LL})l^{2}}{8}$$
$$1.6w_{LL} = \frac{M_{u}8}{l^{2}} - 1.2w_{DL}$$


Rectangular Beam Analysis

Data:


6 h

- dimensions 12"x23"
- Steel 4 x # 6 fy = 60ksi
- Concrete f'c = 6000 psi
- Stirrup #3 cover 1.5" Agg 3/4"

Required:

1. Calculate d "

University of Michigan, TCAUP

Structures II

Slide 11 of 51

Rectangular Beam Analysis cont.

Data:

dimensions – 12"x23"

Steel
$$-4 \times #6 - As = 1.76 \text{ in}^2$$

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	Customary Units			SI Units			
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)	
3	0.375	0.11	0.376	9.52	71	0.560	
4	0.500	0.20	0.668	12.70	129	0.994	
5	0.625	0.31	1.043	15.88	200	1.552	
6	0.750	0.44	1.502	19.05	284	2.235	
7	0.875	0.60	2.044	22.22	387	3.042	
8	1.000	0.79	2.670	25.40	510	3.973	
9	1.128	1.00	3.400	28.65	645	5.060	
10	1.270	1.27	4.303	32.26	819	6.404	
11	1.410	1.56	5.313	35.81	1006	7.907	
14	1.693	2.25	7.650	43.00	1452	11.384	
18	2.257	4.00	13.600	57.33	2581	20.238	

2. Check As,min

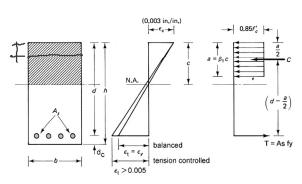
$$A_{5, min}$$

$$\frac{3 - f_{2}}{f_{3}} = \frac{3 \cdot 16000}{60000} (12 \times 20.75) = 0.964 \text{ in}^{2} \leftarrow \frac{1.76}{60000} = \frac{200 \text{ (12)}(20.75)}{60000} = 0.83 \text{ in}^{2}$$

$$\frac{200 \text{ b d}}{f_{3}} = \frac{200 (12)(20.75)}{60000} = 0.83 \text{ in}^{2}$$

$$\frac{1.45 \text{ min}}{60000} = 0.964 \text{ in}^{2}$$

Rectangular Beam Analysis cont.


Data:

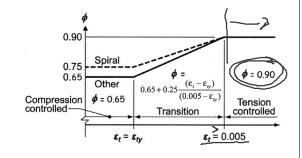
dimensions – 12"x23" Steel – 4 x # 6 – As = 1.76 in² f'c = $\underbrace{6000}_{}$ psi fy = 60ksi

* * * * * *	++++++++	+++++
	span	<i>11111.</i>

f'c	β1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

$$2 = \frac{Asfy}{0.25f_c^2b} = \frac{(1.76)(60)}{.85(6)(12)} = 1.725''$$
K51

$$C = \frac{d}{\beta_1} = \frac{1.725}{0.75} = 2.300''$$


University of Michigan, TCAUP

Structures II

Slide 12 of 51

Rectangular Beam Analysis cont.

- 5. Check that As is < As max $\epsilon_{\rm t} \geq 0.004 \qquad \checkmark$
- 6. Check that $\epsilon_{\rm t} \geq 0.005$ (for tension controlled section) $\phi = 0.9$
- 7. Find nominal moment, Mn

$$\frac{E_{t}}{C} = \frac{d - C}{C} = \frac{0.003}{C} = \frac{20.75 - 2.3}{2.3} = \frac{0.003}{2.3}$$

$$E_{t} = \frac{0.02406}{0.005} > 0.004 : ... \times 1$$

$$= 0.02406 > 0.005 : \text{ tension controlled}$$

$$T = As fy = 1.76^{2}(60 \text{ KSI}) = 105.6 \text{ K}$$
 $Hn = T(d - \frac{2}{2}) = 105.6(20.75 - \frac{1.725^{2}}{2})$
 $Hn = 2100 \text{ K-11}$

$$\frac{2}{8}$$
 $\frac{1}{8}$ $\frac{1}$

University of Michigan, TCAUP

Structures II

Slide 13 of 51

Slab Analysis

Data:

- Span = 18 ft
- take b = 12" h = 11" 🖵
- Steel (#8)@ 18" o.c.
- f'c = 3000 psi 💆
- fy = 60 ksi

Required:

- Design moment capacity Mu LOAD
- Maximum LL in PSF

slabs

Reinforcement

type

Deformed bars

Deformed bars

or welded wire

reinforcement

ACI 318-14

wu = 1.2 DL + 1.6 LL

18'

Table 7.6.1.1—A_{s,min} for nonprestressed one-way

 f_y , psi

 \geq 60,000

Find d 1.

Find As Check As, min

[0.0018(60)/60] 132 = 0.237 in²

0.0014 (132) = 0.1848 in²

0.527 > 0.237 ok

Structures II

Slide 14 of 51

 $0.0018 \times 60,000$

f,60

 $0.0014A_{g}$

University of Michigan, TCAUP

Slab Analysis

3. Find a

f'c	β1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8 {}
6000	0.75
7000	0.7
<u>800</u> 0	0.65
9000	0.65
10000	0.65

- 4. Find $c = \beta_1$ a
- 5. Check failure mode $\epsilon_{t} \geq 0.005$ for tension controlled
- Find force T
- 7. Find moment arm z
- 8. Find nominal strength moment, (Mn)

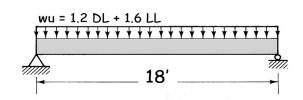
$$d = \frac{A_{5}f_{y}}{.85f_{c}^{2}b} = \frac{0.5267(60)}{.85(\frac{3}{2})(12)} = 1.033''$$

$$\frac{.85f_{c}^{2}}{.85f_{c}^{2}ab} = \frac{1.033''}{.85f_{c}^{2}ab}$$

$$C = \frac{1.033''}{.85f_{c}^{2}ab} = \frac{1.033''}{.85f_{c}^{2}ab}$$

$$C = \frac{1.033''}{.85f_{c}^{2}ab} = \frac{1.033''}$$

$$C = \frac{\partial}{\partial t} = \frac{1.033}{0.85} = 1.215$$


$$E_{t} = \frac{0.003 \, d}{C} - 0.003$$

$$E_{t} = \frac{0.003 (9.75)}{1.215} - 0.003 = 0.021 / 10$$

$$E_{t} = \frac{0.003(9.75'')}{1.215''} - 0.003 = 0.021''$$

$$T = A_s fy = 0.5267(38) = 31.6^{K}$$

 $E = d - \frac{1}{2} = 9.75^{-1.033} = 9.23^{-1}$

Slab Analysis

- 9. Find required moment, Mu
- Hu= \$\psi \mathre{M}_n = 0.9 (291.8) \frac{1000}{12} = 21885 1-4

10. Find slab DL

- $W_{DL} = \frac{32}{12} \frac{h^{2}}{12} = \frac{150}{12} = \frac{11}{12} = \frac{137.5}{137.5} \frac{PSF}{PSF}$ $M_{0} = \frac{21885}{12} \frac{1-18}{12} = \frac{(1.2 \, \text{Wol} + 1.6 \, \text{Will})}{8} \frac{P^{2}}{12}$ $\frac{21885(8)}{(18^{-})^{2}} = \frac{1.2(137.5) + 1.6(\text{W}_{LL})}{540.37} = \frac{165}{12} + \frac{1.6(\text{W}_{LL})}{120}$
- 11. Determine max. loading

University of Michigan, TCAUP

Structures II

Slide 16 of 51

Details of Reinforcement

Size

Nominal 1/8" increments

Bar size designa- tion	section area, sq. in.	Weight. lb per ft	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
<i>-,</i> #8	0.79	2.670	1.000 ~
. #9	1.00	3.400	1.128
#10	1.27	4.303	1.270}
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

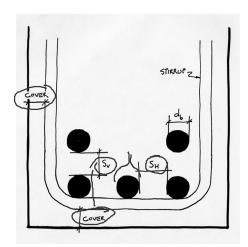
Grade

- 40 40 ksi 60 60 ksi 75 75 ksi

120	r j				1				- e-	(800
80	-/				1				-	(600
80 80 40 40	/	_		\dashv	_				_	(400
40										(200
0		04	0.0	00	0.	12	0	16	0.3	20

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

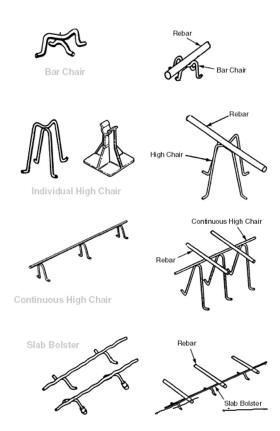

- cover (ACI 20.6.1)
- horizontal spacing in beams (ACI 25.2.1)

 1 inch

 d_b
 4/3 max aggregate $\frac{3}{4}$ $\frac{4}{3}$ $\frac{7}{3}$
- vertical spacing in beams (ACI 25.2.2)
 1 inch

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in	and walls	No. 11 bar and smaller	3/4
contact with ground	Beams, columns pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2



University of Michigan, TCAUP Structures II Slide 18 of 51

Details of Reinforcement

ACI 318 Chapter 25 Placement of Reinforcement

- Chairs
- Bolsters

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} in.	Type of standard hook	
90-degree	No. 3 through No. 8 No. 9 through No. 11	8d _b		Point at which bar is developed db 90-degree bend	
hook	No. 14 and No. 18	10d _b	12 <i>d</i> _b	Diameter	
	No. 3 through No. 8	6 <i>d</i> _b		Point at which bar is developed	
180-degree hook	No. 9 through No. 11	$8d_b$	Greater of	d _b	
	No. 14 and No. 18	10d _b	4 <i>d_b</i> and 2.5 in.	Diameter bend	

¹¹A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

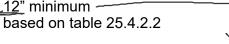
Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} , in.	Type of standard hook
90-degree	No. 3 of through No. 5	4d,	Greater of $6d_b$ and 3 in.	d _b 90-degree bend
hook	No. 6 through No. 8	$6d_b$	12 <i>d</i> _b	Diameter \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
135-degree	No. 3 through No. 5	4 <i>d</i> _b	Greater of 6ds and	d _b 135-degree bend
hook	No. 6 through No. 8	$6d_b$	3 in.	Diameter
180-degree	No. 3 through No. 5	4 d _b	Greater of	d _b 180-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	4d _b and 2.5 in.	Diameter bend

^{11/}A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

University of Michigan, TCAUP

Structures II


Slide 20 of 51

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

<u>12"</u> minimum –

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
Lightweight λ	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
F.,{	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
$\frac{\mathrm{Epoxy}^{[1]}}{\Psi_e}$	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
Ψ_s	No. 6 and smaller bars and deformed wires	0.8
Casting position ^[1]	More than 12 in. of fresh con- crete placed below horizontal reinforcement	1.3
Ψι	Other	1.0

^[1]The product $\psi_t \psi_e$ need not exceed 1.7.

Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\left(\frac{f_{_{\mathcal{Y}}}\Psi_{_{t}}\Psi_{_{e}}}{25\lambda\sqrt{f_{_{c}}^{\prime}}}\right)d_{b}$	$\left(\frac{f_y \psi_i \psi_e}{20 \lambda \sqrt{f_c'}}\right) d_b$
Other cases	$\left(\frac{3f_y\psi_i\psi_e}{50\lambda\sqrt{f_c'}}\right)d_b$	$\left(\frac{3f_{y}\psi_{t}\psi_{c}}{40\lambda\sqrt{f_{c}'}}\right)d_{b}$

Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

Custo	mary Units	SI Units					
f _c ' (psi)	(psi)	f _c ' (MPa)	E _c (MPa)				
3,000	3,140,000	20.7	21 650				
3,500	3,390,000	24.1	23 373				
4,000	3,620,000	27.6	24 959				
4,500	3,850,000	31.0	26 545				
5,000	4,050,000	34.5	27 924				

Jack C McCormac, 1978
Design of Reinforced Concrete,

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	Cı	ustomary Uni	Customary Units							
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)				
. 3	0.375	0.11	0.376	9.52	71	0.560				
4	0.500	0.20	0.668	12.70	129	0.994				
5	0.625	0.31	1.043	15.88	200	1.552				
6	0.750	0.44	1.502	19.05	284	2.235				
7	0.875	0.60	2.044	22.22	387	3.042				
8	1.000	0.79	2.670	25.40	510	3.973				
9	1.128	1.00	3.400	28.65	645	5.060				
10	1.270	1.27	4.303	32.26	819	6.404				
11	1.410	1.56	5.313	35.81	1006	7.907				
14	1.693	2.25	7.650	43.00	1452	11.384				
18	2.257	4.00	13.600	57.33	2581	20.238				

Table A.4 Areas of Groups of StandardBars (in.2)

SIZE	Number of Bars												
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
(8)	1.57	2.35	3.14	3.93	471	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

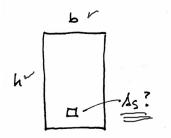
University of Michigan, TCAUP

Structures II

Slide 21 of 51

Rectangular Beam Design_

Two approaches:

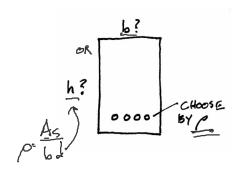

Method 1:

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions: h and b

Required:

Steel area - As


Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'c, fy
- ρ

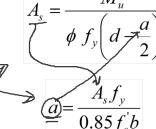
Required:

- Steel area As ✓ ¬
- Beam dimensions b and h

Rectangular Beam Design - method 1

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions b and h


Required:

- · Steel area As
- 1. Calculate the factored load and find factored required moment, Mu
- 2. Find (b = h) cover stirrup $d_b/2$ (one layer)
- 3. Estimate moment arm z = jd. For beams $j \approx 0.9$ for slabs $j \approx 0.95$
- 4. Estimate As based on estimate of jd.
- 5. Use As to find a -
- 6. Use a to find As (repeat...until 2% accuracy)
- 7. Choose bars for As and check As max & min
- 8. Check that $\epsilon_t \ge 0.005$
- 9. Check $Mu \le \phi Mn$ (final condition)
- 10. Design shear reinforcement (stirrups)
- 11. Check deflection, crack control, steel development length.

University of Michigan, TCAUP

Structures II

$$M_u = \frac{(\gamma \ W_{DL} + \gamma \ W_{LL})l^2}{8}$$

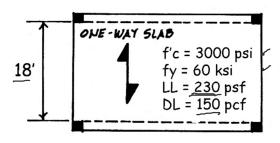
$$M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

Slide 22 of 51

Rectangular Slab Design

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width


Required:

Steel area - As

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.

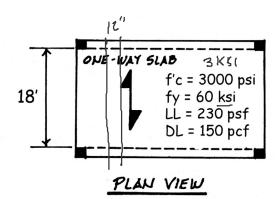

PLAN VIEW

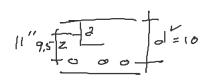
Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs_

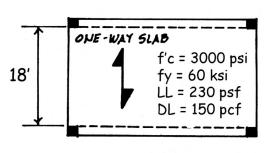
Support condition	Minimum $h^{[1]}$
Simply supported	ℓ/20
One end continuous	€/24
Both ends continuous	ℓ/28
Cantilever	ℓ/10

THICKNESS, h, BASED ON DEFLECTION
$$h = \frac{9}{20} = \frac{18 \times 12}{20} = 10.8$$
 Use 11"

Rectangular Slab Design

- Calculate the dead load and find required Mu
- FACTOR LODGS

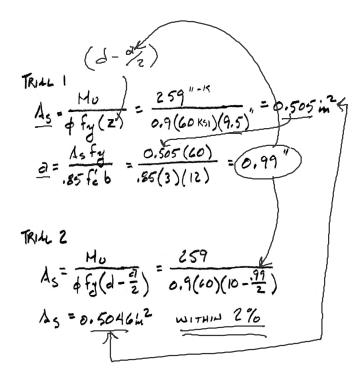

 PL = $\frac{11''}{12'}(150) = 137.5 \text{ PSF}$ LL (41VEN) = $\frac{230}{50} \text{ PEF}$ WU = $\frac{1.2(137.5)}{1.6(250)} = \frac{533}{5}$ MU = $\frac{33}{5} = \frac{533}{5} = \frac{1587}{5} = \frac{1587}{5$


University of Michigan, TCAUP

Structures II

Slide 24 of 51

Rectangular Slab Design


PLAN VIEW

2. Estimate moment arm $z \approx 0.95 d$

FOR
$$j \approx 0.95$$
, $d = hi - cover - \frac{1}{2} \frac{BAR}{2}$
 $d = 11' - \frac{3}{4}'' - \frac{1}{2} (\frac{1}{2}'') \frac{3}{2}''$
 $d = 11'' - 1'' = 10''$
 $E \approx \int d \approx 0.95 (10'') = 9.5''$

Rectangular Slab Design

- 3. Estimate As based on estimate of jd.
- 4. Use As to find a
- 5. Use a to find As (repeat...)

University of Michigan, TCAUP

Structures II

Slide 29 of 51

Rectangular Slab Design

Choose bars for As required:
 either
 choose bars and calculate spacing
 or
 choose spacing and find bar size

If the bar size changes, re-calculate to find new d. Then re-calculate As...

7. Check As,min (for slabs As,min from ACI Table 7.6.1.1)

Table 7.6.1.1— $A_{s,min}$ for nonprestressed one-way slabs

Reinforcement type	f_y , psi	$A_{s,min}$
Deformed bars	< 60,000	$0.0020A_g$
Deformed bars or welded wire reinforcement	≥ 60,000	Greater of: $\frac{0.0018 \times 60,000}{f_y} A_g$
remiorcement		$0.0014A_{g}$

CHOOSE BLRS

USING
$$\frac{4}{4}$$
 AREA $\frac{4}{4}$ $\frac{2}{4}$ $\frac{6}{12}$ $\frac{0.505}{12"}$ $\frac{0.2}{5"}$ $\frac{3=4.75"}{4}$ $\frac{4}{12}$... (always round down) $\frac{4}{3} = 0.60 \text{ m}^2/\text{FT} > 0.505$

ALTERNATE FOR MAX.
$$S = 18''$$

$$\frac{0.505}{12''} : \frac{A_{6}}{18''} \qquad A_{6} = 0.75 \text{ in}^{2}$$

$$\frac{18''}{18''} \qquad 8 = 0.79$$

$$\therefore USE \qquad 8 = 18'' \text{ o.c.}$$

$$A_{5} = 0.526 \text{ in}^{2}/\text{ft} > 0.505 \text{ V}$$

Check As, min

Rectangular Slab Design

- 8. Check that $\epsilon_t \ge 0.005$
- RE-CLIC 2 FOR AS = 0.6 in / FT $\frac{2}{3} = \frac{A_5 f_y}{0.85 f_z'} = \frac{0.6 (60)}{0.85 (3)(12)} = 1.176"$ $C = \frac{3}{B_1} = \frac{1.176}{0.85} = 1.384"$ $C = \frac{1.384"}{1.384"} 0.003 = 0.01759$ 0.01759 > 0.005 $\vdots TENSION CONTRULLED$

University of Michigan, TCAUP

Structures II

Slide 31 of 51

Rectangular Slab Design

 Check Mu ≤ φ Mn (final condition)
 As = As,used

Mn = Tz

- Check deflection, crack control, steel development length.
- $M_{n} = A_{3}F_{y}\left(d \frac{27}{2}\right)$ $M_{n} = 0.6(60)(9.5^{n} \frac{1.176}{2})$ $M_{n} = 36(8.911^{n}) = 320.8^{K-11}$ $dM_{n} = 0.9(320.8) = 288.7^{K-11}$ $M_{0} = 259^{K-11} < 288.7^{K-11}$ $M_{0} < dM_{0}$ $M_{0} < dM_{0}$

Rectangular Beam Design – method 2

Data:

Load and Span

Some section dimensions - b or h

Material properties – f'c, fy

Required:

Steel area - As

1. Estimate the dead load (h \approx L/12) and find Mu

2. Choose ρ (equation assumes $\epsilon_{t} = 0.0075$) > ρ

h is between
$$L/12$$
 to $L/18$ and b:h $\approx 1:2$ to $2:3$

5. Estimate h and correct weight and Mu

6. Find $\underline{As} = \rho \underline{b} \underline{d}$

7. Choose bars for As and determine spacing and cover. Recheck h and weight.

8. Check that $\epsilon_t \ge 0.005$ (if not, increase h and reduce As)

9. Design shear reinforcement (stirrups)

10. Check deflection, crack control, steel development length.

University of Michigan, TCAUP

Structures II

$$\underline{\underline{M_u}} = \frac{(\gamma \ w_{DL} + \gamma \ w_{LL})l^2}{8}$$

$$\frac{A_{5}}{\log^{3}} = \rho = \frac{\beta_{1} f_{c}^{\prime}}{4 f_{y}}$$

$$A_{s} = \rho b d$$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

Slide 33 of 51

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'c, fy

Required:

- Steel area As
- Beam dimensions b and d

Estimate b and h to get beam selfweight.

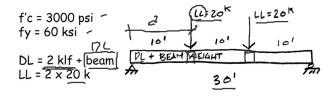

1. Estimate the dead load (h \approx L/12) and find Mu.

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $h^{[1]}$
Simply supported	€/16
One end continuous	€/18.5
Both ends continuous	ℓ/21
Cantilever	ℓ/8

Expressions applicable for normalweight concrete and $f_y = 60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

2. Choose ρ (equation assumes ϵ_t = 0.0075)

ASSUME
$$h \approx \frac{L}{12} = \frac{360''}{12} = \frac{30''}{12}$$

ASSUME $h \approx \frac{L}{12} = \frac{360''}{12} = \frac{30''}{12}$

BEAM DL = $\frac{150}{15 \times 30} = \frac{469}{144} = \frac{469}{12} = \frac{150}{12} =$

Rectangular Beam Design cont.

3. Calculate bd²

- 4. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h is between L/12 to L/18 and b:h ≈ 1:2 to 2:3
- 5. Estimate h and correct weight and Mu

$$bd^{2} = \frac{M_{0}}{4\rho f_{g} (1-0.59\rho(f_{g}))}$$

$$bd^{2} = \frac{(1-0.59\rho(f_{g}))}{0.01(0.9)60[1-0.59(0.01)(\frac{60}{3})]}$$

$$bd^{2} = \frac{7840}{0.573(0.882)} = \frac{15492 \text{ m}^{3}}{6/6 \approx 1/2}$$

University of Michigan, TCAUP

Structures II

Slide 35 of 51

Rectangular Beam Design cont.

- 6. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h is between L/12 to L/18 and b:h ≈ 1:2 t
- 7. Estimate h and correct weight and Mu

8. Find As = ρ bd

USE 15 x 36

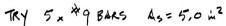
REVISE DL = 150
$$\frac{540}{144} = 563$$
 PLF

CHECK MU 31 2KLF

 $MU = 320 + \frac{1.2(2,563)}{8} 30^{2} = 666$ K-1

REVISE bel K-1

 $0.505 = 15814$ m⁸


FORMULE


 $As = 0$ bel = $(0.01)(15^{\circ})(32.5^{\circ})$
 $As = 4.87$ m²

Rectangular Beam Design

CHOOSE BLAS (SEE THELE 4.4)

9. Choose bars for As and determine spacing and cover. Recheck h and weight.

$-\sum_{x}\mathbf{A}\times d_{x}$	とずら	.o As	=4.8	72	Table A	.4 Areas	of Groups	s of Stanc	lardBars	(in. ²)				
$x = \frac{x}{2}$			▼ Number of Bars											
· \ \ \ A	Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
<u></u>	4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
() (120)	5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
(31.123) , 2/2 , 20 11	28)6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	14.86	5.30	5.74	6.19
() + (() () ()	- / ₇	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
	2/8-	1.57	2.35	3.14	5.00.	471	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
_	9 •	2.00	3.00	4.00	5.00.	6.00.	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
5	10	2.53	3.79	5.06	0.55	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
=1 415	11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
[,-(-)	14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
Jack C McCormac, 1978	18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00
Design of Reinforced Concrete														

University of Michigan, TCAUP

Structures II

Slide 37 of 51

Rectangular Beam Design

 Choose bars for As and determine spacing and cover. Recheck h and weight.

Make final check of Mn using final d and Check that $Mu \le \emptyset$ Mn

rmine
h and $\frac{d}{d} = \frac{33.436}{455 \, \text{fg}} = \frac{5(60)}{.85(3)15} = \frac{7.843}{.843}$ all d and $\frac{H_n}{H_n} = \frac{A_s f_g}{A_s f_g} \left(\frac{d}{d} - \frac{2}{2} \right) = \frac{5(60)(33.436 - \frac{7.843}{2})}{2}$ $\frac{H_n}{H_n} = \frac{8854}{854} \, \text{K-N} = \frac{737.8}{37.8} \, \text{K-1}$ $\frac{H_n}{H_n} = \frac{664}{150} \, \text{K-1}$ $\frac{H_n}{H_n} = \frac{653.3}{150} < \frac{664}{150} \, \text{K-1}$

11. Check that $\varepsilon_t \geq$ 0.005 (if not, increase h and reduce As)

- 12. Design shear reinforcement (stirrups)
- 13. Check deflection, crack control, steel development length.

 $\frac{E_{t}}{E_{t}} = \frac{d - c}{C}(0.003)$ $\frac{E_{t}}{E_{t}} = \frac{33.436 - 9.227}{9.227}(0.003)$ $\frac{Q_{t}}{Q_{t}} = \frac{23.436 - 9.227}{9.227} = \frac{23.436}{9.227} = \frac{2$

Non-Rectangular Beam Analysis

Data:

- Section dimensions b, be, h, (span)
- · Steel area As
- Material properties f'c, fy

Required:

- Required Moment Mu (or load, or span)
- 1. Find T=As fy and C= 0.85 f'c Ac
- 2. Set T = C and solve for Ac
- 3. Draw and label diagrams for section and stress
 - 1. Determine b effective (for T-beams)
 - 2. Locate T and C (or C₁ and C₂)
- 4. Determine the location of a.
 - Working from the top down, add up area to make Ac
- 5. Find moment arms (z) for each block of area
- 6. Find Mn = Σ C z
- 7. Find Mu = ϕ Mn
- 8. Check As min < As < As max
- 9. Check that $\epsilon_t \ge 0.005$

University of Michigan, TCAUP

Structures II

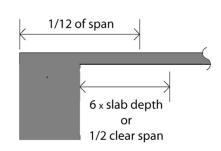
Slide 39 of 51

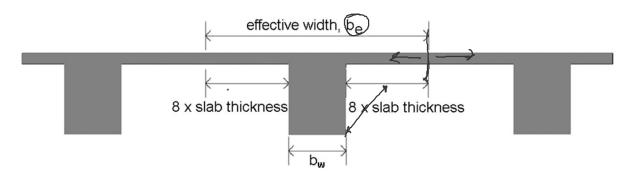
ζ

 $b_{\underline{e}}$

Effective Flange Width, be

Slab on one side:


b_e least of either (total width) or (overhang + stem)


- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam

Slab on both sides:

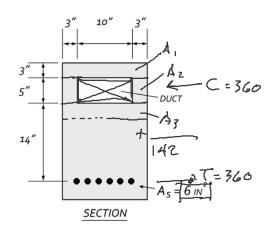
b_e least of either (total width) or (2 x overhang + stem)

- Total width: ½ of the beam span
- Overhang: 8 x slab thickness
- Overhang: ½ the clear distance to next beam (i.e. the web on center spacing)

Non-rectangular shape - example

Given: f'c = 3000 psi

fy = 60 ksi


 $As = 6 \times #9 = 6 \text{ in}^2$

Req'd: Capacity, Mu

1a. Find T

1b. Find C in terms of Ac

2. Set T = C and solve for Ac

$$T = A_{S} f_{y} = (6 i^{2} (6000 p_{si}))$$

$$T = 360 000 = 360 K$$

$$C = 0.85 f_{0}(A_{c}) = 0.85 (3000 p_{si}) A_{c} in^{2}$$

$$C = (2550 A_{c})^{2} = (2.55 A_{c})^{2}$$

$$T = C$$

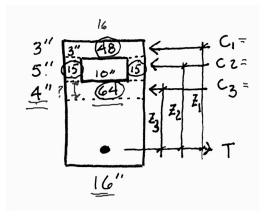
$$360 = 2.55 A_{c}$$

$$A_{c} = 142 in^{2}$$

University of Michigan, TCAUP

Structures II

Slide 41 of 51


Non-rectangular shape (cont.)

- 3. Draw section and determine areas to make Ac
- 4. Find the location of a. a = 3"+5"+4"

C = 0.85 f'c Ac

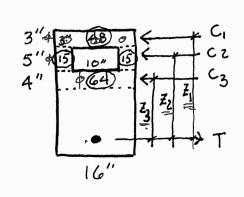
f'c = 3 ksi

$$Ac_1$$
= 48 in²
 Ac_2 = 30 in²
 Ac_3 = 64 in²

$$A_{c} = \frac{142in^{2}}{142} = A_{c_{1}} + A_{c_{2}} + A_{c_{3}}$$

$$142 = 48 + 30 + A_{c_{3}}$$

$$A_{c_{3}} = \frac{64in^{2}}{12512(A_{c})}$$


$$C_{1} = \frac{48}{8}(2.55) = \frac{122.4}{6.5}K$$

$$C_{2} = \frac{30}{8}(2.55) = \frac{76.5}{360}K$$

$$C_{3} = \frac{64}{8}(2.55) = \frac{163.2}{360}K$$

Non-rectangular shape (cont.)

- 5. Determine moment arms to areas, z. (d = 22")
- 6. Calculate Mn by summing the Cz moments.
- 7. Find $Mu = \phi Mn$

$$Z_{1} = 22 - 1.5 = 20.5"$$

$$Z_{2} = 22 - (3+2.5) = 16.5"$$

$$Z_{3} = 22 - (8+2) = 12.0"$$

$$M_{n} = \sum_{i=1}^{n} C_{i} = 12.0$$

University of Michigan, TCAUP

Structures II

is the greater

(a) $\frac{3\sqrt{f_c'}}{f_v}b_w d$

As,min

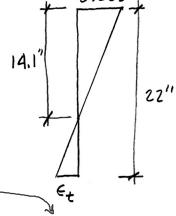
Slide 43 of 51

Non-rectangular shape (cont.)

8. Check As,min

$$3 \frac{\sqrt{f'c}}{fy}$$
 bw d = $3 \left(\frac{\sqrt{3000}}{60000}\right) 22 (16) = 0.964 \text{ in}^2$

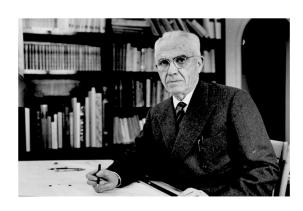
$$(200/f_y) b_w d = (200/60000) (16x22) = 1.17 in^2$$

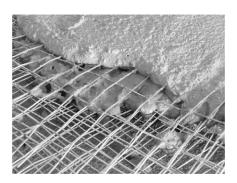

9. Check $\epsilon_t \ge 0.005$

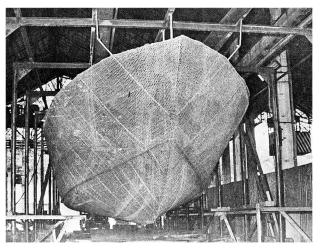
Find
$$\underline{c} = a/\beta_1$$
 Check that $\epsilon_t \ge 0.005$ (tension controlled)
And $\epsilon_t \ge 0.004$ (As max)

When As > As,max, ϵ_t must be increased: Reduce As (but would also reduce Mn) Add compression steel Increase h

Increase h Increase <u>f'c</u>


$$C = \frac{\partial}{\beta_1} = \frac{12''}{0.85} = 14.1176''$$




$$\epsilon_{+} = \frac{d-0}{c}0.003 = \frac{22-14.1}{14.1}$$

Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking

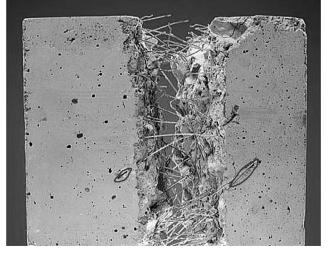
University of Michigan, TCAUP Structures II Slide 45 of 51

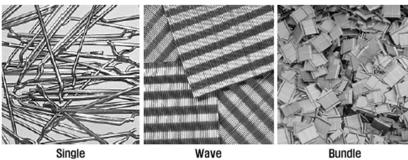
Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking
- Low-tech applications

Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata

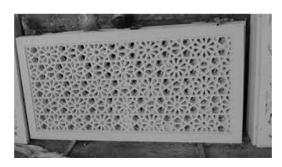
Palazetto dello Sport, Rome, 1957. P.L. Nervi


Fiber Reinforced Concrete


Several different fiber types:

- Steel (SFRC)
- Glass (GFRC) ~
- Plastic e.g. polypropylene 5643
- Carbor
- Organic e.g. bamboo

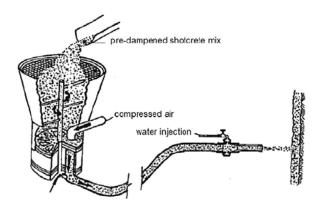
Better crack control Secondary reinforcement


University of Michigan, TCAUP Structures II Slide 47 of 51

Glass Fiber Reinforced Concrete - GFRC

Carbon Fiber

Bamboo


University of Michigan, TCAUP Structures II Slide 49 of 51

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- Reinforced with bars
- Soil stabilization, tunnels

Textile Reinforced Concrete (TRC)



Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]

Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

Slide 51 of 51

F&BRIC

University of Michigan, TCAUP Structures II