Composite Sections (Steel Beam + Slab)

- Composite Sections by LRFD
- Analysis Methods

Photo by Mike Greenwood, 2009. Used with permission

Composite Design

Steel W section with concrete slab "attached" by shear studs.

The concrete slab acts as a wider and thicker compression flange.

Strength increase by 33% to 50%
Deflection reduced by 70% to 80%

Shear Studs

Also called Nelson studs after the company that originated them.

From AISC DigiLib

University of Michigan, TCAUP

Effective Flange Width, b_{e}

Slab on both sides:

b_{e} is the least total width :

- Total width: $1 / 4$ of the beam span
- Overhang: $8 x$ slab thickness
- Overhang: $\underline{1 / 2}$ the clear distance to next beam (i.e. b_{e} is the web on center spacing)

Effective Flange Width, b_{e}

Slab on one side:

$\overline{\mathrm{b}_{\mathrm{e}}}$ is the least total width (i.e. overhang + steel flange) :

- Total width: $1 / 12$ of the beam span
- Overhang: 6 x slab thickness
- Overhang: $1 / 2$ the clear distance to next beam

Analysis Procedure (LRFD)

Case 1 - Plastic Neutral Axis (PNA) within slab
Case 2 - PNA within steel section

Analysis Procedure (LRFD)

Case 1 - PNA within slab

\cdots

Given: Slab and beam geometry W-section size and steel grade (floor loads)
Find: pass/fail or capacities

1. Define effective flange width, b_{e}

2. Calculate the effective depth of the concrete stress block, a
3. If a is within concrete slab, the full steel section is in tension and:

$$
\underline{M p}=\underline{T} z^{2} \quad z
$$

$$
\widetilde{M n}=\overline{\mathrm{Mp}}=\mathrm{As} F y(\mathrm{~d} / 2+\mathrm{t}-\mathrm{a} / 2)
$$

$$
\begin{aligned}
I & =\frac{c}{\pi} \\
A_{s} f_{y}^{\prime} & =0.85 f_{c}^{\prime} \text { a } b_{e} \\
d & =\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{e}}
\end{aligned}
$$

4. $\mathrm{Mu} \leq \phi \mathrm{Mn}$

Non-composite vs. Composite Sections

Given:

- $\mathrm{DL}_{\text {slab }}=62.5 \mathrm{psf}$
- $\mathrm{DL}_{\text {beam }}=99$ pf
- $\mathrm{LL}=$?
- W 30x99
- $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
- $\mathrm{f}^{\prime} \mathrm{c}_{\text {conc }}=4 \mathrm{ksi}$

For this example, floor capacity is found for two different floor systems:

1. Find capacity of steel section independent from slab
vs.
2. Find capacity of steel and slab as a composite section

> WEICHT of SUSB

$$
\frac{5}{12}^{12} 150 \mathrm{PCF}=62.5 \mathrm{PSF}
$$

$$
13^{\prime} \times 62.5 P_{5} F=812.5 \mathrm{PCF}
$$

Part 1 Non-composite Capacity Analysis (steel beam alone - LRFD)

Given:

- $\mathrm{DL}_{\text {slab }}=62.5 \mathrm{psf}$
- $\mathrm{DL}_{\text {beam }}=99$ plf
- W 30x99

1. Find section modulus, Z_{x} in the steel W-section chart.
2. Calculate $\mathrm{Mn}=\mathrm{Fy} \mathrm{Zx}$.
3. $\mathrm{Mu} \leq \phi \mathrm{Mn}$
4. Find wu from moment equation
5. Subtract the DL to find the remaining LL.
6. Calculate LL capacity in PSF.

Composite Analysis Procedure (Case1 - PNA within slab)

Given: Slab and beam geometry W-section size and steel grade (floor loads)
Find: pass/fail or capacities

1. Determine effective flange width, b_{e}

2. Calculate the effective depth of the concrete stress block, a

WEIGHT of SLSB

3. If a is within concrete slab, the full steel section is in tension and:

$$
M n=M p=A s F y(d / 2+t-a / 2)
$$

$\frac{5^{\prime \prime}}{12}{ }^{150 \mathrm{PCF}}=62.5 \mathrm{PSF}$

$$
13^{\prime} \times 62.5 \text { PSF }=812.5 \mathrm{PCF}
$$

$$
\begin{aligned}
& \mathrm{W} 30 \times 99 \\
& \mathrm{Ag}=29.0 \mathrm{in}^{2} \\
& \mathrm{Fy}=50 \mathrm{ksi}^{2}
\end{aligned}
$$

5. Use Mu to calculate factored loads with appropriate beam moment equation.

Part 2 - Composite Capacity Analysis

(composite steel beam and slab)

Given:

- $\mathrm{DL}_{\text {slab }}=62.5 \mathrm{psf}$
- $\mathrm{DL}_{\text {beam }}=99$ plf
- LL = ?
- W 30x99
- $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
- $f^{\prime} C_{\text {conc }}=4 \mathrm{ksi}$

Find capacity of steel and slab as a composite section

Part 2 Composite Capacity Analysis

1. Determine effective flange width, b_{e}
$\mathbf{b}_{\mathbf{e}}$ is the least total width :

- Total width: $1 / 4$ of the beam span
- Overhang: 8 x slab thickness
- Overhang: $1 / 2$ the clear distance to next beam (i.e. b_{e} is the web on center spacing)

$\mathbf{b}_{\mathbf{e}}$ is the least total width :
be (1) $=1 / 4 L^{\frac{L}{\prime}}=15^{\prime}=180^{\prime \prime}$
$b_{e}(2)=8\left(5^{\prime}\right) \times 2+10.5=90.5^{4}$ $b_{e}(3)=13^{\prime}=156^{\prime \prime}$

$$
\therefore b_{e}=90.5^{11}
$$

Part 2 - Composite Capacity Analysis cont.

2. Calculate the effective depth of the concrete stress block, a

$$
\begin{aligned}
& 4,712^{\prime \prime}<5^{\prime \prime} \therefore \text { Within suse } \\
& \begin{array}{l}
M_{n}=M_{p}=T \times z \\
M_{n}=A_{s} F_{y}\left(d / 2+t-\frac{d}{2}\right)
\end{array} \\
& H_{n}=29.0 \mathrm{~m}^{2}(50 \mathrm{ks1})\left(\frac{29.7^{\prime \prime}}{2}+5^{\prime \prime}-\frac{4.712^{\prime \prime}}{2}\right) \\
& H_{n}=25366^{\prime \prime}-k=2114^{1-k} \\
& \phi_{W_{n}}=0.9(2114)=1902^{1-K}=H_{0}
\end{aligned}
$$

Composite Analysis cont.

4. $\mathrm{Mu} \leq \phi \mathrm{Mn}$
5. Find total factored w_{u}.

6. Subtract the factored $w_{D L}$ to find w_{LL}
7. Calculate the LL in PSF based on the w_{LL}.

Conclusion:

Non-composite LL = 72.4 PSF
Composite LL $=150$ PSF

$$
\begin{aligned}
& \text { WEICHT of SLAB }
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}=1902=\frac{\omega_{0} l^{2}}{8} \equiv \frac{\stackrel{?}{\omega_{0}} 60^{2}}{8} \quad \overline{911.5 \mathrm{PL}} \\
& \omega_{0}=4.227 \mathrm{KLF}=1.2\left(\omega_{D L}\right)+1.6\left(\omega_{L L}\right) \\
& W U=4227 P L F=1.2(\underline{\underline{911.5}})+1.6\left(w_{L L}^{?}\right) \\
& W_{L L}=1958 \text { PF } \\
& L L=1958 \mathrm{PLF} / 13^{\prime}=150 \mathrm{PSF}
\end{aligned}
$$

Composite Analysis Procedure (Case 2 - PNA within W-section)

Given: Slab and beam geometry W-section size and steel grade (floor loads)
Find: pass/fail or capacities

1. Determine effective flange width, b_{e}
2. Calculate the effective depth of the concrete stress block, a.

3. If a is within steel section, the part below the Plastic Neutral Axis (PNA) is in tension and everything above the PNA is in compression (the steel and the concrete)
4. Check if PNA falls within flange or web of the W-section
5. Find \bar{y} by equating $T=C$
6. $M n=M p=\underline{C_{1}}\left(z_{1}\right)+\underline{C_{2}\left(z_{2}\right)}+T\left(z_{3}\right)$
7. $\mathrm{Mu}=\phi \mathrm{Mn}$

Composite Analysis Procedure (Case 2 - PNA within W-section)

Given: Slab and beam geometry W-section size and steel grade (floor loads)
Find: pass/fail or capacities

1. Determine effective flange width, b_{e}
2. Calculate the effective depth of the concrete stress block, a.

$$
\begin{aligned}
& B=\frac{A_{s} f_{y}}{0.85 \mathrm{fe}_{e}^{\prime} b_{e}}=\frac{34.2 \mathrm{~m}^{2}(50 \mathrm{ks1})}{0.85(4 \mathrm{ks1})\left(8 a_{m}\right)}=6.29^{\prime \prime} . \\
& 6.29^{\prime \prime}>4 \quad \therefore \text { BELOW SLAB }
\end{aligned}
$$

3. Check if PNA is within upper flange. Assume PNA is at top of web. Check C and T. If C is greater than T, then PNA is within the top flange.

Composite Analysis Procedure
 (Case 2 - PNA within W-section)

If a is within steel section, only the part below the PNA is in tension and the top is in compression with all concrete

4. Find \bar{y} by equating $\mathrm{T}=\mathrm{C}$

Composite Analysis Procedure

(Case 2 - PNA within W-section)

4. Find \bar{y} by equating $\mathrm{T}=\mathrm{C}$
$\bar{y}=\frac{34.2 \mathrm{~m}^{2}(50 \mathrm{ks})-0.85(4 \mathrm{ks} 1)\left(80^{\prime \prime}\right)\left(4^{\prime \prime}\right)}{2\left(10.5^{\prime}\right)(50 \mathrm{ks1})}$
5. $M n=M p=C_{1}\left(Z_{1}\right)+C_{2}\left(z_{2}\right)+T(z)$
6. $\mathrm{Mu}=\phi \mathrm{Mn}$

