Masonry

- Clay Masonry
- Concrete Masonry
- Autoclaved Aerated Concrete (AAC)

Clay Brick

- Molded
or
- Extruded
- Cored - adds stability, strength cored < 25% > hollow
- Fired $\left(2000^{\circ} \mathrm{F}\right)$
- Sizes - use $3 / 8^{\prime \prime}$ mortar bed
- Six ways to position in wall:

3/8" Mortar Joint Between Bricks (Most Common)

BRICK TYPE	$\begin{gathered} \text { SPECIFIED SIZE } \\ \text { D } \times H \times L \\ \text { (INCHES) } \end{gathered}$	$\begin{aligned} & \text { NOMINAL } \\ & \text { SIZE } \\ & \text { D } \times H \times L \end{aligned}$	VERTICAL COURSE
Standard	$35 / 8 \times 21 / 4 \times 8$	Not modular	3 courses $=8^{\prime \prime}$
Modular	$35 / 8 \times 21 / 4 \times 75 / 8$	$4 \times 22 / 3 \times 8$	3 courses $=8^{\prime \prime}$
Norman	$35 / 8 \times 21 / 4 \times 115 / 8$	$4 \times 22 / 3 \times 12$	3 courses $=8^{\prime \prime}$
Roman	$35 / 8 \times 15 / 8 \times 115 / 8$	$4 \times 2 \times 12$	1 course $=2^{\prime \prime}$
Jumbo	$35 / 8 \times 23 / 4 \times 8$	$4 \times 3 \times 8$	1 course $=3^{\prime \prime}$
Economy	$35 / 8 \times 35 / 8 \times 75 / 8$	$4 \times 4 \times 8$	1 course $=4^{\prime \prime}$
Engineer	$35 / 8 \times 213 / 16 \times 75 / 8$	$4 \times 31 / 5 \times 8$	5 courses $=16^{\prime \prime}$
King	$23 / 4 \times 25 / 8 \times 95 / 8$	Not modular	5 courses $=16^{\prime \prime}$
Queen	$23 / 4 \times 23 / 4 \times 75 / 8$	Not modular	5 courses $=16^{\prime \prime}$
Utitity	$35 / 8 \times 35 / 8 \times 115 / 8$	$4 \times 4 \times 12$	1 course $=4^{\prime \prime}$

Clay Brick

Cavity Walls

(a) Reinforcement in Joints

(b) Reinforcement in Cavity

Concrete Masonry Units (CMU) wall construction

Concrete Masonry Units (CMU)

- wall sections

These wall sections are not intended to be complete. They exclude floor, wall, and ceiling finishes, trim, etc. They attempt to illustrate how various floor and roof systems are supported by a concrete blook bearing wall. The above-grade wall is literally an extension of the coucrete block foundation wall system. Note that the edges of floor and roof planes are not visible from the exterior except at the top of the concrete block wall. All vertical dimensions should be modular, especially is the block is left exposed as the wall finish

Concrete Masonry Units (CMU)

| REINFORCED CONCRETE BLOCK WALLS | $\mathbf{5}$ © 24 |
| :--- | :--- | :--- |

When concrete block walls are suljected to lateral forces such as caused by wind, earth pressure below grade, and earthquakes, they may be reinforced as illustrated above.

Concrete Masonry Units (CMU)

1.9.1 Standard Concrete Masonry Unit (CMU) Stretchers and Unit Coring

- Cast (molds)
- Dried
- Autoclaved

two-core and three-core concrete block

$$
4 \times 8 \times 16
$$

$6 \times 8 \times 16$

$8 \times 8 \times 16$

$10 \times 8 \times 16$
nominal dimensions
thickness \times height \times length
concrete block

Concrete Masonry Units
 (CMU)

- Geometric Properties
- NCMA TEK 14-1B
- Radius of gyration, $\mathrm{r}=\sqrt{ } \frac{I}{A}$

8-inch (203-mm) Single Wythe Walls, $1^{11 / 4} \mathbf{i n}$. (32 mm) Face Shells (standard)

Horizontal Section Properties (Masonry Spanning Vertically)					
Unit	Grout spacing (in.)	Mortar bedding	Net cross-sectional properties ${ }^{\text {A }}$		
			$A_{n}\left(\mathrm{in}.{ }^{2} / \mathrm{ft}\right)$	$I_{n}\left(\mathrm{in}. .^{4} \mathrm{ft}\right)$	$S_{n}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
100\% so	d/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Concrete Masonry Units (CMU)

- Reinforcing

W1.7 wire

dia. $=0.147$ in
area $=0.017$ in 2
$2 x$ wire $=0.034 \mathrm{in}^{2}$

Joint Reinforcing

4.5 Horizontal reinforcement required for masonry not laid in running bond of $0.00028 A_{g}$, placed at a maximum spacing of 48 in . o.c. in horizontal mortar joints or in bond beams.

$$
0.00028(7.625)(16)=0.034 \mathrm{in}^{2} \quad \text { Use } 9 \text { gage }(\mathrm{W} 1.7) \text { at } 16 \text { in. o.c. }
$$

Placed in mortar joints

Placed in cells

Concrete Masonry Construction

Pant 5

Reinforcing Masonry Wells

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

\mathbf{M}	\mathbf{a}	\mathbf{S}	o	\mathbf{N}	w	\mathbf{O}	r	\mathbf{K}
strongest							weakest	

Table 2-3. Guide to the Selection of Mortar Type*

Location	Building segment	Mortar type	
		Recommended	Alternative
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N $0^{* *}$ N	Sor M Nors S
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	St	M orN \dagger
Interior	Load-bearing walls Non-load-bearing partitions	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	SorM N

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars.
"Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated
or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should
be used in other cases.
\dagger Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution
Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Relative Parts by Volume

mortar type	Portland cement	lime	sand
M	1	1_{4}	$3{ }_{2}$
S	1	1_{2}	$4{ }_{2}{ }_{2}$
N	1	1	6
O	1	2	9

sum should equal $1 / 3$ of sand volume (assuming that sand has void ratio of 1 in 3)

Mortar Types

Type M, S, N, O
Slump is higher than cast concrete based on workability

Mold with four $8 \times 8 \times 16-\mathrm{in}$. blocks

Fig. 2-29. ASTM C1019 method of using masonry units to form a prism for compression-testing of masonry grout.

Fig. 2-27. Slump test comparison of concrete, mortar, and masonry grout.

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Compressive Strength of Clay Masonry Units (psi) fu		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Compressive Strength of Concrete Masonry Units (psi)		fu
f'm For Net Area When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACl 530.1/ASCE 6/TMS 602-99)

Constructive Properties

Typical Values

Property		Clay Masonry	Concrete Masonry
Unit strength	8000 psi	2000 psi	
Type N mortar	f_{m}^{\prime}	2440 psi	1750 psi
	E_{m}	$1.70 \times 10^{6} p s i$	$1.58 \times 10^{6} \mathrm{psi}$
Type M or S mortar	f_{m}^{\prime}	2920 psi	2000 psi
	E_{m}	$2.05 \times 10^{6} p s i$	$1.80 \times 10^{6} \mathrm{psi}$

Property	Clay Masonry	Concrete Masonry
Modulus of Elasticity, E_{m}	$700 f_{m}^{\prime}$	$900 f_{m}^{\prime}$
Shear Modulus, G	$0.4 E_{m}$	$0.4 E_{m}$
Coefficient of Creep	$\frac{0.7 \times 10^{-7}}{p s i}$	$\frac{2.5 \times 10^{-7}}{p s i}$

Analysis and Design

Empirical approach

based on experience
limits on lateral loading
limits on height
limits on eccentricity
(basically no flexure)
non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Reinforced Masonry Analysis
for axial compression using TMS 402 (2016)
Strength Design (LRFD) - non-reinforced

Given: geometry, material
Find: axial compressive load capacity, Pn
(Equation 9-11) for $h / r<99$

1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type
2. Find the net area, A_{n}, and Moment of Inertia, In (see NCMA TEK 14-1B)
3. Calculate $r=\sqrt{I} / \mathrm{A}$
4. Calculate h / r
5. Choose the axial strength equation, Pn : If $h / r<99$ use TMS 402 eq.9-11 If $h / r>99$ use TMS 402 eq.9-12
(Equation 9-12) for $h / r>99$

$$
P_{n}=0.80\left[0.80 A_{n} f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2}\right]
$$

6. Calculate \varnothing Pn where \varnothing for axial force $=0.90$
7. Check that $\varnothing \mathrm{Pn}$ is greater than Pu.

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Compressive Strength of Clay Masonry Units (psi)		f'm for Net Area
Compressive		
Strength of		
When Used With Type M or S Mortar	When Used With Type N Mortar	Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Compressive Strength of Concrete Masonry Units (psi) fu		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)
for axial compression using TMS 402 (2016)
Strength Design - non-reinforced

Section Properties of Concrete Masonry Walls NCMA TEK 14 - 1B

Figure 3-Horizontal and Vertical Cross-Sections

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016)
Strength Design - non-reinforced

Section Properties of Concrete Masonry Walls NCMA TEK 14 - 1B

Table 3-8-inch (203-mm) Single Wythe Walls, $1^{1 / 4} \mathrm{in}$. (32 mm) Face Shells (standard)

3a: Horizontal Section Properties (Masonry Spanning Vertically)					
Unit	Grout spacing (in.)	Mortar bedding	Net cross-sectional properties ${ }^{\text {A }}$		
			A_{n} (in. ${ }^{2} / \mathrm{ft}$)	$I_{n}(\mathrm{in} .4 / \mathrm{ft})$	$S_{n}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$
A Hollow	No grout	Face shell	30.0	308.7	81.0
B Hollow	No grout	Full	41.5	334.0	87.6
D/E 00\% sol	$\mathrm{d} /$ solidly grouted	Full	91.5	443.3	116.3
C Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Reinforced Masonry Analysis
for axial compression using TMS 402 (2016)
Strength Design - non-reinforced

Example Problem

Given: geometry: 8 " block, grouted 24 " o.c. material: f 'm $=3000 \mathrm{psi}$
Find: check pass/fail for the given loading

1. Determine the masonry strength, f'm,
based on unit strength, fu, and mortar
2. Determine the masonry strength, f'm,
based on unit strength, fu, and mortar type. (given f'm $=3000 \mathrm{psi}$)

Faceshell bedding, partial grout

Reinforced Masonry Analysis
Rational Approach
for axial compression using TMS 402 (2016)
Strength Design - non-reinforced
2. Find the net area, A_{n}, and Moment of Inertia, I_{n} (see NCMA TEK 14-1B)

Table 3-8-inch (203-mm) Single Wythe Walls, $1_{1 / 4} \mathrm{in}$. (32 mm) Face Shells (standard)

3a: Horizontal Section Properties (Masonry Spanning Vertically)						
	Grout spacing (in.)	Mortar bedding	$A_{n}\left(\mathrm{Net}\right.$ cross-sectional properties $\left.{ }^{2} / \mathrm{ft}\right)$			
Unit	$I_{n}\left(\mathrm{in} .^{4} / \mathrm{ft}\right)$	$S_{n}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$				
Hollow	No grout	Face shell	30.0	308.7	81.0	
Hollow	No grout	Full	41.5	334.0	87.6	
100\% solid/solidly grouted	Full	91.5	443.3	116.3		
Hollow	16	Face shell	62.0	378.6	99.3	
Hollow	24	Face shell	51.3	355.3	93.2	
Hollow	32	Face shell	46.0	343.7	90.1	
Hollow	40	Face shell	42.8	336.7	88.3	
Hollow	48	Face shell	40.7	332.0	87.1	
Hollow	72	Face shell	37.1	324.3	85.0	
Hollow	96	Face shell	35.3	320.4	84.0	
Hollow	120	Face shell	34.3	318.0	83.4	

for axial compression using TMS 402 (2016)
Strength Design - non-reinforced
3. Calculate $r=\sqrt{I} / A$

$$
\begin{aligned}
& \text { TER 14-1B } 8^{\prime \prime} \text { SINGLE WITHE } \\
& \text { HOWON BLOCK - GROUT } 24^{\prime \prime} \text { OC. WACE SAEUMORTSR } \\
& A_{n}=51.3 \mathrm{~m}^{2} \quad I_{n}=355.3 \mathrm{~m}^{4} \text { (NET) }
\end{aligned}
$$

4. Calculate h / r

$$
\begin{aligned}
& r=\sqrt{\frac{I}{A}}=\sqrt{\frac{355.3}{51.3}}=1.952 \mathrm{~m} \\
& h / r=\frac{12^{\prime}(12)}{1.952}=73.75<99 \quad \therefore E Q(1)
\end{aligned}
$$

5. Choose the axial strength equation, Pn :

If $h / r<99$ use TMS 402 eq.9-11
If $h / r>99$ use TMS 402 eq. $9-12$
(Equation 9-11) for $h / r<99$

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}
$$

Reinforced Masonry Analysis
for axial compression using TMS 402 (2016)
Strength Design - non-reinforced
6. Calculate øPn
where \varnothing for axial force $=0.90$

$$
\begin{aligned}
& P_{n}=0.8\left[0.8 A_{n} f_{m}^{\prime}\left(1-\left(\frac{h}{140 \mathrm{r}}\right)^{2}\right)\right] \\
& P_{n}=0.8\left[0.8(51.3)(3)\left(1-\left(\frac{144^{\prime \prime}}{140\left(1.95^{\prime 2}\right)}\right)^{2}\right)\right] \\
& P_{n}=0.8[123.12-0.7223]=71.4 \mathrm{k} / \mathrm{kT} \\
& \phi P_{n}=0.9(71.4)=64 \mathrm{k} / \mathrm{kr}
\end{aligned}
$$

7. Check that $\varnothing \mathrm{Pn}$ is greater than Pu .

$$
\begin{aligned}
& P_{U}=1.2(25)+1.6(20)=62 \mathrm{k} / \mathrm{FT} \\
& P_{U}=62 \mathrm{k} / \mathrm{kr}<64 \mathrm{k} / \mathrm{kT}=\phi \ln \quad \therefore 0 \mathrm{kV}
\end{aligned}
$$

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab

Empirical Approach

TMS 402-16 Tab. CC A.1.1 Checklist for use of empirical design

Table CC-A.1.1 - Checklist for use of Appendix A - Empirical Design of Masonry

1.	Risk Category IV structures, or portions thereof, are not permitted to be designed using Appendix A.		
2.	Partitions are not permitted to be designed using Appendix A.		
3.	Use of empirical design is limited based on Seismic Design Category, as described in the following table.		
	Scismic Design Category	Participating Walls	Non Participating Walls, except partition walls
	A	Allowed by Appendix A	Allowed by Appendix A
	B	Not Allowed	Allowed by Appendix A
	C	Not Allowed	With prescriptive reinforcement per 7.4.3.1 ${ }^{1}$
	D, E, and F	Not Allowed	Not Allowed
	${ }^{1}$ Lap splices are required to be designed and detaited in accordance with the requirements of Chapters 8 or 9 .		
4.	Use of empirieal design is limited based on wind speed at the project site, as described in Code A.1.2.3 and Code Table A.1.1.		
5.	If wind uplift on roofs result in net tension, empirical design is not permitted (A.8.3.1).		
6.	Loads used in the design of masonry must be listed on the design drawings (1.2.1b).		
7.	Details of anchorage to structural frames must be included in the design drawings (1.2.1e).		
8.	The design is required to include provisions for volume change (1.2.1h). The design drawings are required to include the locations and sizing of expansion, control, and isolation joints.		
9.	If walls are connected to str interconnecting forces and This provision requires a lat supported by or are support	1 frames, the connections and mmodate deflections (4.4). oad and uplift analysis for ext frame or roofing system.	walls are required to be designed to resist the ior walls that receive wind load and are
10.	Masonry not laid in running bond (for example, stack bond masonry) is required to have horizontal reinforcement (4.5).		
11.	A project quality assurance plan is requircd (3.1) with minimum requirements given in TMS 602 Tables 3 and 4 for Quality Assurance Level 1.		
12.	The resultant of gravity loads must be determined and assured to be located within certain limitations for walls and piers (A.1.2.1).		
13.	Ensure compliance of the design with prescriptive floor, roof, and wall-to-structural framing anchorage requirements, as well as other anchorage requirements (A.8.3 and A.8.4).		
14.	Type N mortar is not permitted for foundation walls (A.6.3.1(g)).		
15.	Design shear wall lengths, spacings, and orientations to meet the requirements of Code A.3.1.		

Empirical Approach

Wind limitations:

Basic wind speed $\leq 115 \mathrm{mph}$
(see TMS 402-16 Tab. A.1.1)

ASCE 7-2016 basic wind speeds for risk cat. II

Seismic limitations:

Can generally be used for Seismic Design Category (SDC) A, B, or C , or only A if part of the seismic lateral force resisting system.

Seismic zones A-E

Empirical Design of Masonry
 TMS 402-16

Height limits by wind speed and application

Table A.1.1 Limitations based on building height and basic wind speed

Element Description	Building Height, ft (m)	Basic Wind Speed, mph (mps) ${ }^{1}$			
		Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less	Permitted			Not Permitted
Interior masonry loadbearing elements that are not part of the lateral-force-resisting system in buildings other than enclosed as defined by ASCE 7	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to 180 (55)	Permitted	Not Permitted		
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
	35 (11) and less	Permitted			Not Permitted
Exterior masonry elements that are not part of the lateral-force-resisting system	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to $180(55)$	Permitted \mid Not			
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
Exterior masonry elements	35 (11) and less	Permitted			Not Permitted

Empirical Design of Masonry TEK 14-8B (also TMS 402 - Tab. A.5.1)
 International Building Code (IBC) Limitations:

1. Lateral support requirements

2. Location of gravity load (in middle $1 / 3$ of wall)
3. Maximum unreinforced spans

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Compressive Strength of Clay Masonry Units (psi)\quadfu		for Net Area Compressive
Strength of When Used With Type M or S Mortar	When Used With Type N Mortar	
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Compressive Strength of Concrete Masonry Units (psi) fu	f'm For Net Area Compressive Strength of When Used With Type M or S Mortar	When Used With Type N Mortar
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACl 530.1/ASCE 6/TMS 602-99)

Empirical Design of Masonry TEK 14-8B (also TMS 402 - Tab. A.4.2)

Allowable compressive stress of concrete masonry:

Solid or solidly grouted walls

Table 4-Allowable Compressive Stress for Empirical Design of Masonry		
Allowable compressive stresses based on gross cross-sectional area, $\mathrm{psi}(\mathrm{MPa})^{\mathrm{A}}$		
Gross area compressive strength of unit, psi (MPa)	Type M or S mortar	Type N mortar
Solid and Solidly Grouted Masonry (refs. 1, 6):Solid concrete brick:		
8,000 (55) or greater	350 (2.41)	300 (2.07)
4,500 (31)	225 (1.55)	200 (1.38)
2,500 (17)	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)
Grouted concrete masonry:		
4,500 (31) or greater	225 (1.55)	200 (1.38)
2,500 (17)	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)
Solid concrete masonry units:		
3,000 (21) or greater	225 (1.55)	200 (1.38)
2,000 (14)	160 (1.10)	140 (0.97)
1,200 (8.3)	115 (0.79)	100 (0.69)
Hollow walls (noncomposite masonry bonded ${ }^{\text {B }}$):		
Solid units:		
2,500 (17) or greater	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)

Hollow unit walls

$\left.\begin{array}{|ccc} & \begin{array}{c}\text { Allowable compressive stresses } \\ \text { based on gross cross-sectional }\end{array} \\ & \text { area, psi }(\mathrm{MPa})^{\mathrm{A}}\end{array}\right\}$

Hollow Unit Masonry (Units Complying With ASTM C 90-06 or Later) (ref. 6) ${ }^{\text {c }}$
Hollow loadbearing CMU, $t \leq 8$ in. $(203 \mathrm{~mm})^{\mathrm{D}}$:

$2,000(14)$ or greater	$140(0.97)$	$120(0.83)$
$1,500(10)$	$115(0.79)$	$100(0.69)$
$1,000(6.9)$	$75(0.52)$	$70(0.48)$
$700(4.8)$	$60(0.41)$	$55(0.38)$

Hollow loadbearing CMU, 8 in. $<t<12$ in. (203 to 305 mm$)^{\text {D }}$.
$2,000(14)$ or greater $\quad 125(0.86) \quad 110(0.76)$
$1,500(10) \quad 105(0.72) \quad 90(0.62)$
$1,000(6.9) \quad 65(0.49) \quad 60(0.41)$
700 (4.8) $55(0.38) \quad 50(0.35)$

Hollow loadbearing CMU, $t \geq 12$ in (305 mm$)^{\text {D }}$:
$2,000(14)$ or greater $\quad 115(0.79) \quad 100(0.69)$
$1,500(10) \quad 95(0.66) \quad 85(0.59)$
$1,000(6.9) \quad 60(0.41) \quad 55(0.38)$
$700(4.8) \quad 50(0.35) \quad 45(0.31)$

Hollow walls (noncomposite masonry bonded ${ }^{B}$):

$$
t \leq 8 \text { in }(203 \mathrm{~mm})^{D} \quad 75(0.52) \quad 70(0.48)
$$

$$
8<t<12 \text { in }(203 \text { to } 305 \mathrm{~mm})^{\mathrm{D}} 70(0.48) \quad 65(0.45)
$$

$$
t \geq 12 \text { in }(305 \mathrm{~m} . \mathrm{m})^{\mathrm{D}} \quad 60(0.41) \quad 55(0.38)
$$

Empirical Concrete Masonry
 Procedure using TMS 402-2016

Given: location, geometry, material Find: strength (load capacity)

1. Check axial loading - must be within middle 1/3
2. Check seismic category to be A, B, or C , or only A if part of the seismic lateral force resisting system.
3. Check wind speed (ASCE-7 2016) compare with Tab. A.1.1
4. Check minimum thickness.

1 story $=6 " \mathrm{~min} .2$ story $=8 " \mathrm{~min}$.
5. Check lateral support (vertical or horizontal) tables 2 and 3 TEK 14-8B or TMS 402 - Tab. A.5.1
6. Determine allowable compressive stress from table 4 TEK 14-8B or TMS 402 - Tab. A.4.2
7. Allowable load $=$ (stress) (gross area) (not LRFD so no γ factors)

$$
P=F \times A_{g}
$$

Empirical Design Example

Given:
8" hollow non-reinforced CMU wall interior wall, Ann Arbor, Mich.
LL = 150 psf
Find:
LL capacity

Checks:

Axially loaded : loaded within middle 1/3 (kern)

Seismic Category:
A, B, or C , or only A if part of the seismic lateral force resisting system

Wind:
less that 115 mph (ASCE 7-2016)

$$
\Delta g=7.625 \times 12=91.5 \frac{m^{2}}{n^{2}}
$$

Wind and Seismic Limits

Wind for Ann Arbor - 107 mph SCD for Ann Arbor - Zones A

Empirical Design Example

TABLE $3 \rightarrow 10^{\circ}<12$
H / t (TABCE 2)
$\frac{120^{\prime \prime}}{8}=15<18$

MAX. UNREINF, HEIGITT

$$
\Delta_{g}=7.625 \times 12=91.5^{-2} \%
$$

Maximum height - Table A.1.1

- wind speed $=107 \mathrm{mph}$
- interior, loadbearing
- $\mathrm{h}<35 \mathrm{ft}$

Table A.1.1 Limitations based on building height and basic wind speed

Element Description	Building Height, ft (m)	Basic Wind Speed, mph (mps) ${ }^{1}$			
		Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less	Permitted			Not Permitted
Interior masonry loadbearing elements that are not part of the lateral-force-resisting system in buildings other than enclosed as defined by ASCE 7	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to 180 (55)	Permitted	Not Permitted		
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
	35 (11) and less	7 7^{4}	Permitted		Not Permitted
Exterior masonry elements that are not part of the lateral-force-resisting system	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
Exterior masonry elements	35 (11) and less	Permitted			Not Permitted

Empirical Design Example

Checks:
Minimum bracing - table 2

Maximum unreinforced height - table 3

MAX. UNREINF. HEICITT
MAX HEMGHT

H/t (TABLE 2)
$\frac{120^{\prime \prime}}{8}=15<18$

TABLE $3 \rightarrow 10^{\prime}<12^{\prime}$

$\Delta g=7.625 \times 12=91.5 \frac{7^{2}}{1}$

Table 2-Wall Lateral Support Requirements (ref. 1)		Table 3-Maximum Unreinforced Wall Spans, ft (m) ${ }^{\text {A }}$				
	Maximum wall length-to thickness or height-to thickness ratio ${ }^{\text {A }}$	Bearing walls				
Construction (unreinforced)		Solid or solid grouted	$10(3.0)^{\text {B }}$	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing walls		All other	$9(2.7)^{\text {B }}$	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls				
All others	18	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ${ }^{\text {C }}$				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ${ }^{\text {B }}$		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets ${ }^{\text {c }}$	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4					
Parapets (8-in. (203-mm) thick min.) ${ }^{\text {B }}$	B $\quad 3$	A Note that Ref. 6 in with openings.	ludes mod	ified requi	irements for	or walls

Empirical Design Example

Find allowable stress - table 4
Find load

P = F Ag

Calculate per foot using gross Area

Hollow loadbearing CMU, 8 in. $<t<12$ in. (203 to 305 mm$)^{\text {D }}$ $2.000(14)$ or greater $\quad 125(0.86) \quad 110(0.76)$
$1,500(10) \quad 105(0.72) \quad 90(0.62)$
$1,000(6.9) \quad 65(0.49) \quad 60(0.41)$
$700(4.8) \quad 55(0.38) \quad 50(0.35)$

Hollow loadbearing CMU, $t \geq 12$ in $(305 \mathrm{~mm})^{\mathrm{D}}$:

$2,000(14)$ or greater	$115(0.79)$	$100(0.69)$
$1,500(10)$	$95(0.66)$	$85(0.59)$
$1,000(6.9)$	$60(0.41)$	$55(0.38)$
$700(4.8)$	$50(0.35)$	$45(0.31)$

Hollow walls (noncomposite masonry bonded ${ }^{\mathrm{B}}$):

$$
\begin{array}{lll}
t \leq 8 \text { in. }(203 \mathrm{~mm})^{\mathrm{D}} & 75(0.52) & 70(0.48) \\
8<t<12 \text { in }(203 \text { to } 305 \mathrm{~mm})^{D} & 70(0.48) & 65(0.45) \\
t \geq 12 \text { in }(305 \mathrm{~m} \cdot \mathrm{~m})^{\mathrm{D}} & 60(0.41) & 55(0.38)
\end{array}
$$

Clay Tile

TABLE 4 HOLLOW O" $f_{0}=1000$ Type $s \rightarrow 75$ psi
$P=F A_{g}=75(7.625 \times 12)$
$=6862 \mathrm{k} / 1$
TRIBUTARY STRIP $=28^{\prime}$
$P=6862=D L\left(28^{\prime}\right)+L L\left(28^{\prime}\right)$
$=150(28)+L L(28)$
$L L=95$ PSF CAPACITY

Insulated Clay Tile

University of Michigan, TCAUP

Structures II
Slide 39 of 46

Autoclaved Aeriated Concrete (AAC)

Used predominately in Europe

Developed by Dr. Johan Axel Eriksson in mid- 1920s in Sweden as "Ytong" since 1943, Hebel blocks in Germany Current largest production in China Lighter weight
Better insulation value
Better fire resistance
Better moisture transmission Larger blocks for faster erection
Can be shaped on site

Autoclaved Aeriated Concrete (AAC)

Density - 20 to 50 PCF (floats)
Compressive strength -300 to 900 PSI
Allowable Shear Stress - 8 to 22 PSI
Thermal Resistance - 0.8 to 1.25 R/ IN

Structures II

Slide 41 of 46

Autoclaved Aeriated Concrete

 (AAC)
Easily shaped on site

Thin mortar bed $-1 / 8$ " (1mm to 3 mm)
Tools for placement (below)

Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup - e.g. 8"x8"x24"
Panel layup with onsite crane

AAC panel
1.6 panels / m2 $\begin{aligned} & \text { Porenbeton-Planelemente: } \\ & 1,6 \text { Steine pro } 1 \\ & \mathrm{~m}^{2} \text { Wand; }\end{aligned}$
$39.3^{\prime \prime} \times 24.5^{\prime \prime}$

Autoclaved Aeriated Concrete
 (AAC)

Finish with stucco

Abb. 2.4.4-1
Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-3
Auftrag der Deckschicht

Abb. 2.4.4-2
Auftrag des Grundputzes von Hand

Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe

Member Types

Compression members based on proportions.

(b)

(c)

FIGURE 4.12. Forms of brick columns

Member Details

Floor / Column details.

(a) Bar joist floor

(b) Soffit block joist floor

