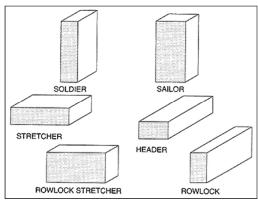

Masonry

- Clay Masonry
- Concrete Masonry
- Autoclaved Aerated Concrete (AAC)

Höchst Entrance Hall, Frankfurt Arch: Peter Behrens, 1920-24 Photo: Eva Kröcher

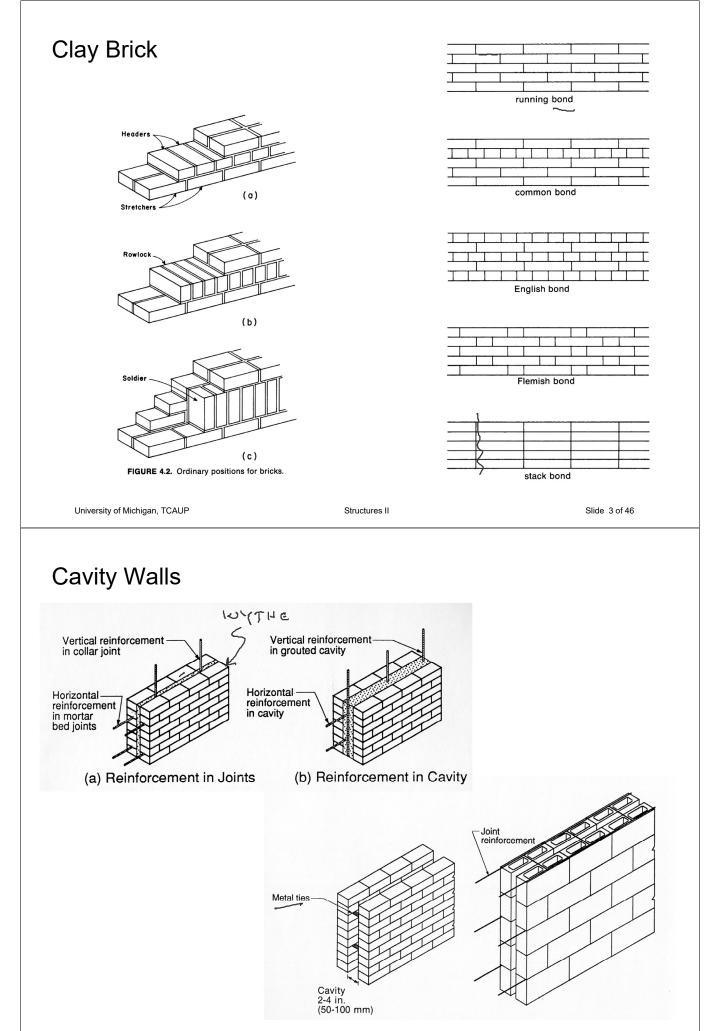

University of Michigan, TCAUP

Structures II

Slide 1 of 46

Clay Brick

- Molded
 - or
- Extruded
- Cored adds stability, strength cored < 25% > hollow
- Fired (2000° F)
- Sizes use 3/8" mortar bed
- Six ways to position in wall:



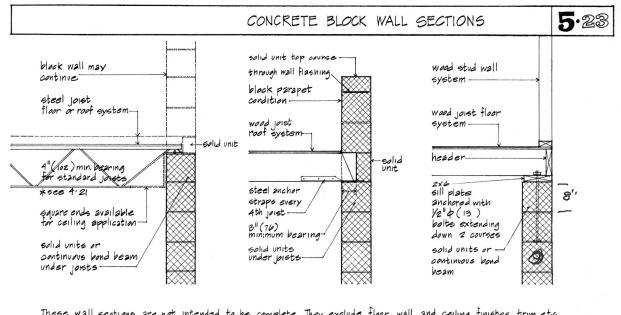
3/8" Mortar Joint Between Bricks (Most Common)

BRICK	SPECIFIED SIZE	NOMINAL	VERTICAL
ТҮРЕ	D X H X L (INCHES)	SIZE D X H X L	COURSE
Standard	3 5/8 × 2 1/4 × 8	Not modular	3 courses = 8"
Modular	3 5/8 × 2 1/4 × 7 5/8	4 × 2 2/3 × 8	3 courses = 8"
Norman	3 5/8 \times 2 1/4 \times 11 5/8	4 × 2 2/3 × 12	3 courses = 8"
Roman	3 5/8 \times 1 5/8 \times 11 5/8	$4 \times 2 \times 12$	1 course = 2"
Jumbo	3 5/8 × 2 3/4 × 8	4 × 3 × 8	1 course = 3"
Economy	3 5/8 × 3 5/8 × 7 5/8	4×4×8	1 course = 4"
Engineer	3 5/8 × 2 13/16 × 7 5/8	4×31/5×8	5 courses = 16"
King	2 3/4 × 2 5/8 × 9 5/8	Not modular	5 courses = 16"
Queen	2 3/4 × 2 3/4 × 7 5/8	Not modular	5 courses = 16"
Utility	3 5/8 × 3 5/8 × 11 5/8	$4 \times 4 \times 12$	1 course = 4"

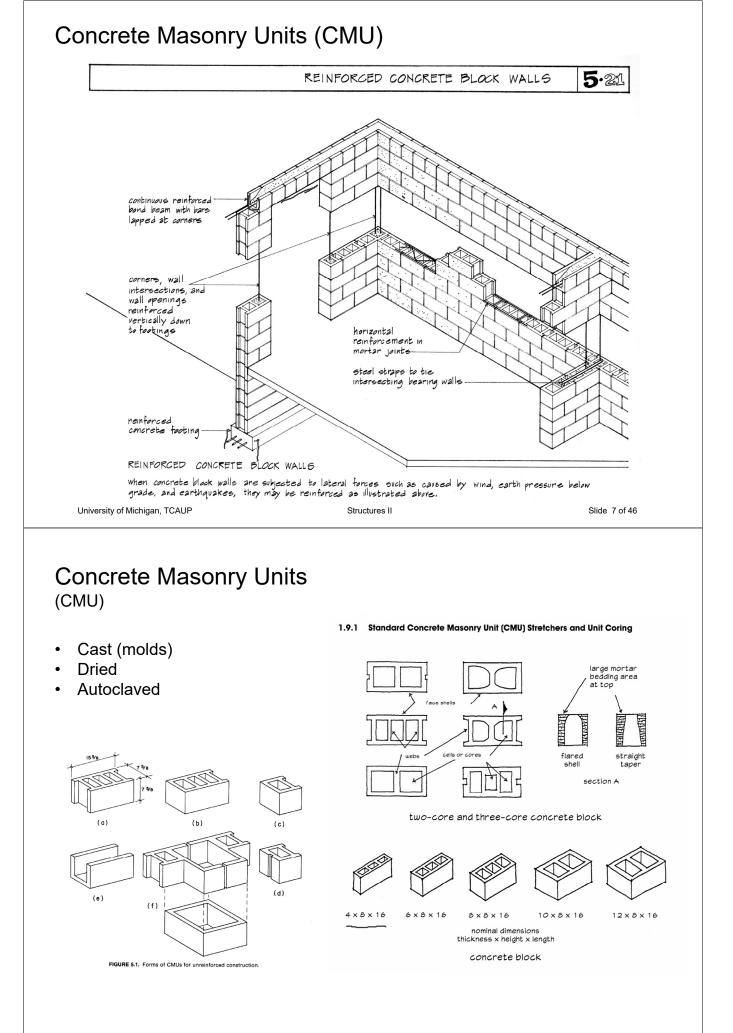
University of Michigan, TCAUP

Slide 2 of 46

Concrete Masonry Units (CMU) wall construction

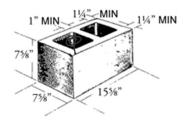

University of Michigan, TCAUP

Structures II


Slide 5 of 46

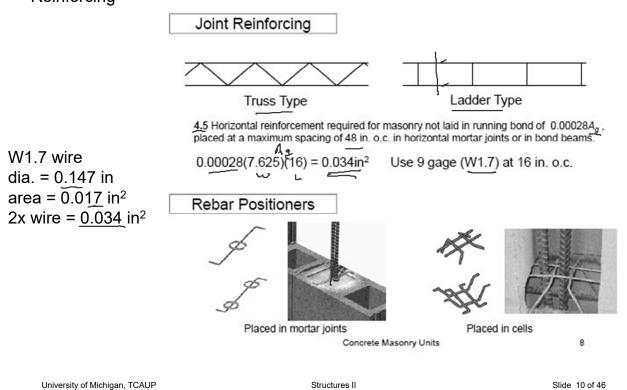
Concrete Masonry Units (CMU)

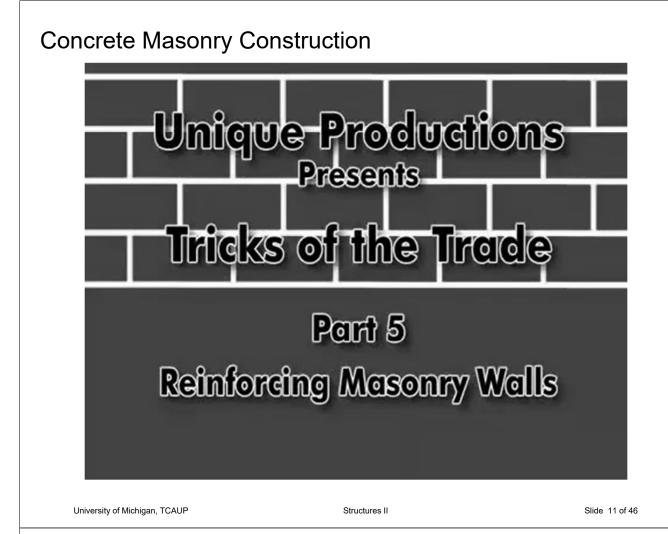
wall sections



These wall sections are not intended to be complete. They exclude floor, wall, and ceiling finishes, trim, etc. They attempt to illustrate how various floor and roof systems are supported by a concrete block bearing wall. The above grade wall is literally an extension of the concrete block foundation wall system. Note that the edges of floor and roof planes are not visible from the exterior except at the top of the concrete block wall. All vertical dimensions should be modular, especially is the block is left exposed as the wall finish

Concrete Masonry Units (CMU)


- Geometric Properties
- NCMA TEK 14-1B
- Radius of gyration, $r = \sqrt{\frac{I}{A}}$



Horizontal Section Properties (Masonry Spanning Vertically)							
		Grout	Mortar	Net cros	s-sectional p	properties ^A	
	Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)	
	Hollow	No grout	Face shell	30.0	308.7	81.0	
	Hollow	No grout	Full	41.5	334.0	87.6	
	100% sol	id/solidly grouted	Full	91.5	443.3	116.3	
	Hollow	16	Face shell	62.0	378.6	99.3	
	Hollow	16 24 32 40	Face shell	51.3	355.3	93.2	
	Hollow	32	Face shell	46.0	343.7	90.1	
	Hollow	40	Face shell	42.8	336.7	88.3	
	Hollow	48	Face shell	40.7	332.0	87.1	
	Hollow	72	Face shell	37.1	324.3	85.0	
	Hollow	96	Face shell	35.3	320.4	84.0	
	Hollow	120	Face shell	34.3	318.0	83.4	
						·	_
University of Michigar	n, TCAUP		Struct	ures II			Slide 9 of

Concrete Masonry Units (CMU)

Reinforcing

Mortar Types

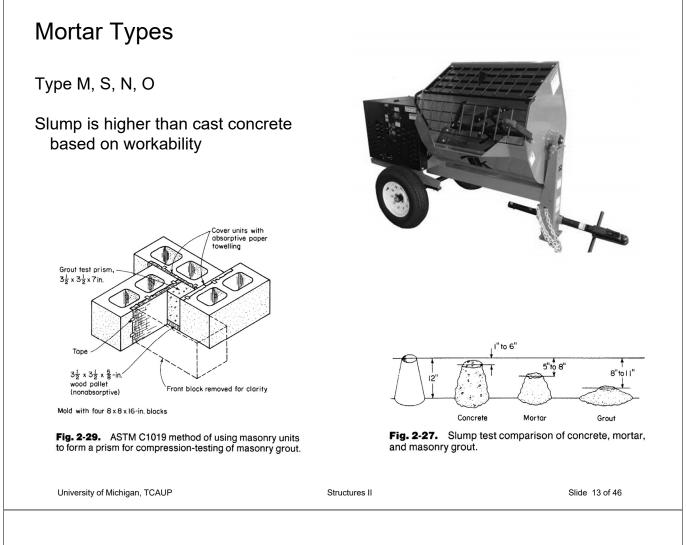
Types M, S, N, O

The foll	owing	mortar	design	ations t	ook efi	fect in t	he mi	d-1950's:	
Μ	а	S	0	Ν	w	0	r	K	
strong	est							weakest	

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar	type
Location	Building segment	Recommended	Alternative
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	St	M or N†
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chirmey, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. †Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

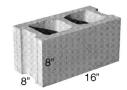

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Relative Parts by Volume

mortar type	Portland cement	lime	sand
М	1	¹ 4	3 ¹ 2 4 ¹ 2
S	1	¹ 2	4 ¹ 2
Ν	1	1	6
0	1	2	9
		ч. -	
	1	· · ·	

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

Masonry Strength


Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Co of Clay Masor		f'm For Net Area Compressive
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Constructive Properties

	71		
Property		Clay Masonry	Concrete Masonry
Unit strength		8000 psi	2000 psi
Tuno N mortor	f'_m	2440 psi	1750 psi
Type N mortar	E_m	1.70x10 ⁶ psi	1.58x10 ⁶ psi
Type M or S mortar	f'_m	2920 psi	2000 psi
Type wildi Simortai	E_m	2.05x10 ⁶ psi	1.80x10 ⁶ psi

Typical Values

Property	Clay Masonry	Concrete Masonry
Modulus of Elasticity, E_m	$700 f_m'$	900 <i>f</i> ''
Shear Modulus, G	$0.4E_m$	$0.4E_m$
Coefficient of Creep	$\frac{0.7 x 10^{-7}}{psi}$	$\frac{2.5x10^{-7}}{psi}$

University of Michigan, TCAUP

Structures II

Slide 15 of 46

Analysis and Design

Empirical approach

based on experience limits on lateral loading limits on height limits on eccentricity (basically no flexure) non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Reinforced Masonry Analysis for axial compression using TMS 402 (2016) Strength Design (LRFD) – non-reinforced

Given: geometry, material Find: axial compressive load capacity, Pn

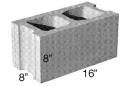
- 1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type
- 2. Find the net area, A_n, and Moment of Inertia, I_n (see NCMA TEK 14-1B)
- 3. Calculate $r = \sqrt{I}/A$
- 4. Calculate h/r
- 5. Choose the axial strength equation, Pn: If h/r < 99 use TMS 402 eq.9-11 If h/r > 99 use TMS 402 eq.9-12
- 6. Calculate øPn where ø for axial force = 0.90
- 7. Check that øPn is greater than Pu.

```
University of Michigan, TCAUP
```

Structures II

Slide 17 of 46

Masonry Strength


Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Co of Clay Masor		f'm For Net Area Compressive
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

(Equation 9-11) for h/r < 99

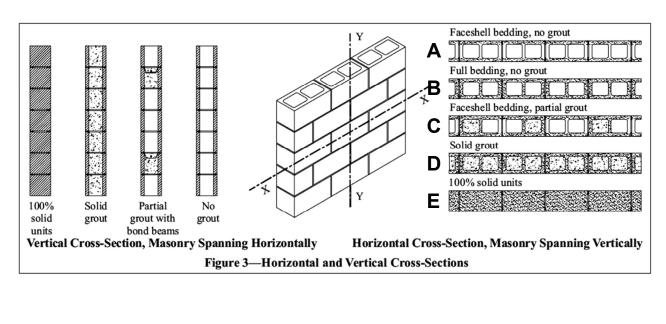
 $P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r}\right)^2 \right] \right\}$

(Equation 9-12) for h/r > 99

 $P_n = 0.80 \left[0.80 A_n f'_m \left(\frac{70 r}{h} \right)^2 \right]$

Concrete Masonry

Required Net Area Co of Concrete Mas		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000


(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Reinforced Masonry Analysis

Rational Approach

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

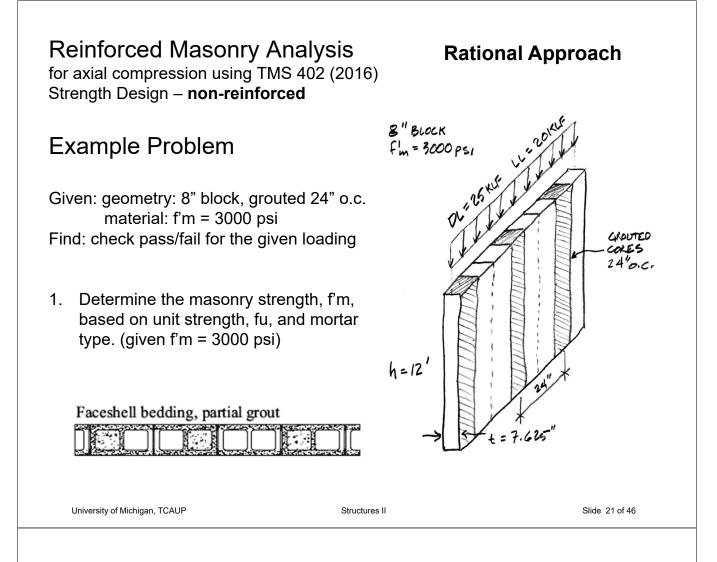
Section Properties of Concrete Masonry Walls NCMA TEK 14 – 1B

University of Michigan, TCAUP

Structures II

Slide 19 of 46

Reinforced Masonry Analysis


for axial compression using TMS 402 (2016) Strength Design – **non-reinforced** **Rational Approach**

Section Properties of Concrete Masonry Walls NCMA TEK 14 – 1B

3a: H	3a: Horizontal Section Properties (Masonry Spanning Vertically)						
	Grout	Mortar	Net cros	s-sectional p	propertiesA		
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)		
A Hollow	No grout	Face shell	30.0	308.7	81.0		
B Hollow	No grout	Full	41.5	334.0	87.6		
D/E 00% so	lid/solidly grouted	Full	91.5	443.3	116.3		
C Hollow	16	Face shell	62.0	378.6	99.3		
Hollow	24	Face shell	51.3	355.3	93.2		
Hollow	32	Face shell	46.0	343.7	90.1		
Hollow	40	Face shell	42.8	336.7	88.3		
Hollow	48	Face shell	40.7	332.0	87.1		
Hollow	72	Face shell	37.1	324.3	85.0		
Hollow	96	Face shell	35.3	320.4	84.0		
➡ Hollow	120	Face shell	34.3	318.0	83.4		

Table 3—8-inch (203-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

University of Michigan, TCAUP

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced** **Rational Approach**

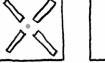
2. Find the net area, A_n , and Moment of Inertia, I_n (see NCMA TEK 14-1B)

	Grout	Mortar	Net cros	s-sectional p	propertiesA
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
100% sol	id/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Table 3—8-inch (203-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

Rational Approach

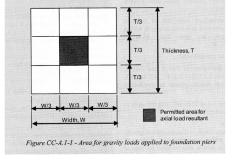
Reinforced Masonry Analysis for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**


3. Calculate r = \sqrt{I}/A	TEK 14 - 1B $8''$ SINGLE WYTHE HOLLOW BLOCK - GROUTE 24" a.c FACE SHELL MORTHR $A_n = 51.3 \text{ m}^2$ $I_n = 355.3 \text{ m}^4$ (NET)
4. Calculate h/r	$r = \sqrt{\frac{1}{A}} = \sqrt{\frac{355.3}{51.3}} = 1.952 \text{ m}$ $h_{\mu}^{h} = \frac{12'(12)}{1.952} = 73.75 < 99 \therefore \text{ EQ} \text{ (1)}$
5. Choose the axial strength equation If $h/r < 99$ use TMS 402 eq.9-17 If $h/r > 99$ use TMS 402 eq.9-12	(Equation 9-11) for $h/r < 99$
University of Michigan, TCAUP	Structures II Slide 23 of 46
Reinforced Masonry Analy for axial compression using TMS 402 Strength Design – non-reinforced	
for axial compression using TMS 402	(2016) (Equation 9-11) for h/r < 99

Lateral Force Resistance

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab


University of Michigan, TCAUP

Structures II

Slide 25 of 46

Empirical Approach

TMS 402-16 Tab. CC A.1.1 Checklist for use of empirical design

COMMENTARY

Table CC-A.1.1 — Checklist for use of Appendix A – Empirical Design of Masonry

1.	Risk Category IV structures, o	Risk Category IV structures, or portions thereof, are not permitted to be designed using Appendix A.						
2.	Partitions are not permitted to be designed using Appendix A.							
3.	Use of empirical design is limited based on Seismic Design Category, as described in the following table.							
	Seismic Design Category	Participating Walls	Non-Participating Walls, except partition walls					
	A	Allowed by Appendix A	Allowed by Appendix A					
	В	Not Allowed	Allowed by Appendix A					
	C	Not Allowed	With prescriptive reinforcement per 7.4.3.1 ¹					
	D, E, and F	Not Allowed	Not Allowed					
	¹ Lap splices are required to be	e designed and detailed in accord	ance with the requirements of Chapters 8 or 9.					
4.	Use of empirical design is lim Code Table A.1.1.	ited based on wind speed at the p	roject site, as described in Code A.1.2.3 and					
5.	If wind uplift on roofs result in	n net tension, empirical design is	not permitted (A.8.3.1).					
6.	Loads used in the design of ma	asonry must be listed on the desig	gn drawings (1.2.1b).					
7.	Details of anchorage to structu	ral frames must be included in th	ne design drawings (1.2.1e).					
8.	The design is required to inclu include the locations and sizin	de provisions for volume change g of expansion, control, and isola	(1.2.1h). The design drawings are required to tion joints.					
9.	interconnecting forces and to a	accommodate deflections (4.4).	walls are required to be designed to resist the erior walls that receive wind load and are					
	supported by or are supporting							
10.	Masonry not laid in running be reinforcement (4.5).	ond (for example, stack bond mas	sonry) is required to have horizontal					
11.	A project quality assurance plan is required (3.1) with minimum requirements given in TMS 602 Tables 3 and 4 for Quality Assurance Level 1.							
12.	The resultant of gravity loads and piers (A.1.2.1).	The resultant of gravity loads must be determined and assured to be located within certain limitations for walls and piers (A.1.2.1).						
13.	Ensure compliance of the design with prescriptive floor, roof, and wall-to-structural framing anchorage requirements, as well as other anchorage requirements (A.8.3 and A.8.4).							
14.	Type N mortar is not permitted for foundation walls (A.6.3.1(g)).							
15	Design shear wall lengths spacings and orientations to meet the requirements of Code A.3.1.							

TMS 402 - 2016 15. Design shear wall lengths, spacings, and orientations to meet the requirements of Code A.3.1.

University of Michigan, TCAUP

Empirical Approach


Wind limitations:

Basic wind speed \leq 115 mph (see TMS 402-16 Tab. A.1.1)

Seismic limitations:

Can generally be used for Seismic Design Category (SDC) A, B, or C, or only A if part of the seismic lateral force resisting system.

Slide 27 of 46

Empirical Design of Masonry TMS 402-16

Height limits by wind speed and application

Table A.1.1 Limitations based of	n building height an	d basic wind speed
Table A.I.I Limitations based of	in building neight un	a busic wind opeca

			Basic Wind Spo	eed, mph (mps)	L
Element Description	Building Height, ft (m)	Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less		Permitted		Not Permitted
	Over 180 (55)		Not Pe	ermitted	
Interior masonry loadbearing elements that are not part of the	Over 60 (18) and less than or equal to 180 (55)	Permitted Not Permitted			
lateral-force-resisting system in buildings other than enclosed as defined by ASCE 7	Over 35 (11) and less than or equal to 60 (18)	Permitted Not Permit		ermitted	
化结合合金 化合金合金 化合金 化	35 (11) and less	Apple Apple a constraint 2006	Permitted	1 549	Not Permitted
A MARE A TOP OF A TOP OF A MARE A TOP OF A TOP OF A MARE A TOP OF A MARE A MARE A MARE	Over 180 (55)	11 0001 0001 121 1001 20. deals start 121 1001 20. deals start 121 start	Not Pe	ermitted	
Exterior masonry elements that are not part of the lateral-force-resisting	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
system with the strategies of	Over 35 (11) and less than or equal to 60 (18)	Pern	nitted	Not Pe	ermitted
Exterior masonry elements	35 (11) and less		Permitted		Not Permitted

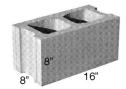
¹Basic wind speed as given in ASCE 7

Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.5.1) International Building Code (IBC) Limitations:

- 1. Lateral support requirements
- 2. Location of gravity load (in middle 1/3 of wall)
- 3. Maximum unreinforced spans

Table 2—Wall Lateral Support	Table 3—Maximur	n Unreinf	orced Wa	ll Spans, f	ft (m) ^A	
	Maximum wall length-to	Wall thickness, in. (mr	m) 6 (152)	8 (203)	10 (254)	12 (305)
	thickness or height-to	Bearing walls				
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted	10 (3.0) ^B	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing walls		All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls				
All others	18	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ^C				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4					. 11
Parapets (8-in. (203-mm) thick min.)) ^B 3	^A Note that Ref. 6 inc with openings.	ludes moo	infied requ	irements 1	or walls
A Ratios are determined using nomir	al dimensions. For multi-	^B Unreinforced 6-in. (1	52-mm) th	nick bearin	g walls ar	e limited
wythe walls where wythes are bor	nded by masonry headers,	to one story in height	t.			
the thickness is the nominal wall thi	ckness. When multiwythe	^C For these cases, span	s are maxi	mum wall	heights.	
walls are bonded by metal wall ti						
as the sum of the wythe thickness						
includes modified requirements for						
^B The ratios are maximum height-t	o-thickness ratios and do					
not limit wall length.						
University of Michigan, TCAUP	Stru	uctures II			Slide 29 of	46

Masonry Strength


Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Co of Clay Masor	f'm For Net Area Compressive	
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	f'm For Net Area		
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)	
1,250	1,300	1,000	
1,900	2,150	1,500	
2,800	3,050	2,000	
3,750	4,050	2,500	
4,800	5,250	3,000	

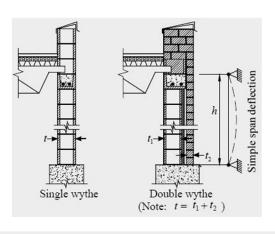
(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

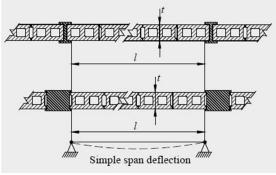
Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.4.2)

Allowable compressive stress of concrete masonry:

Solid or solidly grouted walls

Hollow unit walls


Table 4—Allowable Compressive Stress for Empirical Design of Masonry				Allowable compre	
Empirical Desi	Empirical Design of Masonry			based on gross cr	(MPa) ^A
Al	lowable compre	essive stresses	Gross area compressive		
	based on gross c		strength of unit, psi (MP		mortar
		i (MPa) ^A			
Gross area compressive	Type M or S		Hollow Unit Masonry (ith ASTM
strength of unit, psi (MPa)	mortar	mortar	C 90-06 or Later) (ref. (
strength of thirt, psi (Mira)	moran	mortai	Hollow loadbearing CMU		
Solid and Solidly Grouted M	Jaconey (pofe 1	1.6.	2,000 (14) or greate	r 140 (0.97)	120 (0.83
Solid concrete brick:	Tasoni y (reis. 1	L, U).	1,500 (10)	115 (0.79)	100 (0.69
	350 (2.41)	300 (2.07)	1,000 (6.9)	75 (0.52)	70 (0.48
8,000 (55) or greater	. ,		700 (4.8)	60 (0.41)	55 (0.38
4,500 (31)	225 (1.55) 200 (1.38)		Hollow loadbearing CMU, 8 in. $< t < 12$ in. (203 to 30		
2,500 (17)	160 (1.10)	140 (0.97)	2,000 (14) or greate		110 (0.76
1,500 (10)	115 (0.79)	100 (0.69)	1.500 (10)	105 (0.72)	90 (0.62
Grouted concrete masonry:	005 (1.55)	200 (1.20)	1,000 (6.9)	65 (0.49)	60 (0.41
4,500 (31) or greater	225 (1.55)	200 (1.38)	700 (4.8)	55 (0.38)	50 (0.35
2,500 (17)	160 (1.10)	140 (0.97)	Hollow loadbearing CMU		
1,500 (10)	115 (0.79)	100 (0.69)	2,000 (14) or greate		100 (0.69
Solid concrete masonry units:			1,500 (10)	95 (0.66)	85 (0.59
3,000 (21) or greater	225 (1.55)	200 (1.38)			
2,000 (14)	160 (1.10)	140 (0.97)	1,000 (6.9)	60 (0.41)	55 (0.38
1,200 (8.3)	115 (0.79)	100 (0.69)	700 (4.8)	50 (0.35)	45 (0.31
Hollow walls (noncomposite :	masonry bonded	d ^B):	Hollow walls (noncompo		
Solid units:			$t \le 8 \text{ in.} (203 \text{ mm})^{\text{D}}$		70 (0.48
2,500 (17) or greater	160 (1.10)	140 (0.97)	8 < t < 12 in (203 to 3)		65 (0.45
1,500 (10)	115 (0.79)	100 (0.69)	$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{L}}$	60 (0.41)	55 (0.38
University of Michigan, TCAUP		Str	tures II	Slide	31 of 46


Empirical Concrete Masonry

Procedure using TMS 402 - 2016

Given: location, geometry, material Find: strength (load capacity)

- 1. Check axial loading must be within middle 1/3
- Check seismic category to be A, B, or C, or only A if part of the seismic lateral force resisting system.
- 3. Check wind speed (ASCE-7 2016) compare with Tab. A.1.1
- 4. Check minimum thickness.1 story = 6" min. 2 story = 8" min.
- Check lateral support (vertical or horizontal) tables 2 and 3 TEK 14-8B or TMS 402 – Tab. A.5.1
- Determine allowable compressive stress from table 4 TEK 14-8B or TMS 402 – Tab. A.4.2
- 7. Allowable load = (stress) (gross area)

 $P = F \times A_{o}$

Empirical Design Example

Given:

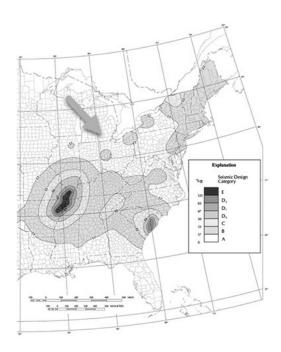
8" hollow non-reinforced CMU wall interior wall, Ann Arbor, Mich. DL = 150 psf

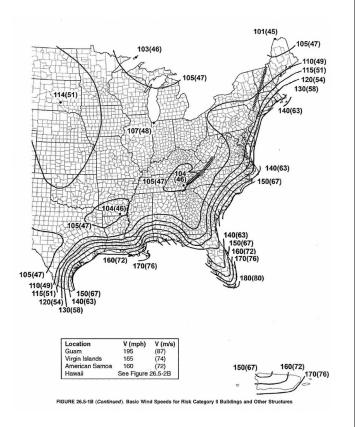
Find: LL capacity

Checks:

Axially loaded : loaded within middle 1/3 (kern)

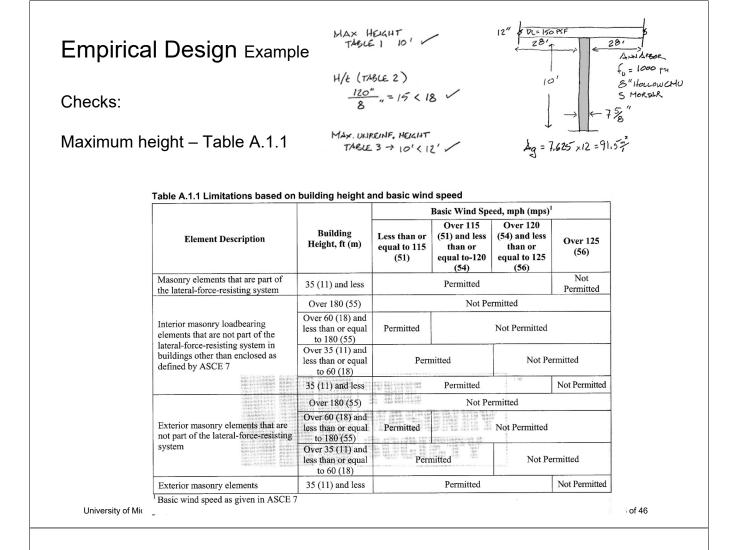
Seismic Category: A, B, or C , or only A if part of the seismic lateral force resisting system


Wind:


less that 115 mph (ASCE 7 - 2016)

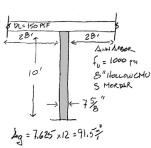
```
University of Michigan, TCAUP
```

Wind and Seismic Limits


Wind for Ann Arbor – 107 mph SCD for Ann Arbor - Zones A

Structures II

Slide 33 of 46

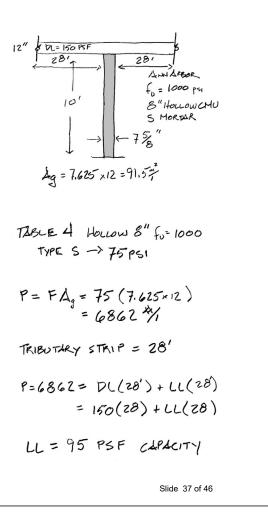

Empirical Design Example

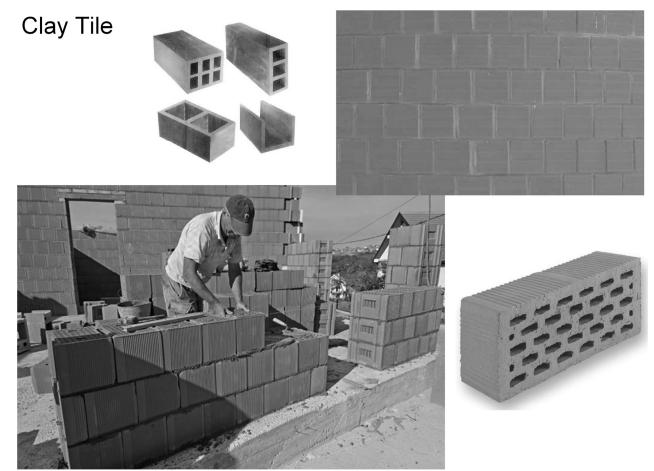
Checks:

Minimum bracing - table 2

Maximum unreinforced height - table 3

MAX HEIGHT TABLE 1 10' H/E (TABLE 2) <u>120"</u> = 15 < 18 ✓ MAX. UNREINF. HEIGHT TABLE 3 -> 10' < 12'

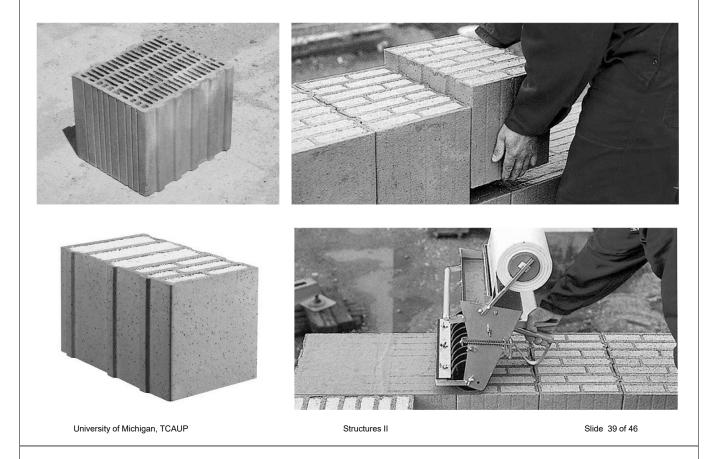

Table 2—Wall Lateral Support	Table 3—Maximum Unreinforced Wall Spans, ft (m) ^A					
	Maximum wall length-to thickness or height-to	Wall thickness, in. (m Bearing walls	n) 6 (152)	8 (203)	10 (254)	12 (305)
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted	10 (3.0) ^B	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing walls		All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls				
All others	18	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ^C				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow Parapets (8-in. (203-mm) thick min.)	в 4 3	^A Note that Ref. 6 inc with openings.	ludes moo	lified requ	irements f	or walls


Empirical Design Example

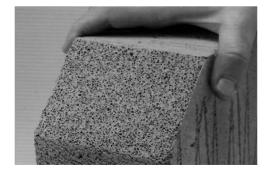
Find allowable stress – table 4

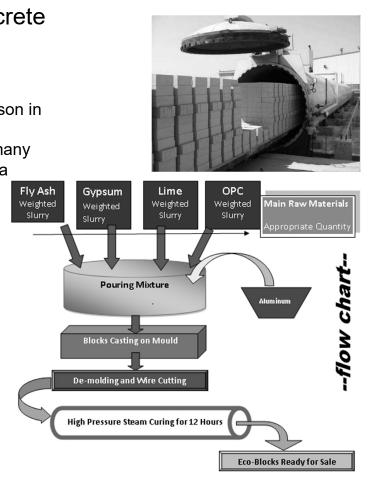
Find load P = F Ag

Hollow Unit Masonry (Units C 90-06 or Later) (ref. 6) ^C : Hollow loadbearing CMU, $t \le$ 2,000 (14) or greater	Type M or S	Type N
C 90-06 or Later) (ref. 6) ^C : Hollow loadbearing CMU, $t \leq 1$	Type M or S	Type N
Hollow loadbearing CMU, $t \leq$	8 in mortar	
		mortar
1,500 (10)	115 (0.79)	100 (0.69)
1,000 (6.9)	75 (0.52)	70 (0.48)
700 (4.8)		55 (0.38)
Hollow loadbearing CMU, 8 in.		
2,000 (14) or greater	125 (0.86)	110 (0.76)
1,500 (10)	105 (0.72)	90 (0.62)
1,000 (6.9)	65 (0.49)	60 (0.41)
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU, $t \ge$	12 in (305 mm) ^D :
2,000 (14) or greater	115 (0.79)	100 (0.69)
1,500 (10)	95 (0.66)	85 (0.59)
1,000 (6.9)	60 (0.41)	55 (0.38)
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposite r	nasonry bonded	d ^B):
$t \le 8 \text{ in.} (203 \text{ mm})^{D}$		70 (0.48)
8 < t < 12 in (203 to 305 mm	n) ^D 70 (0.48)	65 (0.45)
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	



University of Michigan, TCAUP


Structures II


Insulated Clay Tile

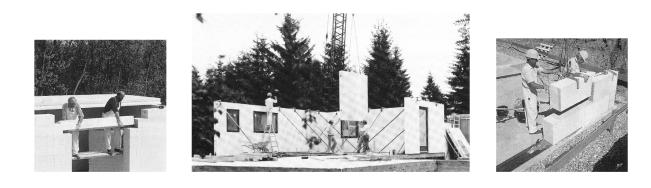
Autoclaved Aeriated Concrete (AAC)

Used predominately in Europe Developed by Dr. Johan Axel Eriksson in mid- 1920s in Sweden as "Ytong" since 1943, Hebel blocks in Germany Current largest production in China Lighter weight Better insulation value Better fire resistance Better moisture transmission Larger blocks for faster erection Can be shaped on site

University of Michigan, TCAUP

Slide 40 of 46

Autoclaved Aeriated Concrete (AAC)


Density – 20 to 50 PCF (floats)

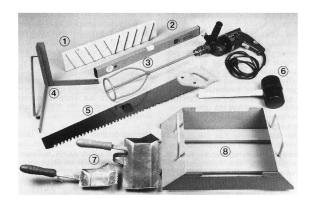
Compressive strength – 300 to 900 PSI

Allowable Shear Stress – 8 to 22 PSI

Thermal Resistance - 0.8 to 1.25 R/ IN

University of Michigan, TCAUP

Structures II

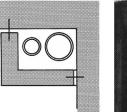

Slide 41 of 46

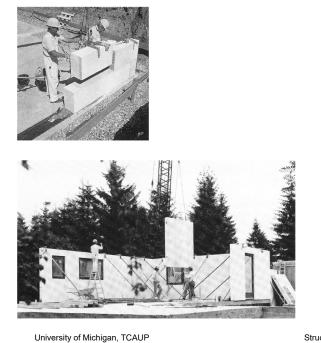
Autoclaved Aeriated Concrete (AAC)

Easily shaped on site

Thin mortar bed - 1/8" (1mm to 3mm)

Tools for placement (below)





Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup – e.g. 8"x8"x24"

Panel layup with onsite crane

3"x24"			
	Clay block 32 blocks / m2 9.4" x 4.4"	Konventionelles Mauerverk: 32 Steine 2 DF/3 DF für 1 m ² Wa Steinmaß 240 mm x 113 mm x d	
	AAC block	Porenbeton-Plansteine: 8 Steine pro 1 m ² Wand;	
	8 blocks / m2 19.6" x 9.8"	Steinmaß 499 mm x 249 mm x d	
	AAC panel 1.6 panels / m2 39.3" x 24.5"	Porenbeton-Planelemente: 1,6 Steine pro 1 m ² Wand; Steinmaß 999 mm x 623 mm x d	
Structures II			Slide 43 of 46

Autoclaved Aeriated Concrete (AAC)

Finish with stucco

Abb. 2.4.4-1 Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-3 Auftrag der Deckschicht

Abb. 2.4.4-2 Auftrag des Grundputzes von Hand

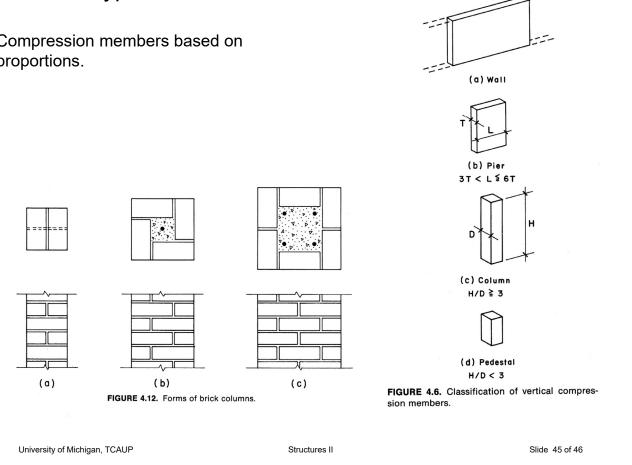
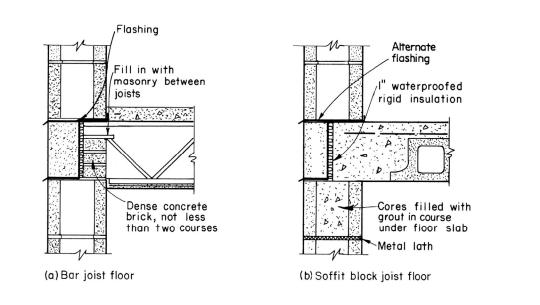


Abb. 2.4.4-4 Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe


Member Types

Compression members based on proportions.

Member Details

Floor / Column details.

