Masonry

- Clay Masonry
- Concrete Masonry
- Autoclaved Aerated Concrete (AAC)

Höchst Entrance Hall, Frankfurt Arch: Peter Behrens, 1920-24 Photo: Eva Kröcher

University of Michigan, TCAUP

Structures II

Slide 1 of 46

Clay Brick

- Molded
 - or
- Extruded
- Cored adds stability, strength cored < 25% > hollow
- Fired (2000° F)
- Sizes use 3/8" mortar bed
- Six ways to position in wall:

3/8" Mortar Joint Between Bricks (Most Common)

BRICK TYPE	SPECIFIED SIZE D X H X L (INCHES)	NOMINAL SIZE D X H X L	VERTICAL COURSE
Standard	3 5/8 × 2 1/4 × 8	Not modular	3 courses = 8"
Modular	3 5/8 × 2 1/4 × 7 5/8	4 × 2 2/3 × 8	3 courses = 8"
Norman	3 5/8 × 2 1/4 × 11 5/8	4 × 2 2/3 × 12	3 courses = 8"
Roman	3 5/8 × 1 5/8 × 11 5/8	4 × 2 × 12	1 course = 2"
Jumbo	3 5/8 × 2 3/4 × 8	4 × 3 × 8	1 course = 3"
Economy	3 5/8 × 3 5/8 × 7 5/8	$4 \times 4 \times 8$	1 course = 4"
Engineer	3 5/8 × 2 13/16 × 7 5/8	4×31/5×8	5 courses = 16"
King	2 3/4 × 2 5/8 × 9 5/8	Not modular	5 courses = 16"
Queen	2 3/4 × 2 3/4 × 7 5/8	Not modular	5 courses = 16"
Utility	3 5/8 × 3 5/8 × 11 5/8	$4 \times 4 \times 12$	1 course = 4"

University of Michigan, TCAUP

Structures II

Slide 2 of 46

Concrete Masonry Units (CMU) wall construction

University of Michigan, TCAUP

Structures II

Slide 5 of 46

Concrete Masonry Units (CMU)

wall sections

These wall sections are not intended to be complete. They exclude floor, wall, and ceiling finishes, trim, etc. They attempt to illustrate how various floor and roof systems are supported by a concrete block bearing wall. The above grade wall is literally an extension of the concrete block foundation wall system. Note that the edges of floor and roof planes are not visible from the exterior except at the top of the concrete block wall. All vertical dimensions should be modular, especially is the block is left exposed as the wall finish

Concrete Masonry Units (CMU)

- **Geometric Properties** ٠
- NCMA TEK 14-1B
- Radius of gyration, $r = \sqrt{\frac{I}{A}}$ ٠

	Grout Mortar Net cross-sectional properties ^A					
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)	
Hollow	No grout	Face shell	30.0	308.7	81.0	
Hollow	No grout	Full	41.5	334.0	87.6	
100% sol	id/solidly grouted	Full	91.5	443.3	116.3	
(Hollow	16	Face shell	62.0	378.6	99.3	
Hollow	24	Face shell	51.3	355.3	93.2	
Hollow	32	Face shell	46.0	343.7	90.1	
Hollow	40	Face shell	42.8	336.7	88.3	
Hollow	48	Face shell	40.7	332.0	87.1	
Hollow	72	Face shell	37.1	324.3	85.0	
Hollow	96	Face shell	35.3	320.4	84.0	
Hollow	120	Face shell	34.3	318.0	83.4	
						_

8-inch (203-mm) Single Wythe Walls 11/, in (32 mm) Face Shells (standard)

Concrete Masonry Units (CMU)

Reinforcing •

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

M	а	S	0	N	w	Ō	r	K
stronge	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type		
Location	Building segment	Recommended	Alternative	
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N OM N	S or M N or S S	
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	Sţ	M or N†	
Interior	Load-bearing walls Non-load-bearing partitions	- N - 0	S or M N	

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chirmey, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. †Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Relative Parts by Volume

mortar type	Portland cement	lime	sand
	1 1 1	$ \begin{bmatrix} 1_4 \\ 1_2 \\ \hline 1_1 \\ \hline 2 \end{bmatrix} $	3 ¹ 2 4 ¹ 2 6 9

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

WALL

Required Net Area C of Clay Masor	f'm		
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)	
1,700	2,100	1,000 .	
3,350	4,150	1,500	
4,950	6,200	2,000	
6,600	8,250	2,500	
8,250	10,300	3,000	
9,900		3,500	
11,500		4,000	

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	f'm For Net Area	
When Used With Type M or S Mortar	When Used With When Used With ype M or S Mortar Type N Mortar	
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Constructive Properties

Property		Clay Masonry	Concrete Masonry	
Unit strength	fu	<u>8000 psi</u>	2 <u>000</u> psi	
Type N mortar	f'_m	<u>2440 psi</u>	1750 psi	
Type in mortai	E_m .	1.70x10 ⁶ psi	1.58x10 ⁶ psi	
Type Mor Smorter	f'_m	2920 psi	2000 psi	
	E_m	2.05x10 ⁶ psi	1.80x10 ⁶ psi	

Typical Values

Property	Clay Masonry	Concrete Masonry
Modulus of Elasticity, E_m	$700 f_m'$	$900f'_m$
Shear Modulus, <u>G</u>	$0.4E_m$	$0.4E_m$
Coefficient of Creep	$\frac{0.7 \ x 10^{-7}}{psi}$	$\frac{2.5x10^{-7}}{psi}$

University of Michigan, TCAUP

Structures II

Slide 15 of 46

Analysis and Design

Empirical approach

based on experience limits on lateral loading limits on height limits on eccentricity (basically no flexure) non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

		-
Required Net Area Co of Clay Masor	(f'm) For Net Area	
When Used With Type M or S Mortar	Strength of Masonry (psi)	
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	f'm For Net Area	
When Used WithWhen Used WithType M or S MortarType N Mortar		Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Reinforced Masonry Analysis

Rational Approach

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced** **Rational Approach**

Section Properties of Concrete Masonry Walls NCMA TEK 14 – 1B $\sqrt{\frac{1}{4}} = C$

Table 3—8-inch (203-mm) Single Wythe Walls, 1 ¹ / ₄ in. (32-m	m) Fac	e Shells (standard)
---	--------	---------------------

	3a: Horizontal Section Properties (Masonry Spanning Vertically)						
		Grout	Mortar	_Net cros	s-sectional p	properties ^A	
	Unit	spacing (in.)	bedding	(A_n) in. ² /ft)	(I_n) in. ⁴ /ft)	S_n (in. ³ /ft)	
A	Hollow	No grout	Face shell	30.0	308.7	81.0	
B	Hollow	No grout	Full	41.5	334.0	87.6	
$\langle \mathbf{D} \rangle$	E 00% so	lid/solidly grouted	Full	91.5	443.3	116.3	
С	Hollow	16 o.c.	Face shell	62.0	378.6	99.3	
1	Hollow	24	Face shell	51.3	355.3	93.2	
	Hollow	32	Face shell	46.0	343.7	90.1	
	Hollow	40	Face shell	42.8	336.7	88.3	
	Hollow	48	Face shell	40.7	332.0	87.1	
	Hollow	72	Face shell	37.1	324.3	85.0	
	Hollow	96	Face shell	35.3	320.4	84.0	
+	Hollow	120	Face shell	34.3	318.0	83.4	

University of Michigan, TCAUP

Reinforced Masonry Analysis

Rational Approach

- for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**
- 2. Find the net area, A_n , and Moment of Inertia, I_n (see NCMA TEK 14-1B)

3a: Horizontal Section Properties (Masonry Spanning Vertically)					
	Grout	Mortar	Net cros	ss-sectional p	propertiesA
Unit	spacing (in.)	bedding	$(\overline{A_n})$ in. ² /ft)	$(I_n)(in.4/ft)$	S_n (in. ³ /ft)
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
100% so	lid/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	(24)	Face shell	(51.3)	(355.3)	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Table 3—8-inch (203-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

Rational Approach

Reinforced Masonry Analysis for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

3. Calculate r = \sqrt{I}/A	TEK 14 - 1B δ'' SINGLE WYTHE HOLLOW BLOCK - GROUTE 24" o.c FACE SHELL MORTAR $A_n = 51.3 \text{ m}^2$ $I_n = 355.3 \text{ m}^4$ (NET)
4. Calculate h/r	$r = \sqrt{\frac{1}{A}} = \sqrt{\frac{355.3}{51.3}} = \underbrace{1.952}_{i} \text{ in}$ $h_{f}' = \frac{12'(12)^{4}}{1.952} = \underbrace{73.75}_{i} < 99 i. \text{ EQ} \text{ ()}$
5. Choose the axial strength equation of $\frac{ h _r < 99 }{ h _r < 99 }$ use TMS 402 eq.9-1 If $\frac{ h _r < 99 }{ h _r > 99 }$ use TMS 402 eq.9-1	on, Pn: 1 2 $P_n = 0.80 \left\{ 0.80 \underline{A}_n f'_m \left[1 - \left(\frac{h}{140 p} \right)^2 \right] \right\}$
University of Michigan, TCAUP	Structures II Slide 23 of 46
Reinforced Masonry Analy for axial compression using TMS 402 Strength Design – non-reinforced	(Sis (2016) (Equation 9-11) for h/r < 99 $P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$
Reinforced Masonry Analy for axial compression using TMS 402 Strength Design – non-reinforced 6. Calculate øPn where ø for axial force = 0.90	(Sis 2 (2016) (Equation 9-11) for h/r < 99 $P_{n} = 0.80 \left\{ 0.80 A_{n} f'_{m} \left[1 - \left(\frac{h}{140r} \right)^{2} \right] \right\}$ $P_{n} = 0.8 \left[0.8 A_{n} f'_{m} \left(1 - \left(\frac{h}{140r} \right)^{2} \right) \right]$ $P_{n} = 0.8 \left[0.8 (51.3)(3)(1 - \left(\frac{144.5}{140r} \right)^{2} \right) \right]$ $P_{n} = 0.8 \left[0.8 (51.3)(3)(1 - \left(\frac{144.5}{140(1.952)} \right)^{2} \right) \right]$ $P_{n} = 0.8 \left[123.12 - 0.7223 \right] = 71.4 \frac{k}{2} P_{rr}$ $\varphi P_{n} = 0.9 (71.4) = 64 \frac{k}{2}$

Lateral Force Resistance

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab

University of Michigan, TCAUP

Structures II

Slide 25 of 46

Empirical Approach

TMS 402-16 Tab. CC A.1.1 Checklist for use of empirical design

COMMENTARY

University of Michigan, TCAUP

Empirical Approach

Wind limitations:

Basic wind speed ≤ 115 mph (see TMS 402-16 Tab. A.1.1)

Seismic limitations:

Can generally be used for Seismic Design Category (SDC) A, B, or C, or only A if part of the seismic lateral force resisting system.

Slide 27 of 46

Empirical Design of Masonry TMS 402-16

Height limits by wind speed and application

]	Basic Wind Spe	eed, mph mps)1	
Element Description	Building Height <u>, ft (m</u>)	Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over <u>120</u> (54) and less than or equal to 125 (56)	Over <u>125</u> (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less	V	Permitted		Not Permitted
	Over 180 (55)	X	Not Pe	rmitted	
Interior masonry loadbearing elements that are not part of the	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
buildings other than enclosed as defined by ASCE 7	Over $\underline{35}$ (11) and less than or equal to 60 (18)	Pern	nitted 🖌	Not Pe	mitted
1993年1月1日日,1993年1月1日日,1993年1月1日 1月1日日(日本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	35 (11) and less	And a second sec	Permitted	1.581	Not Permitted
の構成した。 の構成したが、の目的での の構成したが、日本のの の構成したが、日本のの の構成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの に成成したが、日本のの にのの にのの にのの にのの にのの にのの にのの	Over (180 (\$5)	X	Not Pe	rmitted	
Exterior masonry elements that are not part of the lateral-force-resisting	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
system of the response of the system of the	Over 35 (11) and less than or equal to 60 (18)	V Perm	aitted	Not Pe	rmitted
Exterior masonry elements	35 (11) and less	-	Permitted		Not Permitted
Basic wind speed as given in ASCE 7					1

Table A.1.1 Limitations based on building height and basic wind speed

¹Basic wind speed as given in ASCE 7

Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.5.1) International Building Code (IBC) Limitations:

- 1. Lateral support requirements
- 2. Location of gravity load (in middle 1/3 of wall)
- 3. Maximum unreinforced spans

Table 2—Wall Lateral Support I	Requirements (ref. 1)	Table 3—Maximur	n <u>U</u> nreinf	orced Wal	l Spans, f	ît (m) ^A
1	Maximum wall length-to	Wall thickness, in. (mr	n) 6 (152)	(8)(203)	10 (254)	12 (305)
	thickness or height-to	Bearing walls		$\smile_{_{1}}$		
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted	10 (3.0) ^B	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing walls	h/t	All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls		•		
All others	18	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	- 18	Cantilever Walls ^C		_		
Interior •	- 36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	~ 6	Parapets ^C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4	ANT A A D C C	1.1			11
Parapets (8-in. (203-mm) thick min.) ¹	в 3	with openings.	ludes moc	unea requi	rements 1	or walls
A Ratios are determined using nomin	al dimensions. For multi-	^B Unreinforced 6-in. (1	52-mm) tl	nick bearin	g walls ar	e limited
wythe walls where wythes are bon	ded by masonry headers,	to one story in height	t.			
the thickness is the nominal wall thic	ckness. When multiwythe	^C For these cases, span	s are maxi	mum wall	heights.	
walls are bonded by metal wall tie	es, the thickness is taken					
as the sum of the wythe thicknesse	es. Note that Reference 6					
includes modified requirements for	r walls with openings.					
^B The ratios are maximum height-to	o-thickness ratios and do					
not limit wall length.					0	10
University of Michigan, TCAUP	Stru	uctures II			Slide 29 of	46

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area C of Clay Masor	f'm For Net Area	
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	f'm For Net Area	
When Used With Type M or S Mortar	When Used With When Used With pe M or S Mortar Type N Mortar	
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.4.2)

Allowable compressive stress of concrete masonry:

Solid or solidly grouted walls

Hollow unit walls

Table 4—Allowable	Compressive Stre	ess for	1	Allowable compre	ssiv
Empirical Des	Empirical Design of Masonry			based on gross cr	ross
-	f'm			area, psi	(N
А	llowable compres	ssive stresses	Gross area compressive	Type M or S	
	based on gross cr	oss-sectional	strength of unit, psi (MPa)	mortar	
	area, psi	(MPa) ^A	Hellers Unit Meconer (Un	ite Completing M	7:41
Gross area compressive	Type M or S	Type N	Honow Unit Masonry (Un	its Complying w	IUI
strength of unit, psi (MPa)	mortar	mortar	C 90-06 of Later) (ref. 6)	· · · · · · · · · · · · · · · · · · ·).
£.,			Hollow loadbearing CMU, 7	$\leq 8 \text{ m.} (203 \text{ mm})^2$	
Solid and Solidly Grouted	Masonry (refs. 1.	. 6):	2,000 (14) or greater	140(0.97)	1
Solid concrete brick:			1,500 (10)	115(0.79)	1
8,000 (55) or greater	350 (2.41)	300 (2.07)	1,000 (6.9)	75 (0.52)	
4,500 (31)	225 (1.55)	200 (1.38)	700 (4.8)	60 (0.41)	
2,500 (17)	160 (1.10)	140 (0.97)	Hollow loadbearing CMU, 8	m. < t < 12 m. (203)	to
1,500 (10)	115 (0.79)	100 (0.69)	2,000 (14) or greater	125 (0.86)	1
Grouted concrete masonry:			1,500 (10)	105 (0.72)	
4,500 (31) or greater	225 (1.55)	200 (1.38)	1,000 (6.9)	65 (0.49)	
2,500 (17)	160 (1.10)	140 (0.97)	700 (4.8)	55 (0.38)	
1,500 (10)	115 (0.79)	100 (0.69)	Hollow loadbearing CMU,	$t \ge 12$ in (305 mm)) ^D :
Solid concrete masonry units	s:		2,000 (14) or greater	115 (0.79)	1
3,000 (21) or greater	225 (1.55)	200 (1.38)	1,500 (10)	95 (0.66)	
2,000 (14)	160 (1.10)	140 (0.97)	1,000 (6.9)	60 (0.41)	
1,200 (8.3)	115 (0.79)	100 (0.69)	700 (4.8)	50 (0.35)	1
Hollow walls (noncomposite masonry bonded ^B):			Hollow walls (noncomposit	e masonry bonded	l ^B):
Solid units:			$t \le 8$ in. (203 mm) ^D	75 (0.52)	
2,500 (17) or greate	r 160 (1.10)	140 (0.97)	8 < t < 12 in (203 to 305)	mm) ^D 70 (0.48)	
1,500 (10)	115 (0.79)	100 (0.69)	$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	
University of Michigan, TCAUP		I Stru	l ctures II	Slide	31

Empirical Concrete Masonry

Procedure using TMS 402 - 2016

Given: location, geometry, material Find: strength (load capacity)

- Check axial loading must be within middle 1/3
- Check seismic category to be A, B, or C, or only A if part of the seismic lateral force resisting system.
- 3. Check wind speed (ASCE-7 2016) / compare with Tab. A.1.1
- 4. Check minimum thickness.
 1 story = 6" min. 2 story = 8" min.
- Check lateral support (vertical or horizontal) tables 2 and 3 TEK 14-8B / or TMS 402 – Tab. A.5.1
- 6. Determine allowable compressive stress from table 4 TEK 14-8B or TMS 402 Tab. A.4.2
- Allowable load = (stress) (gross area) (not LRFD so no γ factors)

 $P = F \times A_{\sigma}$

Empirical Design Example

Wind and Seismic Limits

Wind for Ann Arbor – 107 mph SCD for Ann Arbor - Zones A

Empirical Design Example

Checks:

Minimum bracing - table 2

Maximum unreinforced height - table 3

MAX HEIGHT TABLE 1 10' $\frac{H/t}{\frac{120^{\circ}}{8}} = 15 < 18$ MAX. UNREINF. HEIGHT TABLE 3 → 10'< 12'

Table 2—Wall Lateral Support	Table 3—Maximun	n Unreinf	orced Wa	ll Spans, f	t (m) ^A	
N/ Th	Maximum wall length-to thickness or height-to	Wall thickness, in. (mn Bearing walls	n) 6 (152)	8 (03)	10 (254)	12 (305)
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted	10 (3.0) ^B	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing <u>wal</u> ls	/	All other7	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20,	Nonbearing walls				
All others	[18]	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ^C				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4					
Parapets (8-in. (203-mm) thick min.)	в 3	with openings.	ludes mod	lified requ	irements f	or walls

Empirical Design Example

Find allowable stress – table 4

Find load P = F Ag

psi (Mpa)	psi (N	/lpa)
Hollow Unit Masonry (Uni	its Complying W	ith ASTM
C 90-06 or Later) (ref. 6) ^C :	Type M of S	Type N
Hollow loadbearing CMU, t	≤8 in mortar	mortar
2,000 (14) or greater	140 (0.97)	120 (0.83)
1,500 (10)	115 (0.79)	100 (0.69)
1,000 (6.9)	(75, (0.52)	70 (0.48)
700 (4.8)	60 (0.41)	55 (0.38)
Hollow loadbearing CMU, 8 i	n. $< t < 12$ in. (20)	3 to 305 mm) ^D
2,000 (14) or greater	125 (0.86)	110 (0.76)
1,500 (10)	105 (0.72)	90 (0.62)
1,000 (6.9)	65 (0.49)	60 (0.41)
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU, t	\geq 12 in (305 mm) ^D :
2,000 (14) or greater	115 (0.79)	100 (0.69)
1,500 (10)	95 (0.66)	85 (0.59)
1,000 (6.9)	60 (0.41)	55 (0.38)
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposite	e masonry bonde	d ^B):
$t \le 8$ in. $(203 \text{ mm})^{D}$	75 (0.52)	70 (0.48)
8 < t < 12 in (203 to 305 m	$mm)^{D}$ 70 (0.48)	65 (0.45)
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)

Structures II

Insulated Clay Tile

Autoclaved Aeriated Concrete (AAC)

Used predominately in Europe Developed by Dr. Johan Axel Eriksson in mid- 1920s in Sweden as "Ytong" since 1943, Hebel blocks in Germany Current largest production in China Lighter weight Better insulation value Better fire resistance Better moisture transmission Larger blocks for faster erection Can be shaped on site

University of Michigan, TCAUP

Slide 40 of 46

Autoclaved Aeriated Concrete (AAC)

Density – 20 to 50 PCF (floats)

Compressive strength - 300 to 900 PSI

Allowable Shear Stress - 8 to 22 PSI

Thermal Resistance - 0.8 to 1.25 R/ IN

University of Michigan, TCAUP

Structures II

Slide 41 of 46

Autoclaved Aeriated Concrete (AAC)

Easily shaped on site

Thin mortar bed - 1/8" (1mm to 3mm)

Tools for placement (below)

Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup – e.g. 8"x8"x24"

Panel layup with onsite crane

x24"			
	Clay block 32 blocks / m2 9.4" x 4.4"	Konventionelles Mauerwerk: 32 Steine 2 DF/3 DF für 1 m ² War Steinmaß 240 mm x 113 mm x d	la l
	AAC block	Porenbeton-Plansteine: 8 Steine pro 1 m ² Wand;	
	19.6" x 9.8"	Steinmas 499 mm x 249 mm x d	
	AAC panel 1.6 panels / m2	Porenbeton-Planelemente: 1,6 Steine pro 1 m ² Wand; Steinmaß 999 mm x 623 mm x d	

Autoclaved Aeriated Concrete (AAC)

Finish with stucco

University of Michigan, TCAUP

Abb. 2.4.4-1 Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-3 Auftrag der Deckschicht

Abb. 2.4.4-2 Auftrag des Grundputzes von Hand

Abb. 2.4.4-4 Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe

Member Types

Compression members based on proportions.

Member Details

Floor / Column details.

