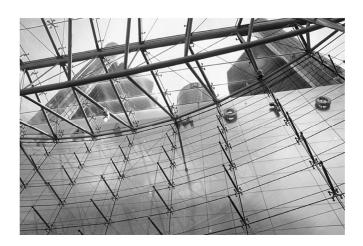
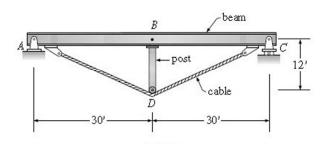
Pre- and Post-Tensioning

- Cable Trusses
- · Concrete Beams
- Stressed Membranes

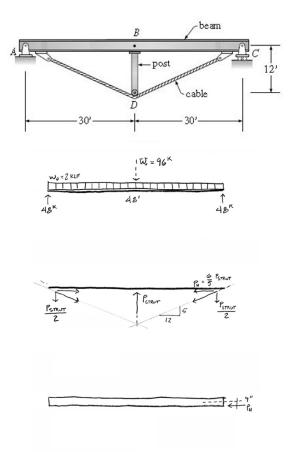



University of Michigan, TCAUP Structures II Slide 1 of 20

Cable Trusses

- · Reduce flexure stress
- Reduce deflection
- Produces stiffer section with less material
- · Lighter weight
- · Longer spans possible
- · Analysis by combined stress

$$f = -\frac{P}{A} \pm \frac{M}{S} \pm \left[\frac{Pe}{S} \right]$$



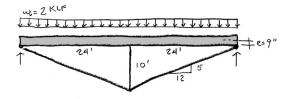
Slide 2 of 20

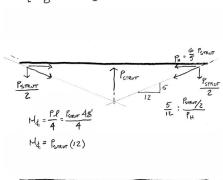
Cable Truss – stress analysis determine cable prestress

- 1. Break beam load into 3 FBDs.
 - 1. applied load
 - 2. cable + strut
 - 3. eccentric load (if any)
- 2. Solve moment for beam at the center line (C.L.) for applied load
- 3. Solve C.L. moments for other 2 FBDs in terms of strut force, Ps
- 4. Equate the moments from the three moment equations to cancel at the CL
- 5. Solve for the strut and cable forces.
- 6.Construct moment diagram for the beam with all loadings combined: applied load + cable at ends + struts.
- 7. Solve combined stress in beam using interaction equation.

University of Michigan, TCAUP

Structures II

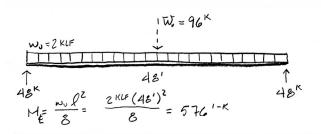

Slide 3 of 20

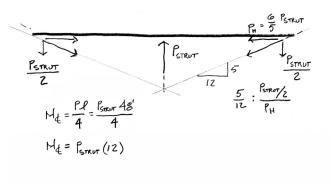

Cable Truss Analysis Example

Given: truss configuration with applied load

Required: force in the cable which will result in zero moment at the center line, C.L.

- 1. Divide the truss into 3 Free Body Diagrams:
 - 1. applied load
 - 2. cable + strut
 - 3. eccentric load (if any)

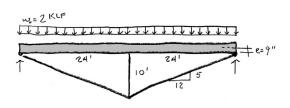


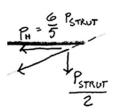

No=2 KLF

Cable Truss Analysis

2. Find the C.L. moment based on applied load alone.

- Find the C.L. moment for the cable and strut in terms of the strut force, P_{strut}. Write the components of the cable force in terms of P_{strut}
- Find the C.L. moment for the eccentric cable load in terms of P_{strut}

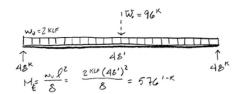

University of Michigan, TCAUP

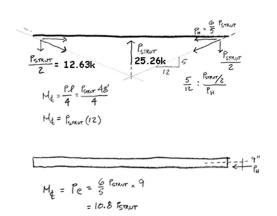

Structures II

Slide 5 of 20

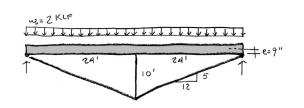
Cable Truss Analysis

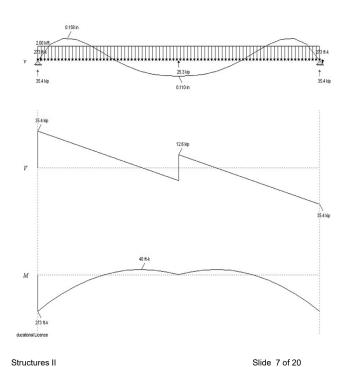
- Set the sum of the C.L. moments equal to zero and solve for the strut force, P_{strut}
- 6. Sum the cable components to find the total cable force.



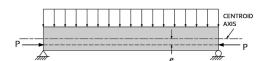

CSBUE FORCE

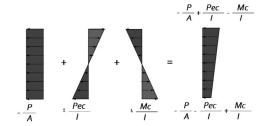
$$\sqrt{\left(\frac{6}{5}\left(\frac{1}{5}\text{TROT}\right)^2 + \left(\frac{1}{5}\text{TROT}\right)^2} = 32.84^{K}$$


Cable Truss Analysis

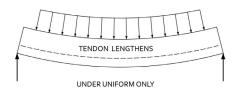

7.find end reactions and calculate shear & moment

University of Michigan, TCAUP





Pre-stressed Concrete


- More concrete active in resisting moment
- Produces stiffer section with less material
- Lighter weight
- Longer spans possible
- · Analysis by combined stress

$$f = -\frac{P}{A} \pm \frac{Pec}{I} \pm \frac{Mc}{I}$$

Pre-stressed Concrete

Steel:

high strength wires 250 or 270 ksi wire diameter 0.105 – 0.276 used in strands of bundled wire most common is 7 wire strand

Concrete:

higher strength 5 – 10 ksi to reduce creep and strain reduced cracking stiffer sections

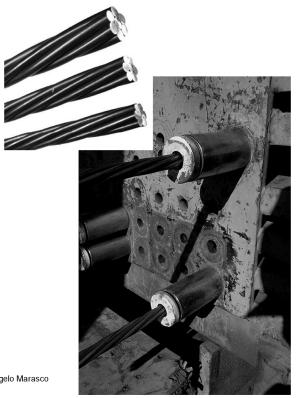


Photo by Angelo Marasco

University of Michigan, TCAUP Structures II Slide 9 of 20

Pre-stressed Concrete

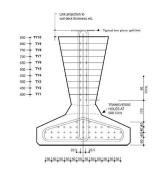
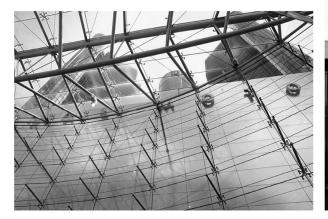


Photo by MACRETE

Schlaich Bergermann & Partners Neckarsulm, 1989

University of Michigan, TCAUP

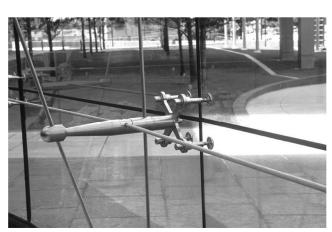
Structures II


Schlaich Bergermann & Partners History of Hamburg Museum

Stressed Membrane

Renaissance Center Entrance Pavilion Detroit 2004 SOM

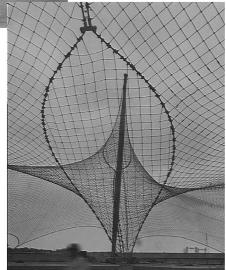
- Point supported glass
- "fish belly" cable truss bacing



University of Michigan, TCAUP Structures II Slide 13 of 20

Stressed Membrane

Renaissance Center Entrance Pavilion Detroit 2004 SOM


University of Michigan, TCAUP Structures II Slide 14 of 20

Expo '67, Montreal

Frei Otto German Pavilion

University of Michigan, TCAUP

Structures II

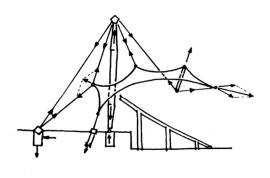
Slide 15 of 20

Institute for Lightweight Structures – IL (now ILEK)

University of Stuttgart

Frei Otto, IL building, University of Stuttgart

University of Michigan, TCAUP Structures II Slide 16 of 20


Stressed Membrane

Olympic Buildings, Munich 1972 Eng. Otto, Leonhardt, Schlaich Arch: Behnisch

- Opposing curvature
- Stressed by anchors and masts

University of Michigan, TCAUP Structures II Slide 17 of 20

Frei Otto, Munich Soccer Stadium (from back)

Stressed Membrane Olympic Stadium, Munich 1972

University of Michigan, TCAUP Structures II Slide 19 of 20

Bundesgartenschau Köln Frei Otto

