

WCLIB

WWPA

Allowable Stress Design by NDS Compression

:			ASD only		ASD and LRFD						ARED only					
			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
->	$F_b = F_b$	x	CD	См	$\underline{C_t}$	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
	$F_t = F_t$	x	CD	См	Ct	-	$C_{\rm F}$	-	C_i	-	-	-	-	K _F	φ _t	λ
	$\mathbf{F_v} = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\boldsymbol{\varphi}_{v}$	λ
BELRING	$F_{c\perp} = F_{c\perp}$	x	-	См	Ct	-	-	-	Ci	-	-	-	Сь	K _F	φ _c	λ
COLUMN	$F_c = F_c$	x	CD	См	Ct	-	C _F	-	Ci	-	Ср	-	-	K _F	φ _e	λ
	E'=E	x	-	См	Ct	-	-	-	C_i	-	-	-	-	-	-	-
	$E_{min} = E_{min}$	x	-	См	Ct	-	-	-	Ci	-	-	C_{T}	-	K _F	φs	-

/ lajaot	mont		10		Table <u>2.3.2</u>	Frequent Duration	ly Used Load Factors, C ₋ 1
Allowable	e Flexu	re Stres	s F _b '				
F. from tab	les deterr	nined by s	species and	grade	Load Duration	C _D	Typical Design Loads
b non tab		initiou by c	speciec and	grado	Permanent	1 0.9 -	Dead Load
$\mathbf{E}_{i}^{\prime} = \mathbf{E}_{i}^{\prime} (\mathbf{C}_{i})$	0.0.0		C) 71		Ten years	1.0 -	 Occupancy Live Load
			$\left\{ \mathbf{O}_{\mathbf{r}} \right\} \subset \left\{ \mathbf{O}_{\mathbf{r}} \right\}$		Two months	1.15	Snow Load
			1		Seven days	1.25	Construction Load
Usage facto	ors for flex	ure:	.9		Ten minutes.	<u>1.6</u>	Wind/Earthquake Load
C-	Load Dur	ation Fac	tor		Impact ² ·	2.0	Impact Load
Ct	Temperat	ture Facto	or .	ALC.			
					(1) Actual stress	due	
					to (DL)		\leq (0.9) (Design value)
					(2) Actual stress	due	
					to (DL+(LL		\leq (1.0) (Design value)
					(3) Actual stress	due	
					to (DL+(WI)·	\leq (1.6) (Design value)
					(4) Actual stress	due	
able 2.3.3 Te	mperature Fac	ctor, Ct			to (DL+LL	+(SL)	$\leq (1.15)$ (Design value)
Pofeson on Design	In Comico				(5) Actual stress	due	
Values	Moisture _	[.0	C ₁	10500 -0 415000	to (DL+LL	+WL)	\leq (1.6) (Design value)
. E E	Conditions ¹	1 <u>5100°F</u>	100°F<15125°F	125°F<1≤150°F	(6) Actual stress	due	
E E and E	Dry	1.0	0.9	0.7	to (DL+SL	+WL)	\leq (1.6) (Design value)
Wet and dry service con	Wet aditions for sawn lumbe	1.0 er. structural glued land	0.7	0.5 d wood I-ioists, structural	(7) Actual stress	due	
composite lumber, wood 10.1.5 respectively.	d structural panels and	cross-laminated timbe	rare specified in 4.1.4, 5.1.	4, 7.1.4, 8.1.4, 9.3.3, and	to (DL+LL	+SL + WL)	\leq (1.6) (Design value)
2018 NDS			(
University of	Michigan, TCA	UP		Structu	ıres II		Slide 7 of 51

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \ \mathbf{C}_{M} \ \mathbf{C}_{t} \ \mathbf{C}_{L} \ \mathbf{C}_{F} \ \mathbf{C}_{fu} \ \mathbf{C}_{i} \ \mathbf{C}_{r} \right)$$

Usage factors for flexure: $\mathbf{C}_{\mathbf{M}}$ Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	We	et Service I	Factors,	См	
F _b	F_t	$F_{\rm v}$	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\tiny min}}$
0. <u>85</u> *	1.0.	0.97	0.67	0.8**	0.9
			_		

* when $(F_b)(C_E) \le 1.150$ psi, $C_M = \underline{1.0}$ ** when $(F_c)(C_E) \le \underline{750}$ psi, $C_M = 1.0$

		Size Factors,	C _F		
		F		Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	<u>2"</u> & 3"	4"		
	2", 3", & 4"	(1.5)	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10".	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
1 Stud	5" & 6"	1.0	1.0	1.0	1.0
•	8" & wider	Use No.3 Grade	tabulated design	values and size factor	rs
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
1	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP

Allowable Flexure Stress F_b'

F_b from NDS tables

$\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathsf{D}} \ \mathbf{C}_{\mathsf{M}} \ \mathbf{C}_{\mathsf{t}} \ \mathbf{C}_{\mathsf{L}} \ \mathbf{C}_{\mathsf{F}} \ \mathbf{C}_{\mathsf{fu}} \ \mathbf{C}_{\mathsf{i}} \ \mathbf{C}_{\mathsf{r}} \right)$

Usage factors for flexure:

 \mathbf{C}_{fu} Flat Use

 $\boldsymbol{C}_{\boldsymbol{r}}$ Repetitive Member Factor

Flat Use Factor, Cfu

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C _{fu}									
Width	Thickness (breadth)							
(depth)	2" & 3"	4"							
2" & 3" 4" 5" 6" 8" 10" & wider	1.0 1.1 1.1 <u>1.15</u> 1.15 1.2	1.0 1.05 <u>1.05</u> 1.05 1.1							

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP	Structures II	Slide 9 of 51

Adjustment Factors

Allowable Flexure Stress	F _h '
--------------------------	------------------

F_b from tables determined by species and grade

 ${\sf F}_{\sf b}{\,}' = {\sf F}_{\sf b}\,({\sf C}_{\sf D}\,{\sf C}_{\sf M}\,{\sf C}_{\sf t}\,{\sf C}_{\sf L}\,{\sf C}_{\sf F}\,{\sf C}_{\sf fu}\,{\sf C}_{\sf i}\,{\sf C}_{\sf r}\,)$

Usage factors for flexure: \mathbf{C}_{i} Incising Factor

Table 4.3.8	Incising Factors, C,					
Design Value	Ci					
E, E _{min}	0.95					
F_b, F_t, F_c, F_v	0.80					
F _{c1}	1.00					

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \, \mathbf{C}_{L} \, \mathbf{C}_{F} \, \mathbf{C}_{fu} \, \mathbf{C}_{i} \, \mathbf{C}_{r} \right)$$

Usage factors for flexure: C_L Beam Stability Factor

3.3.3 Beam Stability Factor, C_L

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4. $C_L = 1.0$ 3.3.3.3 When the compression edge of a bending

 $3.3.\overline{3.3}$ When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

University of Michigan, TCAUP

CL=1.0 -

4.4.1 Stability of Bending Members

4⊭4 Membe

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Structures II

Slide 11 of 51

υ _L	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2,24	2 to 1	None CL-1	
$C_L = 1.0$ for depth/width ratio in $4.4.1 C_L = 1.0$ Otherwise	^{3 to 1} 2x6 2x8 ¹	The ends of the beam should be held in position	END BLOCKING
C _L < 1.0 calculate factor using section 3.3.3	^{5 to 1} 2x10.	Hold compression edge in line (continuously)	JPIST PR-BEAM
	^{6 to 1} 2x12	Diagonal bridging should be used	SHEATHING/ DECHING
	^{7 to 1} 2x14	Both edges of the beam should be held in line	HILED SHEATHING OF PRILED SHEATHING OF PRILED SHEATHING OF PRILED SHEATHING OF

C_L Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6

The maximum allowable slenderness, R_B is 50

Лe

Cantilever	when $\ell_{\rm u}/{\rm d} < 7$	and the second data in the second	when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$		$\ell_{e}=0.90 \ \ell_{u}+3d$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_{\rm u}/{\rm d} < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_e =2.06 ℓ_u	i landing	ℓ_{e} =1.63 ℓ_{u} + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_e=1.80 \ \ell_u$	1.1	ℓ_{e} =1.37 ℓ_{u} + 3d
Concentrated load at center with lateral support at center		$\ell_e=1.11 \ \ell_u$	5 m.
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		ℓ_{e} =1.68 ℓ_{u}	1
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		ℓ_{e} =1.68 ℓ_{u}	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	
Equal end moments		$\ell_{e}=1.84 \ \ell_{u}$	

 $\ell_e = 1.63 \ \ell_u + 3d \quad \text{when } 7 \le \ell_u/d \le 14.3$ $\ell_e = 1.84 \ \ell_u \qquad \text{when } \ell_u/d > 14.3$

University of Michigan, TCAUP

Structures II

Slide 13 of 51

(3.3-5)

(3.3-6)

Adjustment Factors for Shear

Allowable Flexure Stress F,'

F_v from tables determined by species and grade

F_v' = F_v (usage factors)

Usage factors for shear:

- C_D Load Duration Factor

- Incising Factor

3.3.3.6 The slenderness ratio, R_B, for bending mem-

3.3.3.7 The slenderness ratio for bending members,

3.3.3.8 The beam stability factor shall be calculated

 $1 + (F_{bE}/F_{b})$

1 0

1.20 Emin EULER R_{e}^{2}

reference bending design value multiplied by all applicable adjustment factors except C_{fu} , C_{V} (when $C_{V} \leq$ 1.0), and C_{L} (see 2.3), psi

bers shall be calculated as follows: ℓ_ed

 $R_B =$ b

as follows:

where: Fb

 $C_L =$

 $1+(F_{bE})$

19

R_B, shall not exceed 50.

Modified shear V' used to compute reduced shear f'_{v}

Analysis Procedure

Given: loading, member size, material and span.

Req'd: Safe or Unsafe (Pass/Fail)

1. Find Max Shear & Moment

- Simple case equations
- Complex case diagrams -

2. Determine actual stresses

- $f_b = M/S$
- ACTUAL • f_v = 1.5 V/A
- 3. Determine allowable stresses
 - F_b and F_v (from NDS)
 - $F_b' = F_b$ (usage factors) ALOW $\int F_v' = F_v$ (usage factors)
- 4. Check that actual \leq allowable
 - $f_b \leq F'_b$
 - $f_v \leq F'_v$
- 5. Check deflection
- 6. Check bearing $(F_{c\perp} \ge \text{Reaction}/A_{\text{bearing}})$ from NDS 2012 University of Michigan, TCAUP

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	(A)	(S _{xx})	I _{xx}	S _{vv}	I _{vv}
	in. x in.	in.2	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

SUPPLIANT [] EL

Structures II

Slide 15 of 51

SECTION = Zx4 (1.5 × 3.5) FL = 875 Fv=135 psi

Analysis Example

Example – Pass / Fail

Given: loading, member size, material and span.

Req'd: Safe or Unsafe?

GIVEN: LOAD = 145* SPAN = 6'

REQ'D: PASS OR FAIL

Species and Grade

S-P-F No.2

 $F_b = 875 \text{ psi}$ $F_v = 135 \text{ psi}$

Table 4AReference Design Values for Visually Graded Dimension Lumber(Cont.)(2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE	WITH TAE	BLE 4A A	DJUSTMENT	FACTORS				
Design values in pounds per square inch (psi)										
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
S-P-F		(F.)	Ft	Fv	F₀_	F。	E	Emin	G	
SPRUCE-PINE-FIR										
Select Structural No. 1/ No. 2 No. 3	2" & wider	1,250 875 500	700 450 250	135 135 135	425 425 425	1,400 1,150 650	1,500,000 1,400,000 1,200,000	550,000 510,000 440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction Standard Utility	2" - 4" wide	1,000 550 275	500 275 125	135 135 135	425 425 425	1,400 1,150 750	1,300,000 1,200,000 1,100,000	470,000 440,000 400,000		10101000
University of Michigan,			Str	uctures II			5	Slide 19 of	51	

Analysis Example

3. Determine allowable stresses

- F_b = 875 psi
- F_v = 135 psi

Determine factors:

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only				AS	SD an	d LRI	FD				LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	
$F_b = F_b$	x	CD	См	Ct	C_L	C _F	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ	
$F_v = F_v$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	φ _v	λ	

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \, \mathbf{C}_{L} \, \mathbf{C}_{F} \, \mathbf{C}_{fu} \, \mathbf{C}_{i} \, \mathbf{C}_{r} \right)$$

Usage factors for flexure: C_L Beam Stability Factor

3.3.3 Beam Stability Factor, C

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, C_L = 1.0.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

University of Michigan, TCAUP

4.4.1 Stability of Bending Members

<u>2x4</u> (a) $d/b \le 2$; no lateral support shall be required.

2x6-8 (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.

2x10 (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.

2x12 (d) 5 < d/b ≤ 6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Structures II

Slide 21 of 51

Analysis Example

C_D Load duration factor

Use 1.6 (10 minutes)

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

2 x 4 use 1.5

		Size Factors,	C _F		
		F	b	Ft	Fc
		Thickness	(breadth)		
Grades	Width (depth)	2 & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	0" 0 2"	0.4		0.4	0.6

Analysis Procedure

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Assume f = F
 - Maximum actual = allowable stress
- 2. Solve stress equations for force
 - M = F_b S
 - V = 0.66 F_v A
- 3. Use maximum moment to find loads
 - Back calculate a load from moment
 - Assumes moment controls
- 4. Check Shear
 - Use load found is step 3 to check shear stress.
 - If it fails (fv > F'v), then find load based on shear.
- 5. Check deflection
- 6. Check bearing

Table 4AReference Design Values for Visual
(Cont.)(2" - 4" thick)1,2,3

(All species except Southern Pine—see duration and dry service conditions. See NDS adjustment factors.)

		USE	WITH TAE	BLE 4A AI				
		Design val						
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain				
		F₀	Ft	Fv				
SPRUCE-PINE-FIR								
Select Structural		1,250	700	135				
No. 1/ No. 2	2" & wider	875	450	135				
No. 3		500	250	135				
Stud	2" & wider	675	350	135				
Construction		1,000	500	135				
Standard	2" - 4" wide	550	275	135				
Utility		275	125	135				

from NDS 2012

Given: <u>member size</u>, material and span. **Req'd:** Max. Safe Load (capacity)

- 1. Assume f = F'
 - Maximum actual = allowable stress
- 2. Solve stress equation for moment
 - $M = F'_{b} S$ (i.e. moment capacity)

$$f_{b} = F'_{b} = 875(1.6)(1.5)$$

$$F'_{b} = 2100 \text{ ps}$$

$$5_{\rm X} = 3.063 \,{\rm m}^3$$

$$M_{\pm} = F_{b}^{\prime} S_{x} = 2100 (3.063)$$
$$= 6432.3 - *$$
$$= 536' - *$$

University of Michigan, TCAUP

Structures II

Slide 25 of 51

Analysis Example (cont.)

3. Use maximum forces to find loads

• Back calculate a maximum load from moment capacity

$$M_{4} = P_{4} P_{4} P_{-} M_{4} A_{L} P_{-} S_{36} (A) / G$$

 $P = 357 * A_{4} P_{-} S_{57} = 357 + A_{4} P_{-} S_{57} + A_{5} P_{-} S_$

4. Check shear

- Check shear for load capacity from step 3.
- Use P from moment to find Vmax
- Check that fv < Fv'
- 4. Check deflection (serviceability)
- 5. Check bearing (serviceability)

$$V_{max} = \frac{P_2}{2} = \frac{357}{2} = 178.6^*$$

 $f_v = \frac{3}{2} \frac{V}{A} = 1.5 \frac{178.6}{5.25} = 51 \text{ psi}$
 $51 \text{ psi} < 180 \quad Vok$

Given: loading, member size, material and span.

Req'd: Safe or Unsafe

Analysis Example

Find Specific Gravity for Hem-Fir

(from NDS)

DESIGN VALUES FOR WOOD CONSTRUCTION – NDS SUPPLEMENT

35

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) $(2" - 4" \text{ thick})^{1,2,3}$

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		UUL			Budonmenti	Aerono				
				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity⁴	Grading Rules Agency
		F _b	F,	F _v	F₀⊥	F。	E	Emin	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		MOUD
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WCLIB
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

USE WITH TABLE 4A ADJUSTMENT FACTORS

Section Properties:

4 x 12 (3.5" x 11.25")

Area = 39.38 in²

Sx = 73.83 in³

			X-)	(AXIS	Y-۱	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	Ixx	S _{yy}	lyy
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Structures II

Slide 29 of 51

Analysis Example

Determine Loading

- Find Tributary area, A_T
 6' x 8' = 48 SF
- Determine member selfweight (w)

Selfweight of member:

Density at 0 m.c. = 62.4 x G (dry) 62.4 x 0.43 = 26.8 PCF The following formula shall be used to determine the density in lbs/ft³ of wood:

density =
$$62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

G = specific gravity of wood m.c. = moisture content of wood, %

where:

D

m.c. = 15% (given)

To include m.c. use NDS formula.

w (PLF) = D (PCF) x Area (IN²)/144

$$= 62.4 \left[\frac{0.43}{1+0.43(0.009)(15)} \right] \left[1 + \frac{15}{100} \right]$$

$$25.35 \times 1.15 = 29.16 \text{ PCF}$$

$$W = \text{PLF} = D \frac{\text{AREA}}{144} = 29.16 \frac{39.38}{144}$$

University of Michigan, TCAUP

Structures II

Slide 31 of 51

Analysis Example

Determine Beam Forces

or

by superposition equations

by diagrams

$$R = \frac{w_{-}l}{2} + \frac{P}{2}$$

$$\frac{7.975(12)}{2} + \frac{2016}{2}$$

$$47.85 + 1008 = 1055.8^{+}$$

$$V_{max} = R$$

$$M_{d} = \frac{w_{-}l^{2}}{8} + \frac{PL}{4}$$

$$\frac{7.975(12)^2}{8} + \frac{2016(12)}{4}$$

$$143.5 + 6048 = 6191.5^{-1}$$

Determine actual stresses

- f_b = M/S
- f_v = 1.5 V/A

			X-)	AXIS	Y-Y	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	b x d	A	S _{xx}	I _{xx}	S _{yy}	lyy
	in. x in.	in. ²	in. ³	in.4	in. ³	in.⁴
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1x6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	DS 4.1.3.	2) and Dec	king (see	NDS 4.1.3	.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32 38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49
Univ	ersity of Michig	gan, TCA	UP			

Analysis Example

Determine allowable stresses

- F_{b} and F_{v} (from NDS)
 - DESIGN VALUES FOR WOOD CONSTRUCTION NDS SUPPLEMENT

35

Table 4A Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)1,2,3 (Cont.)

(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		UUL			Budonmenti	indiana				
				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity⁴	Grading Rules Agency
		F _b	F _t	F _v	F₀⊥	F。	E	Emin	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WOUD
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WCLIB
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

USE WITH TABLE 4A ADJUSTMENT FACTORS

3. Determine allowable stresses

- F_b = 1400 psi
- F_v = 150 psi

University of Michigan, TCAUP

Structures II

Slide 35 of 51

Analysis Example

Determine allowable stresses M.C. = 15% size: 4x12

			X-)	(AXIS	Y-۱	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	Α	S _{xx}	I _{xx}	Syy	l _{yy}
	in. x in.	in.2	in. ³	in.4	in. ³	in.4
Boards ¹						
1x3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	5.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C _M										
F _b	Ft	F_v	$F_{c\perp}$	F_{c}	$E \text{ and } E_{\min}$					
0.85*	1.0	0.97	0.67	0.8**	0.9					

* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

	Size Factors, C _F							
\sim		F _b Thickness (breadth)						
Grades	Width (depth)	2" & 3"	4"					
	2", 3", & 4"	1.5	1.5					
Select	5"	1.4	1.4					
Structural,	6"	1.3	1.3					
No.1 & Btr,	8"	1.2	1.3					
No.1, No.2,	10''	1.1	1.2					
No.3	12"	1.0	1.1					
	14" & wider	0.9	1.0					
	2", 3", & 4"	1.1	1.1					
Stud	5" & 6"	1.0	1.0					
	8" & wider	Use No.3 Grade t	abulated design v					
Construction, Standard	2", 3", & 4"	1.0	1.0					
Utility	4"	1.0	1.0					
	2" & 3"	0.4	_					

University of Michigan, TCAUP

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \, \mathbf{C}_{\mathbf{M}} \, \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{L}} \, \mathbf{C}_{\mathbf{F}} \, \mathbf{C}_{\mathbf{fu}} \, \mathbf{C}_{\mathbf{i}} \, \mathbf{C}_{\mathbf{r}} \right)$$

b/d = 3.5 / 11.25 = 3.11 (case b)

Assuming ends are braced, CL = 1.0

3.3.3 Beam Stability Factor, C_L

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

University of Michigan, TCAUP

4.4.1 Stability of Bending Members

2x4 (a) $d/b \le 2$; no lateral support shall be required.

- **2x6-8** (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Structures II

F

Slide 37 of 51

Analysis Example

Determine allowable stresses
 F_h' = F_h (usage factors)

$$C_{P} = 1.0 (Live Lopp)$$

$$C_{H} = 1.0 (Live Lopp)$$

$$C_{H} = 1.0 IS'_{6} < 19'_{6} (NPS SOP. P. 32)$$

$$C_{L} = 1.0 BLACLD RLA NPS 4.4.1$$

$$C_{F} = 1.1 FOR 4 \times 12 (NPS SUP. P 32)$$

$$C_{f} = 1.0 (NOT) (NPS SUP P 32)$$

$$C_{i} = 1.0 (NOT) (NPS SUP P 32)$$

$$C_{r} = 1.0 (NOT) (NPS SUP P 32)$$

- 3. Determine allowable stresses
 - F_v' = F_v (usage factors)

$$F_{V} = C_{p} = 1.0$$

$$C_{H_{v}} = 1.0$$

$$C_{e} = 1.0$$

$$C_{e} = 1.0$$

$$C_{i} = 1.0$$

$$F_{v} = 150 (1.6) = 150 \text{ PSI}$$

$$F_{v} = 150 (1.6) = 150 \text{ PSI}$$

$$F_{v} = 150 (1.6) = 150 \text{ PSI}$$

University of Michigan, TCAUP

Structures II

Slide 39 of 51

Analysis Example

Check that actual \leq allowable

- $f_b \leq F'_b$ $f_v \leq F'_v$

fb < F'b 1006.3 PSI <1540 :. Vox

fu< F'u 40,22 PSi <150 ... VOR

Check deflection Check bearing ($F_{c\perp} \ge \text{Reaction}/A_{\text{bearing}}$)

Design Procedure

Given: load, wood, span Req'd: <u>member size</u>

1. Find Max Shear & Moment

- Simple case equations
- Complex case diagrams
- 2. Determine allowable stresses
- 3. Solve S=M/F_b'
- 4. Choose a section from Table 1B
 Revise DL and F_b'

5. Check shear stress

- First for V max (easier)
 - If that fails try V at d distance from support.
 - If the section still fails, choose a new section with A=1.5V/F_v'

6. Check deflection

7. Check bearing

University of Michigan, TCAUP

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	I _{xx}	S _{vv}	I _{vv}
	in. x in.	in.2	in. ³	in.4	in. ³	in.⁴
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	8.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Structures II

Slide 41 of 51

Design Example

Given: load, wood, span Req'd: member size

1. Find Max Shear & Moment

- Simple case equations
- Complex case diagrams

- 2. Determine allowable stresses (given in this example) F'_b = 1000 psi F'_v = 100 psi
- 3. Solve $S=M/F_b$ '
- 4. Choose a section from S table
 - Revise DL and F_{b} '

5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance (remove load d from support)
- If the section still fails, choose a new section with A=1.5V/F_v'

6. Check deflection

7. Check bearing

University of Michigan, TCAUP

Structures II

 $F_{6}^{*} = M/S_{x} \quad S_{x} = M/F_{6}$

 $S_{\rm X} = \frac{1440(12)}{1000} = 17.28\,{\rm m}^3$

 2×10 5x = 21.39717.28 A = 13.88 x^{2}

 $f_V = \frac{3}{2} \frac{V}{A} = \frac{1.5(480^*)}{13.88 m^2} = 51.87$

51.87 psi < 100 psi V.OK

Slide 43 of 51

Design Example

Given: load, wood, span **Reg'd:** member size

4. Wood Beam Design

Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load. Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is sustained). Compare your LL deflection with the code limit of L/360.

HEM-FIR
No.1
20 FT
12 IN
15 %
7 PSF
35 PSF

Determine allowable stresses

• F_b and F_v (from NDS)

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick)1,2,3

(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE	WITH TAE	BLE 4A A	DJUSTMENT	FACTORS				
				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F,	F,	F₀⊥	F。	E	E _{min}	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		·
No. 1 & Btr	100.000	1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		MOUR
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WOLID
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000	1	
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

University of Michigan, TCAUP

Structures II

Slide 45 of 51

Flat Use Factor, C_{h} Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{h} shall also be multiplied by the following flat use factors:

Flat Use Factors, Cn

1.0 1.1 1.1 1.15 1.15

1.2

NOTE

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Uti-ity grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Thickness (breadth) 2" & 3"

4"

1.0 1.05 1.05 1.05

1.1

Width

(depth)

2" & 3" 4" 5" 6"

10" & wider

Design Example

Determine allowable stresses

			X-)	(AXIS	Y-Y AXIS			
	Standard	Area		Moment		Moment		
Nominal	Dressed	of	Section	of	Section	of		
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia		
b x d	bxd	Α	S _{xx}	I _{xx}	S _{yy}	lyy		
	in. x in.	in.2	in. ³	in.4	in. ³	in.4		
Boards ¹								
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088		
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123		
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193		
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255		
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325		
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396		
Dimension	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	.5)		
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703		
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984		
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266		
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547		
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039		
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602		
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164		
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727		
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557		
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859		
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161		
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440		
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04		
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65		
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25		
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86		
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51		
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08		
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65		
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90		
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05		
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20		
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34		
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49		

University of Michigan, TCAUP

Table 4A Adjustment Factors

Repetitive Member Factor, C.

Bending design values, Fe, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, <u>C=115</u>, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced and or more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C_M When dimension lumber is used where moisture conwhen aimension lumber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M $\label{eq:results} \begin{array}{|c|c|c|c|c|c|} \hline F_{b} & F_{c} & F_{c} & F_{c} & E \mbox{ and } F_{min} \\ \hline 0.85^{*} & 1.0 & 0.97 & 0.67 & 0.8^{**} & 0.9 \\ \hline ^{*} \mbox{ when } (F_{b}(C_{c}) \leq 1.150 \mbox{ psi}, C_{w} = 1.0 \\ \hline ^{**} \mbox{ when } (F_{b}(C_{c}) \leq 750 \mbox{ psi}, C_{w} = 1.0 \\ \hline \end{array}$

Size Factor, CF

Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		Fb		Ft	Fc
Grades		Thickness (I	oreadth)		
	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
Stud	2", 3", & 4"	1.1	1.1	1.1	1.05
	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade tabulated design values and size factors			
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

Structures II

Determine allowable stresses.

Since the size is not known you have to skip C_F (or make a guess).

$$F_{b}^{1} = F_{b}(F_{ACTORs})$$

$$= 975(1.0 \times 1.15 \times 1.0 \times C_{F}?) \approx 1121 \text{ psi}$$

$$C_{p} \quad C_{r} \quad C_{M}$$

$$F_{v}^{1} = F_{v}(C_{p}, C_{M}, C_{k}, C_{i})$$

University of Michigan, TCAUP

Structures II

Slide 47 of 51

Design Example

Determine Moment from Loading

First find the uniform beam load, w, from the floor loading.

$$\omega = (PSF) \frac{O.C.}{12} = PLF$$
(7+35) $\frac{12}{12} = 42 PLF$

With the beam loading, calculate the maximum moment.

$$M = \frac{\omega f^2}{8} = \frac{42(20')^2}{8} = 2100'^{-4}$$

Estimate the Required Section Modulus.

$$5_{x} = \frac{14}{F_{b}^{2}} = \frac{2100(12)}{1121} = 22.47 \text{ m}^{3}$$

Compare this required Sx to the actual Sx of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

University of Michigan, TCAUP

Structures II

Slide 49 of 51

Design Example

Choose a section and test it (by analysis with all factors including C_F)

$$TRY \ 2 \times 10 \qquad C_F = 1.1$$

$$F_b' = 975 (1.15 \ 1.1) = 1233.3 \ Psi$$

$$F_b = \frac{M}{5_x} = \frac{2100 \ (12)}{21.39} = 1178 \ Psi < 1233_{Psi} \ VoK$$

$$f_v = \frac{3}{2} \frac{V}{A} = \frac{1.5}{13.88} (420) = 45.39_{Psi} < 160_{Psi} \ VoK$$

. USE 2×10

Check Deflection

In this case LL only against code limit of L/360

LL = 35 PSF = 35 PLF $d_{LL} = \frac{5 \omega P^{4}}{384 EL} = \frac{5 (35)(20)^{4}(1728)}{384 (1500000)(98.93)} = 0.849''$ $\Delta LIMIT = \frac{L}{360} = \frac{20'(12)}{360} = 0.667''$ 0.849 > 0.667 : FAILS

University of Michigan, TCAUP

Structures II

Slide 51 of 51