

Wood Beam Analysis and Design

- ASD approach
- NDS criteria
- Wood Beam Analysis
- Wood Beam Design

Allowable Stresses

From the NDS Supplement

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		BendingF_{b}	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}	Compression perpendicular to grain $\mathrm{F}_{\mathrm{c} \perp}$	```Compression parallel to grain F```	Modulus of Elasticity			
							E	$E_{\text {min }}$		
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 \& Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	$2^{\prime \prime}$ \& wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2 " \& wider	675	400	150	405	800	1,200,000	440,000		
		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	$1,300$	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

Allowable Stress Design by NDS

Flexure

Allowable Flexure Stress $F_{b}{ }^{\prime}$
F_{b} from NDS Supplement tables determined
by species and grade
$F_{b}{ }^{\prime}=F_{b}$ (usage factors)
usage factors for flexure:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{L} Beam Stability Factor
C_{F} Size Factor
$\mathrm{C}_{\text {fu }}$ Flat Use
C_{i} Incising Factor
C_{r} Repetitive Member Factor

Actual Flexure Stress f_{b}

$$
\begin{aligned}
& f_{b}=M c / l=M / S \\
& S=l / c=b d^{2} / 6
\end{aligned}
$$

Allowable Stress Design by NDS Shear

Allowable Shear Stress Fv'
F_{v} from tables determined by species and grade
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$ (usage factors)
usage factors for shear:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{i} Incising Factor

\geq

f_{V}

Actual Shear Stress fv

$\mathbf{f}_{\mathrm{v}}=\mathrm{VQ} / \mathrm{l} \mathrm{b}=1.5 \mathrm{~V} / \mathrm{A}$
Can use V at d from support as maximum

Shear at Supports

Allowable Stress Design by NDS Compression

Allowable Compression Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

Actual Compression Stress f_{c}

F_{c} from NDS Supplement tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}$ (usage factors)
usage factors for flexure:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{F} Size Factor
C_{i} Incising Factor
C_{P} Column Stability Factor

Adjustment Factors

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										$\begin{gathered} \text { LRFD } \\ \text { only } \end{gathered}$		
						$\begin{aligned} & \text { 喜 } \\ & \text { 品 } \\ & \text { in } \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{C}_{\text {fu }}$	C_{i}	$\mathrm{C}_{\text {r }}$	-	-	-	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}$	x	C_{D}	C_{M}	C_{t}	-	C_{F}	-	C_{i}	-	-	-	-	K_{F}	ϕ_{t}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	-	K_{F}	ϕ_{v}	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	$\mathrm{Cb}_{\text {b }}$	K_{F}	$\phi_{\text {c }}$	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	C ${ }_{\text {d }}$	C_{M}	$\mathrm{C}_{\text {t }}$	-	C_{F}	-	C_{i}	-	C_{P}	-	-	K_{F}	ϕ_{0}	λ
$E^{\prime}=\mathrm{E}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	-	-	-	-
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	$\mathrm{C}_{\text {T }}$	-	K_{F}	$\phi_{\text {s }}$	-

Adjustment Factors

> Allowable Flexure Stress F_{b}^{\prime}
> F_{b} from tables determined by species and grade
> $F_{b}^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{D} Load Duration Factor

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C D}_{\mathrm{D}}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact 2	2.0	Impact Load

(1) Actual stress due to (DL) $\leq(0.9)$ (Design value)
(2) Actual stress due to (DL+LL)
$\leq(1.0)$ (Design value)
(3) Actual stress due to (DL+WL)
(4) Actual stress due to (DL+LL+SL) $\leq(1.6)$ (Design value) Actual stress due to (DL+LL+WL) $\leq(1.6)$ (Design value)
(6) Actual stress due to (DL+SL+WL) $\leq(1.6)$ (Design value)
(7) Actual stress due to (DL+LL+SL+WL) $\leq(1.6)$ (Design value)

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$
F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$
Usage factors for flexure:
C_{t} Temperature Factor

Table 2.3.3 Temperature Factor, C_{t}

Reference Design Values	In-Service Moisture Conditions ${ }^{1}$	$\mathrm{C}_{\text {t }}$		
		$\mathrm{T} \leq 100^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}<\mathrm{T} \leq 125^{\circ} \mathrm{F}$	$125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}, \mathrm{E}_{\text {min }}$	Wet or Dry	1.0	0.9	0.9
$\mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{v}}, \mathrm{F}_{\mathrm{c}}$, and $\mathrm{F}_{\mathrm{c} \perp}$	Dry	1.0	0.8	0.7
	Wet	1.0	0.7	0.5

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in $4.1 .4,5.1 .4,7.1 .4,8.1 .4,9.3 .3$, and 10.1.5 respectively.

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$
F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$
Usage factors for flexure:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, \mathbf{C}_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{m}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\min }$
0.85^{*}	1.0	0.97	0.67	$0.8^{* *}$	0.9
* when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150$	$\mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$				
** when $\left(\mathrm{F}_{\mathrm{c}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$					

Size Factors, C_{F}					
		F_{b}		F_{1}	F_{c}
Grades	Width (depth)	Thickness (breadth)			
		$2^{\prime \prime}$ \& 3"	4"		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", 3", \& 4"	1.5	1.5	1.5	1.15
	5"	1.4	1.4	1.4	1.1
	6 "	1.3	1.3	1.3	1.1
	$8{ }^{\prime \prime}$	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	$12^{\prime \prime}$	1.0	1.1	1.0	1.0
	14 " \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	2", 3", \& 4"	1.0	1.0	1.0	1.0
Utility	$4^{\prime \prime}$	1.0	1.0	1.0	1.0
	$2^{\prime \prime}$ \& 3"	0.4	-	0.4	0.6

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{fu} Flat Use
C_{r} Repetitive Member Factor

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{b}, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, $\mathbf{C f u}_{\text {fu }}$		
Width	Thickness (breadth)	
(depth)	$2^{\prime \prime} \& 3^{\prime \prime}$	$4^{\prime \prime}$
$2^{\prime \prime} \& 3^{\prime \prime}$	1.0	-
$4^{\prime \prime}$	1.1	1.0
$5^{\prime \prime}$	1.1	1.05
$6^{\prime \prime}$	1.15	1.05
$8^{\prime \prime}$	1.15	1.05
$10^{\prime \prime} \&$ wider	1.2	1.1

Repetitive Member Factor, C_{r}

Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$
F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
$\mathbf{C}_{\mathbf{i}}$ Incising Factor

Design Value	$\mathbf{C}_{\mathbf{i}}$
$\mathrm{E}, \mathrm{E}_{\min }$	0.95
$\mathrm{~F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{t}}, \mathrm{F}_{\mathrm{c}}, \mathrm{F}_{\mathrm{v}}$	0.80
$\mathrm{~F}_{\mathrm{c} \perp}$	1.00

$$
3
$$

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{L} Beam Stability Factor

3.3.3 Beam Stability Factor, $\mathbf{C}_{\mathbf{L}}$

3.3.3.1 When the depth of a bending member does not exceed its breadth, $\mathrm{d} \leq \mathrm{b}$, no lateral support is required and $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $\mathrm{C}_{\mathrm{L}}=1.0$.

4.4.1 Stability of Bending Members

2×4 (a) $\mathrm{d} / \mathrm{b} \leq 2$; no lateral support shall be required.
$2 \times 6-8$ (b) $2<\mathrm{d} / \mathrm{b} \leq 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
(c) $4<\mathrm{d} / \mathrm{b} \leq 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×12 (d) $5<\mathrm{d} / \mathrm{b} \leq 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×14 (e) $6<\mathrm{d} / \mathrm{b} \leq 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Otherwise
$C_{L}<1.0$
calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
$3 \text { to } 1$ 2×6 2×8	The ends of the beam should be held in position	
$\begin{aligned} & 5 \text { to } 1 \\ & 2 \times 10 \end{aligned}$	Hold compression edge in line (continuously)	
$\begin{aligned} & \text { 6 to } 1 \\ & 2 \times 12 \end{aligned}$	Diagonal bridging should be used	
$\begin{aligned} & 7 \text { to } 1 \\ & 2 \times 14 \end{aligned}$	Both edges of the beam should be held in line	

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6

The maximum allowable slenderness, R_{B} is $\mathbf{5 0}$
3.3.3.6 The slenderness ratio, R_{B}, for bending members shall be calculated as follows:

$$
\begin{equation*}
R_{B}=\sqrt{\frac{\ell_{e} \mathrm{~d}}{\mathrm{~b}^{2}}} \tag{3.3-5}
\end{equation*}
$$

3.3.3.7 The slenderness ratio for bending members, R_{B}, shall not exceed 50 .
3.3.3.8 The beam stability factor shall be calculated as follows:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}}=\frac{1+\left(\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}\right)}{1.9}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{bE}} / F_{\mathrm{b}}^{*}\right)}{1.9}\right]^{2}-\frac{\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}}{0.95}} \tag{3.3-6}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{Fb}^{*}= & \text { reference bending design value multiplied by } \\
& \text { all applicable adjustment factors except } \mathrm{C}_{\mathrm{fu}}, \\
& \mathrm{Cv} \text { (when } \mathrm{Cv} \leq 1.0 \text {), and } \mathrm{CL}_{\mathrm{L}} \text { (see 2.3), psi } \\
\mathrm{F}_{\mathrm{bE}}= & \frac{1.20 \mathrm{E}_{\min }^{\prime}}{\mathrm{R}_{\mathrm{B}}{ }^{2}}
\end{aligned}
$$

Adjustment Factors for Shear

Allowable Flexure Stress $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$

F_{v} from tables determined by species and grade
$F_{v}{ }^{\prime}=F_{v}$ (usage factors)

Usage factors for shear:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{i} Incising Factor

Analysis Procedure

Given: loading, member size, material and span.
Req'd: Safe or Unsafe (Pass/Fail)

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Determine actual stresses

- $f_{b}=M / S$
- $f_{v}=1.5 \mathrm{~V} / \mathrm{A}$

3. Determine allowable stresses

- F_{b} and F_{v} (from NDS)
- $F_{b}{ }^{\prime}=F_{b}$ (usage factors)
- $\quad F_{v}{ }^{\prime}=F_{\mathrm{v}}$ (usage factors)

4. Check that actual \leq allowable

- $f_{b} \leq F_{b}^{\prime}$
- $f_{v} \leq F_{v}^{\prime}$

5. Check deflection

$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { b x d } \end{aligned}$	Standard Dressed Size (S4S) bxd in. x in.	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }^{2} \\ \hline \end{gathered}$	X-X AXIS		Y-Y AXIS	
			$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathbf{S}_{\mathrm{xx}} \\ \text { in. }^{3} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ I_{x x} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathbf{S}_{\mathrm{yy}} \\ \text { in. }^{3} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{yy}}{ }^{4} \\ \text { in. }{ }^{4} \\ \hline \end{array}$
Boards ${ }^{1}$						
1×3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 \times 9-1/4	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 2 13-1/4	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 $\times 5-1 / 2$	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7-1 / 4$	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	$3-1 / 2 \times 3-1 / 2$	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 \times 4-1/2	15.75	11.81	26.58	9.188	16.08
4×6	$3-1 / 2 \times 5-1 / 2$	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	$3-1 / 2 \times 9-1 / 4$	32.38	49.91	230.8	18.89	33.05
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

6. Check bearing ($\mathrm{F}_{\mathrm{c} \perp} \geq$ Reaction/ $/ \mathrm{A}_{\text {bearing }}$)

Modified shear V^{\prime} used to compute reduced shear f_{v}^{\prime}
Shear at Supports

Analysis Example

Example - Pass / Fail

Given: loading, member size, material and span.

Req'd: Safe or Unsafe?

五

Analysis Example

1. Find Max Shear \& Moment

- Simple cases - equations
- Complex cases - diagrams
y equations:

$$
V=P / 2=145 / 2=72.5^{*}
$$

$$
\begin{aligned}
& M_{\notin}=\frac{P L}{4}=\frac{145\left(6^{\prime}\right)}{4} \\
& M_{\notin}=217.5^{-1 *}=2610^{\prime \prime}-x^{x}
\end{aligned}
$$

```
GINEN: LOAD = 145*
    SECTION = 2\times4(1.5\times3.5)
    Fb}=875\quad\mp@subsup{F}{v}{}=135\mathrm{ psi
```

REQ'D: PASS OR FAIL

Analysis Example

2. Determine actual stresses

- $f_{b}=M / S$
- $f_{v}=1.5 \mathrm{~V} / \mathrm{A}$

$$
\begin{aligned}
& f_{b}=M / S_{x}^{\prime} \\
& S_{x}=\frac{b d^{2}}{6}=\frac{1.5(3.5)^{2}}{6}=3.063 \mathrm{~m}^{3} \\
& f_{b}=\frac{2610^{102}}{3.063 \mathrm{~m}^{3}}=852 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
& f_{v}=\frac{3}{2} \frac{V}{A}=1.5\left(72.5^{\star} / 5.25 \mathrm{in}^{2}\right) \\
& f_{v}=20.71 \mathrm{psi}
\end{aligned}
$$

Species and Grade

S-P-F No. 2
$\mathrm{F}_{\mathrm{b}}=875 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=135 \mathrm{psi}$

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

3．Determine allowable stresses

－ $\mathrm{F}_{\mathrm{b}}=875 \mathrm{psi}$
－ $\mathrm{F}_{\mathrm{v}}=135 \mathrm{psi}$

Determine factors：

$$
\begin{aligned}
& \mathrm{CD}=? \\
& \mathrm{CM}=1 \\
& \mathrm{Ct}=1 \\
& \mathrm{CL}=1 \\
& \mathrm{CF}=? \\
& \mathrm{Cfu}=1 \\
& \mathrm{CI}=1 \\
& \mathrm{Cr}=1
\end{aligned}
$$

Table 4．3．1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
						$\begin{aligned} & \text { 亮 } \\ & \text { \% } \\ & \text { ジ } \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{C}_{\text {fu }}$	C_{i}	C_{r}	－	－	－	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	$\mathrm{C}_{\text {D }}$	C_{M}	C_{1}	－	－	－	C_{i}	－	－	－	－	K_{F}	ϕ_{v}	λ

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {＇}}$

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure：
C_{L} Beam Stability Factor

3．3．3 Beam Stability Factor，$C_{\llcorner }$

3．3．3．1 When the depth of a bending member does not exceed its breadth， $\mathrm{d} \leq \mathrm{b}$ ，no lateral support is re－ quired and $\mathrm{C}_{\mathrm{L}}=1.0$ ．

3．3．3．2 When rectangular sawn lumber bending members are laterally supported in accordance with 4．4．1， $\mathrm{C}_{\mathrm{L}}=1.0$ ．

3．3．3．3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement，and the ends at points of bearing have lateral support to prevent rotation， $\mathrm{C}_{\mathrm{L}}=1.0$ ．

4．4．1 Stability of Bending Members

2×4（a） $\mathrm{d} / \mathrm{b} \leq 2$ ；no lateral support shall be required．
$2 \times 6-8$（b） $2<\mathrm{d} / \mathrm{b} \leq 4$ ；the ends shall be held in position， as by full depth solid blocking，bridging，hang－ ers，nailing，or bolting to other framing mem－ bers，or other acceptable means．
（c） $4<\mathrm{d} / \mathrm{b} \leq 5$ ；the compression edge of the mem－ ber shall be held in line for its entire length to prevent lateral displacement，as by adequate sheathing or subflooring，and ends at point of bearing shall be held in position to prevent rotation and／or lateral displacement．
2×12（d） $5<\mathrm{d} / \mathrm{b} \leq 6$ ；bridging，full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet，the compression edge of the member shall be held in line as by adequate sheathing or subflooring，and the ends at points of bearing shall be held in position to prevent rotation and／or lateral displacement．
2×14
（e） $6<\mathrm{d} / \mathrm{b} \leq 7$ ；both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and／or lateral displacement．

Analysis Example

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C}_{\mathbf{D}}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact 2	2.0	Impact Load

C_{F} Size factor
2×4
use 1.5

Size Factors, $\mathrm{C}_{\text {F }}$					
		F_{b}		F_{1}	F_{c}
Grades	Width (depth)	Thickness (breadth)			
		$2^{\prime \prime} \& 3{ }^{\prime \prime}$	$4 "$		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", 3", \& 4"	1.5	1.5	1.5	1.15
	5"	1.4	1.4	1.4	1.1
	6 "	1.3	1.3	1.3	1.1
	$8{ }^{\prime \prime}$	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12"	1.0	1.1	1.0	1.0
	$14^{\prime \prime}$ \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	2', 3', \& 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	$2^{\prime \prime}$ \& 3"	0.4	-	0.4	0.6

Analysis Example

3. Determine allowable stresses

- $F_{b}{ }^{\prime}=F_{b}\left(C_{D}\right)\left(C_{F}\right)$
- $F_{b}{ }^{\prime}=875(1.6)(1.5)=2100 \mathrm{psi}$
- $F_{v}{ }^{\prime}=F_{v}\left(C_{D}\right)$
- $F_{v}{ }^{\prime}=135(1.6)=216 \mathrm{psi}$

4. Check that actual \leq allowable

- $f_{b}<F_{b}^{\prime}$
- $f_{v}<F_{v}^{\prime}$

$$
\begin{array}{ll}
\text { GIVEN: } & \text { LOAD }=145^{*} \\
& \text { SPAN }=6^{\prime} \\
& \text { SETION }=2 \times 4(1.5 \times 3.5) \\
& F_{b}=875 \quad F_{V}=135 \mathrm{psi} \\
\text { REQ'D: } & \text { PSSS OR FSIL }
\end{array}
$$

$$
\begin{aligned}
& 852_{\mathrm{psi}}<2100 \mathrm{psi} \checkmark \text { ok } \\
& 20.71 \mathrm{psi}<216 \mathrm{psi} \quad \checkmark \text { ok }
\end{aligned}
$$

5. Check deflection
6. Check bearing ($F_{c \perp} \geq R / A_{b}$)

Analysis Procedure

Given: member size, material and span.
Req'd: Max. Safe Load (capacity)

1. Assume f = F

- Maximum actual = allowable stress

2. Solve stress equations for force

- $M=F_{b} S$
- $V=0.66 F_{v} A$

3. Use maximum moment to find loads

- Back calculate a load from moment
- Assumes moment controls

4. Check Shear

- Use load found is step 3 to check shear stress.
- If it fails (iv > F'v), then find load based on shear.
$\begin{array}{ll}\text { Table 4A } & \text { Reference Design Values for Visual } \\ \text { (Cont.) } & \text { (2" }^{\prime \prime} \text { " thick) }\end{array}$
(All species except Souther Pine-see duration and dry service conditions. See ND § adjustment factors.)

from NDS 2012

5. Check deflection
6. Check bearing

Analysis Example

Given: member size, material and span.
Req'd: Max. Safe Load (capacity)

1. Assume f = F'

- Maximum actual = allowable stress

2. Solve stress equation for moment

- $M=F_{b}^{\prime} S$ (ie. moment capacity)

GIVEN: SPAN $=$ G' 1 PeE SECTION $=2 \times 4(1.5 \times 3.5)$ $F_{b}=875 \mathrm{psi} \quad F_{v}=135 \mathrm{psi}$
REQ'D: MAXIMUM LOAD P

$$
\begin{aligned}
F_{b}=F_{b}^{\prime} & =875(1.6)(1.5) \\
F_{b}^{\prime} & =2100 \mathrm{ps1}
\end{aligned}
$$

$$
S x=3.063 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
M_{\phi} & =F_{b}^{\prime} S_{x}=2100(3.063) \\
& =6432.3^{\prime \prime}-x \\
& =536^{1-*}
\end{aligned}
$$

Analysis Example (cont.)

3. Use maximum forces to find loads

- Back calculate a maximum load from moment capacity
$H_{d}=P L / 4$
$P=M_{t} d / L$
$P=536(4) / 6$
$p=357^{*}$

4. Check shear

- Check shear for load capacity from step 3.
- Use P from moment to find Vax
- Check that fo < Fo'

4. Check deflection (serviceability)
5. Check bearing (serviceability)

$$
\begin{aligned}
& V_{\text {max }}=P / 2=357 / 2=178,6 * \\
& f_{V}=\frac{3}{2} \frac{V}{A}=1.5 \frac{178.6}{5.25}=51 \mathrm{psi}
\end{aligned}
$$

$$
51 \text { psi <180 rok }
$$

Analysis Example

Given: loading, member size, material and span.
Req'd: Safe or Unsafe

Analysis Example

Find Specific Gravity for Hem-Fir

- (from NDS)

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		Bending \qquad F	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}	Compression perpendicular to grain $\mathrm{F}_{\mathrm{c} \perp}$	```Compression parallel to grain F```	Modulus of Elasticity			
							E	$E_{\text {min }}$		
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 \& Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	$2^{\prime \prime}$ \& wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" \& wider	675	400	150	405	800	1,200,000	440,000		
Construction		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

Analysis Example

Section Properties:
$4 \times 12\left(3.5^{\prime \prime} \times 11.25^{\prime \prime}\right)$
Area $=39.38 \mathrm{in}^{2}$

Sx $=73.83 \mathrm{in}^{3}$

Nominal Size bxd	Standard Dressed Size (S4S) bxd in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS	
			Section Modulus S_{xx} in. ${ }^{3}$	Moment of Inertia $I_{x x}$ in. ${ }^{4}$	$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathrm{S}_{\mathrm{yy}} \\ \mathrm{in}^{3}{ }^{3} \\ \hline \end{array}$	Moment of Inertia I_{yy} in. ${ }^{4}$
Boards ${ }^{1}$						
1×3	3/4 \times 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	$1-1 / 2 \times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 \times 4-1/2	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 \times 9-1/4	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 $\times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 \times 4-1/2	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 \times 5-1/2	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 \times 7-1/4	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 \times 3-1/2	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 \times 4-1/2	15.75	11.81	26.58	9.188	16.08
4×6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	$3-1 / 2 \times 9-1 / 4$	32.38	49.91	230.8	18.89	33.05
4×12	3-1/2×11-1/4	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

Analysis Example

Determine Loading

- Floor loading ($\mathrm{D}+\mathrm{L}$) Find Tributary area, A_{T} $6^{\prime} \times 8$ 8 $=48$ SF

$$
\begin{gathered}
D L=7 \mathrm{PSF} \\
L L=35 \mathrm{PSF} \\
\text { TOTAL }=42 \mathrm{PSF} \\
P=A_{T} \times P S F \\
=48 \times 42=2016
\end{gathered}
$$

- Determine member selfweight (w)

Analysis Example

Selfweight of member:
Density at 0 m.c. $=62.4 \times \mathrm{G}$ (dry)
$62.4 \times 0.43=26.8$ PCF
m.c. $=15 \%$ (given)

To include m.c. use NDS formula.

The following formula shall be used to determine the density in lbs/ft ${ }^{3}$ of wood:
density $=62.4\left[\frac{G}{1+G(0.009)(\text { m.c. })}\right]\left[1+\frac{\text { m.c. }}{100}\right]$
where:

$$
\begin{aligned}
\mathrm{G} & =\text { specific gravity of wood } \\
\text { m.c. } & =\text { moisture content of wood }, \%
\end{aligned}
$$

$$
D=62.4\left[\frac{0.43}{1+0.43(0.009)(15)}\right]\left[1+\frac{15}{100}\right]
$$

$$
25.35 \times 1.15=29.16 \mathrm{PCF}
$$

$$
W=P L F=D \frac{\operatorname{AREA}}{144}=29.16 \frac{39.38}{144}
$$

$$
\omega=7.975 \mathrm{PLF}
$$

Analysis Example

Determine Beam Forces

by superposition equations or by diagrams

$$
\begin{aligned}
& R=\frac{\omega l}{2}+\frac{P}{2} \\
& \frac{7.975(12)}{2}+\frac{2016}{2} \\
& 47.85+1008=1055.8^{*} \\
& V_{\text {MAX }}= \\
& M_{\Phi}=\frac{w l^{2}}{8}+\frac{P L}{4} \\
& \frac{7.975(12)^{2}}{8}+\frac{2016(12)}{4} \\
& \\
& 143.5+6048=6191.5^{1-1}
\end{aligned}
$$

Analysis Example

Determine actual stresses

- $f_{b}=M / S$
- $\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} / \mathrm{A}$

Actor stress:

$$
\begin{aligned}
& f_{b}=H / s_{x}=\frac{6191.5(12)}{73.83}=1006.3 \mathrm{ps} \\
& f_{v}=\frac{3}{2} \frac{V}{A}=1.5 \frac{1055.8}{39.38}=40.22 \mathrm{psi}
\end{aligned}
$$

Analysis Example

Determine allowable stresses
－F_{b} and F_{v}（from NDS）

Table 4A	Reference Design Values for Visually Graded Dimension Lumber （Cont．）
（2＂$^{\prime \prime}$ thick）	

（All species except Southern Pine－see Table 4B）（Tabulated design values are for normal load duration and dry service conditions．See NDS 4.3 for a comprehensive description of design value adjustment factors．）

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch（psi）							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		BendingF_{b}	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}	Compression perpendicular to grain $\mathrm{F}_{\mathrm{c} \perp}$	Compression parallel to grain F。	Modulus of Elasticity			
							E	$E_{\text {min }}$		
HEM－FIR										
Select Structural		1，400	925	150	405	1，500	1，600，000	580，000		
No． 1 \＆Btr		1，100	725	150	405	1，350	1，500，000	550，000		
No． 1	$2^{\prime \prime}$ \＆wider	975	625	150	405	1，350	1，500，000	550，000		
No． 2		850	525	150	405	1，300	1，300，000	470，000		
No． 3		500	300	150	405	725	1，200，000	440，000	0.43	WWPA
Stud	2＂\＆wider	675	400	150	405	800	1，200，000	440，000		
Construction		975	600	150	405	1，550	1，300，000	470，000		
Standard	$2^{\prime \prime}$－4＂wide	550	325	150	405	1，300	1，200，000	440，000		
Utility		250	150	150	405	850	1，100，000	400，000		

Analysis Example

3．Determine allowable stresses

－$F_{b}=1400 \mathrm{psi}$
－ $\mathrm{F}_{\mathrm{v}}=150 \mathrm{psi}$

Determine factors：
$\mathrm{CD}=$
$\mathrm{CM}=$
$\mathrm{Ct}=$
$\mathrm{CL}=$
$\mathrm{CF}=$
$\mathrm{Cfu}=$
$\mathrm{Ci}=$
$\mathrm{Cr}=$
Table 4．3．1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
						惑 范									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	$\mathrm{C}_{\text {D }}$	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C ${ }_{\text {i }}$	C_{r}	－	－	－	K_{F}	ϕ_{b}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	－	－	－	C_{i}	－	－	－	－	K_{F}	ϕ_{v}	λ

Determine allowable stresses
M.C. $=15 \% \quad$ size: 4×12

Nominal Size bxd	Standard Dressed Size (S4S) bxd in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS	
			Section Modulus $S_{x x}$ in. ${ }^{3}$	Moment of Inertia $I_{x x}$ in. ${ }^{4}$	Section Modulus $\mathrm{S}_{\mathrm{yy}}{ }_{3}$ in. ${ }^{3}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{yy}}{ }^{4} \\ \text { in. }{ }^{4} \\ \hline \end{array}$
Boards ${ }^{1}$						
1×3	3/4 $\times 2-1 / 2$	1.875	0.781	0.977	0.234	0.088
1×4	3/4 \times 3-1/2	2.625	1.531	2.680	0.328	0.123
1×6	3/4 $\times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	3/4 $\times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 \times 9-1/4	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 $\times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 \times 5-1/2	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7-1 / 4$	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 \times 3-1/2	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 $\times 4-1 / 2$	15.75	11.81	26.58	9.188	16.08
4×6	3-1/2 \times 5-1/2	19.25	17.65	48.53	11.23	19.65
4×8	3-1/2 $\times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	3-1/2 \times 9-1/4	32.38	49.91	230.8	18.89	33.05
4×12	3-1/2 $\times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	3-1/2 $\times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	3-1/2 $\times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Wet Service Factor, C_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{M}					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \mathrm{\perp}}$	$\mathrm{~F}_{\mathrm{c}}$	E and $\mathrm{E}_{\text {min }}$
0.85^{*}	1.0	0.97	0.67	$0.8^{* *}$	0.9
$*$ when					
${ }^{* *}$ when $\left(\mathrm{F}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{F}}\right) \leq 1,\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750\right.$	psi, $\mathrm{C}_{\mathrm{M}}=1.0$				
psi, $\mathrm{C}_{\mathrm{M}}=1.0$					

4			
		F_{b}	
Grades	Width (depth)	Thickness (breadth)	
		$2^{\prime \prime}$ \& $3^{\prime \prime}$	$4^{\prime \prime}$
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.5	1.5
	5 "	1.4	1.4
	6 "	1.3	1.3
	$8{ }^{\prime \prime}$	1.2	1.3
	$10^{\prime \prime}$	1.1	1.2
	12"	1.0	1.1
	$14^{\prime \prime}$ \& wider	0.9	1.0
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1
	$5^{\prime \prime}$ \& 6"	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design v	
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0
Utility	4"	1.0	1.0
	2" \& 3"	0.4	-

Structures II
Slide 37 of 52

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$

F_{b} from tables determined by species and grade

$$
F_{b}^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)
$$

$\mathrm{b} / \mathrm{d}=3.5 / 11.25=3.11 \quad$ (case b)
Assuming ends are braced, $\mathrm{CL}=1.0$

3.3.3 Beam Stability Factor, $\mathbf{C}_{\mathbf{L}}$

3.3.3.1 When the depth of a bending member does not exceed its breadth, $\mathrm{d} \leq \mathrm{b}$, no lateral support is required and $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $\mathrm{C}_{\mathrm{L}}=1.0$.

4.4.1 Stability of Bending Members

2×4 (a) $\mathrm{d} / \mathrm{b} \leq 2$; no lateral support shall be required.
$2 \times 6-8$ (b) $2<\mathrm{d} / \mathrm{b} \leq 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
2×10 (c) $4<\mathrm{d} / \mathrm{b} \leq 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×12 (d) $5<\mathrm{d} / \mathrm{b} \leq 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×14 (e) $6<\mathrm{d} / \mathrm{b} \leq 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Analysis Example

3. Determine allowable stresses

$$
\begin{aligned}
& \text { F } C_{D}=1.0 \text { (Live ChAD) } \\
& C_{H_{6}}=1.0 \quad 15 \%<19 \% \text { (ND SOP. P. } 32 \text {) } \\
& C_{+}=1.0 \quad \text { TeMP }<100^{\circ} \\
& C_{L}=1.0 \text { BRACeD LR oPS } 4.4 .1 \\
& C_{F}=1.1 \text { For } 4 \times 12 \text { (iDS Sup. p } 32 \text {) } \\
& C_{f u}=1.0 \quad \text { (NOT) (NOS SUP P32) } \\
& C_{i}=1.0 \text { (Hot) (NDS P29-30) } \\
& C_{T}=1.0 \text { (not) (NDS SUP P32) } \\
& F_{b}^{\prime}=1400(1.1)=1540 \mathrm{PS1} \\
& \text { Actium stress: } \\
& f_{b}=N / s_{x}=\frac{6191.5(12)}{73.83}=1006.3 \mathrm{ps}
\end{aligned}
$$

Analysis Example

3. Determine allowable stresses

- $F_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$ (usage factors)

$$
\begin{aligned}
\text { F } \quad \begin{aligned}
C_{D} & =1.0 \\
C_{V} & =1.0 \\
C_{t} & =110 \\
C_{i} & =1.0 \\
F_{V}^{\prime}=150(1.0) & =150 \mathrm{Psi}
\end{aligned} \\
f_{V}=\frac{3}{2} \frac{V}{A}=1.5 \frac{1055.8}{39.38}=40.22 \mathrm{Psi}
\end{aligned}
$$

Check that actual \leq allowable

- $f_{b} \leq F_{b}^{\prime}$
- $f_{v} \leq F_{v}^{\prime}$

Check deflection
Check bearing ($F_{c \perp} \geq$ Reaction $/ A_{\text {bearing }}$)

Design Procedure

Given: load, wood, span
Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Determine allowable stresses
3. Solve $S=M / F_{b}$ '
4. Choose a section from Table 1B

- Revise DL and F_{b} '

5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance from support.
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}{ }^{\prime}$

6. Check deflection
7. Check bearing

$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { b x d } \end{aligned}$	Standard Dressed Size (S4S) $b \times d$in. \times in.	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }^{2} \\ \hline \end{gathered}$	X-X AXIS		Y-Y AXIS	
			Section Modulus \mathbf{S}_{xx} in. ${ }^{3}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ I_{x x} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	Section Modulus $\begin{aligned} & \mathrm{S}_{\mathrm{yy}} \\ & \text { in. }{ }^{3} \end{aligned}$	Moment of Inertia I_{yy} in. ${ }^{4}$
Boards ${ }^{1}$						
1×3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	$1-1 / 2 \times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 $\times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 $\times 5-1 / 2$	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7-1 / 4$	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	$3-1 / 2 \times 3-1 / 2$	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 $\times 4-1 / 2$	15.75	11.81	26.58	9.188	16.08
4×6	3-1/2 \times 5-1/2	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	3-1/2 \times 9-1/4	32.38	49.91	230.8	18.89	33.05
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

Design Example

Given: load, wood, span
Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

Design Example

2. Determine allowable stresses
(given in this example)
$\mathrm{F}_{\mathrm{b}}=1000 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}^{\prime}=100 \mathrm{psi}$
3. Solve $\mathrm{S}=\mathrm{M} / \mathrm{F}_{\mathrm{b}}$,
4. Choose a section from S table

- Revise DL and $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$

5. Check shear stress

- First for $V \max$ (easier)
- If that fails try V at d distance (remove load d from support)
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}$ '

$$
\text { GIVEN: } \begin{aligned}
& F_{b}^{\prime}=1000 \mathrm{PSI} \\
& F_{V}^{\prime}=100 \mathrm{PSI} \\
& \text { SPAN }=12 \\
& D C+L L=80 \mathrm{PLF}
\end{aligned}
$$

REQ'D: SECTION SIZE

Structures II Slide 43 of 52

Design Example

Given: load, wood, span
Req'd: member size

```
4. Wood Beam Design
Design a 2 x dimenstoned tumber floor joist to carry the given dead + live floor load. Assume the floor meets conditions of 4.4.1 so \(\mathrm{CL}=1.0\). Also \(\mathrm{Ct}, \mathrm{Cfu}\), and \(\mathrm{Cl}=1.0\).
Find the short term deflection of your chosen beam under
live load only ( \(100 \%\) LL is sustained). Compare your LL
deflection with the code limit of L/360.
DATASET: 1 -2- -3 -
Wood Species
HEM-FIR
Wood Grade
No. 1
Span
20 FT
Joist Spacing. o.c. \(12 \mathbb{N}\)
Moisture Content, m.c. \(15 \%\)
Floor DL 7 PSF
Floor LL 35 PSF
```


Design Example

Determine allowable stresses

- F_{b} and F_{v} (from NDS)

Table 4A Reference Design Values for Visually Graded Dimension Lumber
(Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		$\begin{gathered} \text { Bending } \\ \mathrm{F}_{\mathrm{b}} \\ \hline \end{gathered}$	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}	Compression perpendicular to grain $F_{\text {c } \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$\mathrm{E}_{\text {min }}$		
HEM-FIR										
Select Structural	2" \& wider	1,400	925	150	405	1,500	1,600,000	580,000	0.43	WCLIB WWPA
No. 1 \& Btr		1100	725	150	405	1,350	1,500,000	550,000		
No. 1		975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		
No. 3		500	300	150	405	725	1,200,000	440,000		
Stud	2" \& wider	675	400	150	405	800	1,200,000	440,000		
Construction	2" - 4" wide	975	600	150	405	1,550	1,300,000	470,000		
Standard		550	325	150	405	$1,300$	1,200,000	$440,000$		
Utility		250	150	150	405	850	1,100,000	400,000		

Design Example

Determine allowable stresses

University of Michigan, TCAUP

Repetitive Member Factor, \mathbf{C}_{r}
Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $C=115$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.
Wet Service Factor, C_{M}
When dimension lumber is used where moisture con When dimension lumber is used where moisture con-
tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Flat Use Factor, C_{fa}
Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{b}, shall also be multiplied by the following flat use factors:

Size Factor, $\mathrm{C}_{\boldsymbol{F}}$
Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2 "to 4 " thick shall be multiplied by the following size factors:

Design Example

Determine allowable stresses.

Since the size is not known you have to skip C_{F} (or make a guess).

$$
\begin{aligned}
F_{b}^{\prime}= & F_{b}(\text { FscioRs }) \\
= & 975\left(1.0 \times 1.15 \times 1.0 \times C_{F} ?\right) \approx 1121 \mathrm{psi} \\
& C_{D}^{\prime} C_{r}^{\prime} \quad C_{M} \\
F_{V}^{\prime}= & F_{V}\left(C_{D}, C_{M 1}, C_{t}, C_{i}\right) \\
= & 150(1.0 \times 1.0 \times 1.0 \times 1.0)=150 \mathrm{psi}
\end{aligned}
$$

Design Example

Determine Moment from Loading

First find the uniform beam load, w, from the floor loading.

$$
\begin{aligned}
\omega=(P S F) \frac{0 . C}{12} & =P L F \\
(7+35) \frac{12}{12} & =42 P L F
\end{aligned}
$$

With the beam loading, calculate the maximum moment.

$$
M=\frac{w l^{2}}{8}=\frac{42\left(20^{\prime}\right)^{2}}{8}=2100^{1-k}
$$

Design Example

Estimate the Required Section Modulus.

$$
S_{x}=\frac{H-1}{F_{b}^{\prime}}=\frac{2100(12)}{1121}=22.47 \mathrm{~m}^{3}
$$

Compare this required $S x$ to the actual $S x$ of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

$$
\begin{aligned}
& \text { Frond TABLE 1B (NDS) } \\
& \text { SN } \\
& 2 \times 10 \quad 21.39 \quad\left(C_{F}=1.1\right) \text { MIGHT WORK } \\
& 2 \times 12 \quad 31.64 \quad\left(C_{F}=1.0\right)
\end{aligned}
$$

Design Example

Choose a section and test it (by analysis with all factors including C_{F})

$$
\begin{array}{rl}
T R Y & 2 \times 10 \quad C_{F}=1.1 \\
F_{b}^{\prime} & =975(1.151 .1)=1233.3 \mathrm{psi} \\
f_{b} & =+1 / s_{x}=\frac{2100(12)}{21.39}=1178 \mathrm{psi}<1233 \mathrm{psi} \text { oK } \\
f_{V} & =\frac{3}{2} \frac{V}{A}=\frac{1.5(420)}{13.88}=45.39 \mathrm{psi}<160 \mathrm{psi} \text { rOK } \\
\therefore \text { USE } 2 \times 10
\end{array}
$$

Design Example

Check Deflection

In this case LL only against code limit of L/360

TABLE 1604.3 DEFLECTION LIMITS ${ }^{a, b, c, h, i}$

$$
L L=35 \text { PSF }=35 \text { PLF }
$$

CONSTRUCTION	L	S or W^{f}	$D+L^{\text {d, g }}$
Roof members: ${ }^{\text {e }}$			
Supporting plaster or stucco ceiling	$/ / 360$	$/ / 360$	$/ / 240$
Supporting nonplaster ceiling	$/ / 240$	$/ / 240$	$/ / 180$
Not supporting ceiling	$/ / 180$	$/ / 180$	$/ / 120$
Floor members	$/ / 360$	-	$/ / 240$
Exterior walls:			
With plaster or stucco finishes	-	$/ / 360$	-
With other brittle finishes	-	$/ / 240$	-
With flexible finishes	-	$/ / 120$	-
Interior partitions:			
With plaster or stucco finishes	$/ / 360$	-	-
With other brittle finishes	$/ / 240$	-	-
With flexible finishes	$/ / 120$	-	-
Farm buildings	-	-	$/ / 180$
Greenhouses	-	-	$/ / 120$

$$
\begin{aligned}
& \Delta_{L L}=\frac{5 w l^{4}}{384 E I}=\frac{5(35)(20)^{4}(1728)}{384(1500000)(98.93)}=0.849^{\prime \prime} \\
& \Delta_{\text {LIMIT }} \frac{L}{360}=\frac{20^{\prime}(12)}{360}=0.667^{\prime \prime} \\
& 0.649>0.667 \therefore \text { FALL }
\end{aligned}
$$

