Architecture 324 Structures II

Wood Beam Analysis and Design

- · ASD approach
- · NDS criteria
- Wood Beam Analysis
- · Wood Beam Design

University of Michigan, TCAUP Structures II Slide 1 of 52

Allowable Stresses

From the NDS Supplement

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

			Design values in pounds per square inch (psi)							
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F,	F₀⊥	F _o	E	Emin	G	
HEM-FIR										
Select Structural No. 1 & Btr No. 1 No. 2 No. 3	2" & wider	1,400 1,100 975 850 500	925 725 625 525 300	150 150 150 150 150	405 405 405 405 405	1,500 1,350 1,350 1,300 725	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000	580,000 550,000 550,000 470,000 440,000	0.43	WCLIB WWPA
Stud Construction Standard	2" & wider 2" - 4" wide	675 975 550	400 600 325	150 150 150	405 405 405	800 1,550 1,300	1,200,000 1,300,000 1,200,000	440,000 470,000 440,000		VVVVFA
Utility	3000 3000	250	150	150	405	850	1,100,000	400,000		

Allowable Stress Design by NDS **Flexure**

F_b

 \geq

 \mathbf{f}_{k}

Allowable Flexure Stress F_b'

F_b from NDS Supplement tables determined by species and grade

F_b' = F_b (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_L Beam Stability Factor

C_F Size Factor

C_{fu} Flat Use

C_i Incising Factor

C_r Repetitive Member Factor

Actual Flexure Stress f_b

 $f_b = Mc/I = M/S$

 $S = 1/c = bd^2/6$

University of Michigan, TCAUP

Wood Structures

Slide 3 of 52

Allowable Stress Design by NDS **Shear**

>

Allowable Shear Stress Fv'

 $\mathbf{F}_{\mathbf{v}}$ from tables determined by species and grade

 $\mathbf{F_v}' = \mathbf{F_v}$ (usage factors)

usage factors for shear:

C_D Load Duration Factor

 \mathbf{C}_{M} Moisture Factor

C_t Temperature Factor

C_i Incising Factor

Actual Shear Stress fv

 $f_v = VQ / | b = 1.5 V/A$

Can use V at d from support as maximum

Shear at Supports

Allowable Stress Design by NDS Compression

Allowable Compression Stress F_c'

 $\ensuremath{\text{\textbf{F}}_{\text{c}}}$ from NDS Supplement tables determined by species and grade

 F_c ' = F_c (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_F Size Factor

C_i Incising Factor

C_P Column Stability Factor

Actual Compression Stress f_c

 $f_c = P/A$

University of Michigan, TCAUP Wood Structures Slide 5 of 52

Adjustment Factors

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD							LRFI only)			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b = F_b$	x	C_D	См	C_{t}	C_L	$C_{\mathbf{F}}$	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_t' = F_t$	x	CD	См	Ct	-	C_{F}	-	Ci	-	-	-	-	K _F	φ _t	λ
$\mathbf{F_v} = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ
$F_{c\perp} = F_{c\perp}$	x	-	См	Ct	-	-	-	Ci	-	-	-	Сь	K _F	фс	λ
$F_c = F_c$	x	CD	См	Ct	-	$C_{\mathbf{F}}$	-	Ci	-	C _P	-	-	K _F	фе	λ
E' = E	х	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	C _T	-	K _F	ф	-

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

Usage factors for flexure: C_D Load Duration Factor

University of Michigan, TCAUP

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

(1) Actual stress due \leq (0.9) (Design value) to (DL) (2) Actual stress due to (DL+LL) \leq (1.0) (Design value) (3) Actual stress due to (DL+WL) \leq (1.6) (Design value) (4) Actual stress due to (DL+LL+SL) \leq (1.15) (Design value) (5) Actual stress due to (DL+LL+WL) \leq (1.6) (Design value) (6) Actual stress due to (DL+SL+WL) \leq (1.6) (Design value) (7) Actual stress due to (DL+LL+SL+WL) \leq (1.6) (Design value)

Structures II Slide 7 of 52

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

Usage factors for flexure:

Ct Temperature Factor

Table 2.3.3 Temperature Factor, Ct

Reference Design Values	In-Service Moisture		Ct		
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th colspan="2">125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>	
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9	
E E E and E	Dry	1.0	0.8	0.7	
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5	

Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 F_b ' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)

Usage factors for flexure:

C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

F_{b}	F _t	F_{v}	$F_{\rm c\perp}$	F_c	E and E _{min}
0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

Size Factors, C_F

		F	ь	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

University of Michigan, TCAUP

Structures II

Slide 9 of 52

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

C_{fu} Flat Use

C_r Repetitive Member Factor

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, Cfu

Width	Thickness (breadth)
(depth)	2" & 3"	4"
2" & 3"	1.0	_
4"	1.1	1.0
5"	1.1	1.05
6"	1.15	1.05
8"	1.15	1.05
10" & wider	1.2	1.1

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 F_b ' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)

Usage factors for flexure: C_i Incising Factor

Table 4.3.8 Incising Factors, C,

Design Value	Ci	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	

University of Michigan, TCAUP

Structures II

Slide 11 of 52

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_b' = F_b (C_D C_M C_t C_t C_F C_{fu} C_i C_r)$

Usage factors for flexure: **C**_L Beam Stability Factor

3.3.3 Beam Stability Factor, C.

- 3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.
- 3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.
- 3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

4.4.1 Stability of Bending Members

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) 2 < d/b ≤ 4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.</p>
- 2x12 (d) 5 < d/b ≤ 6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

 $C_{L} = 1.0$ for depth/width ratio in $4.4.1 C_1 = 1.0$

Otherwise

 $C_L < 1.0$ calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	END BLOCKING FIGURE OF BEAM
5 to 1 2x10	Hold compression edge in line (continuously)	NAILING OF BEAM
6 to 1 2x12	Diagonal bridging should be used	SHBATHING/ PBOPING JOIST BPIDGING
^{7 to 1} 2x14	Both edges of the beam should be held in line	BRIPATING MAILED SHEATHING OR DECHNATTOP BOTTOM

University of Michigan, TCAUP

Structures II

Slide 13 of 52

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6

The maximum allowable slenderness, $R_{\textrm{\scriptsize B}}$ is 50

Cantilever ¹	when $\ell_v/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u		$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3 {\rm d}$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$,	$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =2.06 ℓ _u	in the second	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$	A 19	$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$. 5.
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm c}$ =1.68 $\ell_{\rm u}$	7 ,
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm c}$ =1.68 $\ell_{\rm u}$	>
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	ry for
Equal end moments		ℓ _e =1.84 ℓ _u	

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{h^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, R_B, shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated

$$C_{L} = \frac{1 + \left(F_{bE}/F_{b}^{\star}\right)}{1.9} - \sqrt{\left\lceil \frac{1 + \left(F_{bE}/F_{b}^{\star}\right)}{1.9} \right\rceil^{2} - \frac{F_{bE}/F_{b}^{\star}}{0.95}} \quad (3.3-6)$$

 F_b^* = reference bending design value multiplied by all applicable adjustment factors except Cfu, C_V (when $C_V \leq 1.0)\text{, and }C_L$ (see 2.3), psi

$$F_{bE} = \frac{1.20 \, {E_{min}}'}{{R_B}^2}$$

Adjustment Factors for Shear

Allowable Flexure Stress F,'

F_v from tables determined by species and grade

$F_v' = F_v$ (usage factors)

Usage factors for shear:

C_D Load Duration Factor

C_M Moisture Factor

Temperature Factor

Incising Factor

Shear at Supports

Modified shear V^\prime used to compute reduced shear f^\prime_v

University of Michigan, TCAUP

Structures II

Slide 15 of 52

Analysis Procedure

Given: loading, member size, material and span.

Req'd: Safe or Unsafe (Pass/Fail)

- 1. Find Max Shear & Moment
 - Simple case equations
 - Complex case diagrams
- 2. Determine actual stresses
 - $f_b = M/S$
 - $f_v = 1.5 \text{ V/A}$
- 3. Determine allowable stresses
 - F_b and F_v (from NDS)
 - F_b' = F_b (usage factors)
 F_v' = F_v (usage factors)
- 4. Check that actual ≤ allowable
 - $f_b \le F'_b$
 - f_v ≤ F'_v
- 5. Check deflection
- Check bearing (F_{c⊥} ≥ Reaction/A_{bearing})

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	b x d	Α	S _{xx}	l _{xx}	S _{vv}	I _{vv}
	in. x in.	in. ²	in. ³	in.4	in. ³	in. ⁴
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec		NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

from NDS 2012

Example - Pass / Fail

Given: loading, member size, material

and span.

Req'd: Safe or Unsafe?

GIVEN: LOAD = 145*

SPAN = 6'

SECTION = Z×4 (1.5×3.5)

Fb = 875 Fv = 135 psi

REQ'D: PASS OR FAIL

University of Michigan, TCAUP Structures II Slide 17 of 52

Analysis Example

1. Find Max Shear & Moment

- Simple cases equations
- Complex cases diagrams

GIVEN: LOAD = 145*

SPAN = 6'

SECTION = 2×4 (1.5×3.5)

Fb = 875 Fv = 135 psi

REQ'D: PASS OR FAIL

By equations:

$$M_{\xi} = \frac{PL}{4} = \frac{145(6')}{4}$$
 $M_{\xi} = 217.5'' = 2610'' - *$

By Diagrams:

2. Determine actual stresses

- f_b = M/S
- $f_v = 1.5 \text{ V/A}$

$$f_b = \frac{M}{5x}$$
 $S_x = \frac{bd^2}{6} = \frac{1.5(3.5)^2}{6} = 3.063 \text{ in}^3$
 $f_b = \frac{2610^{6-4x}}{3.063 \text{ in}^3} = 852 \text{ psi}$

$$f_{v} = \frac{3}{2} \stackrel{\vee}{A} = 1.5 (72.5 / 5.25 in^{2})$$

 $f_{v} = 20.71 \text{ psi}$

University of Michigan, TCAUP

Structures II

Slide 19 of 52

Slide 20 of 52

Species and Grade

S-P-F No.2

 $F_b = 875 \text{ psi}$

 $F_{v} = 135 \text{ psi}$

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber $(2^n - 4^n \text{ thick})^{1,2,3}$

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

		Design values in pounds per square inch (psi)								
Species and commercial grade	Size classification	I narallel I narallel I nernendicular I narallel		Modulus of Elasticity		Specific Gravity ⁴	Grading Rules Agency			
		Fb	Ft	F _v	F₀⊥	F _o	E	Emin	G	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction	100000000000000000000000000000000000000	1,000	500	135	425	1,400	1,300,000	470,000		13500000
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000		

3. Determine allowable stresses

- F_b = 875 psi
- $F_v = 135 \text{ psi}$

Determine factors:

CD = ?

CM = 1

Ct = 1

CL = 1

CF = ? Cfu = 1

Ci = 1

_ .

Cr = 1

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD									LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	
$F_b = F_b$	х	C_D	См	C_{t}	C_L	C_{F}	C_{fu}	Ci	C_{r}	-	-	-	K _F	фь	λ	
$F_{\mathbf{v}}' = F_{\mathbf{v}}$	х	C_D	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ	

University of Michigan, TCAUP

Structures II

Slide 21 of 52

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_{b}' = F_{b} (C_{D} C_{M} C_{t} C_{t} C_{F} C_{fu} C_{i} C_{r})$$

Usage factors for flexure: $\mathbf{C}_{\mathbf{L}}$ Beam Stability Factor

3.3.3 Beam Stability Factor, C.

- 3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.
- 3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.
- 3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

4.4.1 Stability of Bending Members

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) 5 < d/b ≤ 6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

C_D Load duration factor

Use 1.6 (10 minutes)

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

2 x 4 use 1.5

		Size Factors,	C_F		
		F	b	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

University of Michigan, TCAUP

Structures II

Slide 23 of 52

Analysis Example

3. Determine allowable stresses

- $F_b' = F_b (C_D)(C_F)$ $F_b' = 875 (1.6)(1.5) = 2100 \text{ psi}$
- F_v' = F_v (C_D)
 F_v' = 135 (1.6) = 216 psi

4. Check that actual ≤ allowable

- f_b < F'_b
 f_v < F'_v

- 5. Check deflection
- 6. Check bearing $(F_{c\perp} \ge R/A_b)$

Analysis Procedure

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Assume f = F
 - Maximum actual = allowable stress
- 2. Solve stress equations for force
 - M = F_b S
 - V = 0.66 F, A
- 3. Use maximum moment to find loads
 - · Back calculate a load from moment
 - · Assumes moment controls
- 4. Check Shear
 - Use load found is step 3 to check shear stress.
 - If it fails (fv > F'v), then find load based on shear.
- 5. Check deflection
- 6. Check bearing

University of Michigan, TCAUP

Table 4A (Cont.) Reference Design Values for Visual (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see duration and dry service conditions. See NDS adjustment factors.)

USE WITH TABLE 4A AC

				Design val
Species and commercial grade	Size classification	Bending	Tension parallel to grain F _t	Shear parallel to grain F _v
SPRUCE-PINE-FIR				. ,
Select Structural		1,250	700	135
No. 1/ No. 2	2" & wider	875	450	135
No. 3	2 d widei	500	250	135
Stud	2" & wider	675	350	135
Construction	101000111111111111111111111111111111111	1,000	500	135
Standard	2" - 4" wide	550	275	135
Utility		275	125	135

from NDS 2012

Structures II Slide 25 of 52

Analysis Example

Given: member size, material and span.

Req'd: Max. Safe Load (capacity)

- Assume f = F'
 - Maximum actual = allowable stress
- 2. Solve stress equation for moment
 - M = F'_b S (i.e. moment capacity)

$$f_b = F_b' = 875(1.6)(1.5)$$

 $F_b' = 2100 \text{ ps}_1$

$$M_{\xi} = F_{b}^{1} S_{x} = 2100(3.063)$$

= 6432.3"-*

Analysis Example (cont.)

- 3. Use maximum forces to find loads
 - Back calculate a maximum load from moment capacity

$$M_{4} = PL/4$$
 $P = M_{4} 4/L$
 $P = 536 (4)/6$
 $P = 357*$

- 4. Check shear
 - Check shear for load capacity from step 3.
 - Use P from moment to find Vmax
 - Check that fv < Fv'
- 4. Check deflection (serviceability)
- 5. Check bearing (serviceability)

$$V_{\text{max}} = \frac{7}{2} = \frac{357}{2} = 178.6^{*}$$

 $f_{\text{v}} = \frac{3}{2} \frac{\text{V}}{\text{A}} = 1.5 \frac{178.6}{5.25} = 51 \text{psi}$
 $51 \text{psi} < 180 \quad \text{Vok}$

University of Michigan, TCAUP

Structures II

Slide 27 of 52

Analysis Example

Given: loading, member size, material and span.

Req'd: Safe or Unsafe

Find Specific Gravity for Hem-Fir

• (from NDS)

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F _v	F₀⊥	F _e	Е	Emin	G	
HEM-FIR										
Select Structural No. 1 & Btr No. 1 No. 2 No. 3 Stud Construction Standard	2" & wider 2" & wider	1,400 1,100 975 850 500 675 975 550	925 725 625 525 300 400 600 325	150 150 150 150 150 150 150	405 405 405 405 405 405 405 405	1,500 1,350 1,350 1,300 725 800 1,550 1,300	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000 1,200,000 1,300,000 1,200,000	580,000 550,000 550,000 470,000 440,000 470,000 440,000	0.43	WCLIB WWPA

University of Michigan, TCAUP

Structures II

Slide 29 of 52

Analysis Example

Section Properties:

4 x 12 (3.5" x 11.25")

Area = 39.38 in^2

 $Sx = 73.83 \text{ in}^3$

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	Α	S _{xx}	l _{xx}	Syy	l _{yy}
	in. x in.	in.²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N				NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP Structures II Slide 30 of 52

Determine Loading

Floor loading (D+L)
 Find Tributary area, A_T
 6' x 8' = 48 SF

• Determine member selfweight (w)

University of Michigan, TCAUP

Structures II

Slide 31 of 52

Analysis Example

Selfweight of member:

m.c. = 15% (given)

$$w (PLF) = D (PCF) x Area (IN^2)/144$$

The following formula shall be used to determine the density in lbs/ft³ of wood:

density =
$$62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

where:

G = specific gravity of wood

m.c. = moisture content of wood, %

$$D = 62.4 \left[\frac{0.43}{1 + 0.43(0.009)(15)} \right] \left[1 + \frac{15}{100} \right]$$

$$W = PLF = D \frac{AREA}{144} = 29.16 \frac{39.38}{144}$$

Determine Beam Forces

by superposition equations

$$R = \frac{\omega l}{2} + \frac{P}{2}$$

$$\frac{7.975(12)}{2} + \frac{2016}{2}$$

$$47.85 + 1008 = 1055.8*$$

$$V_{Max} = R$$

$$M_{d} = \frac{w f^{2}}{8} + \frac{PL}{4}$$

$$\frac{7.975(12)^{2}}{8} + \frac{2016(12)}{4}$$

$$143.5 + 6048 = 6191.5^{-4}$$

by diagrams or

University of Michigan, TCAUP

Structures II

Slide 33 of 52

Analysis Example

Determine actual stresses

- $f_b = M/S$ $f_v = 1.5 V/A$

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	Α	S _{xx}	l _{xx}	S _{yy}	l _{yy}
	in. x in.	in.²	in.3	in.4	in.3	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	40 01	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

$$f_{v} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{1055.8}{39.38} = 40.22 \text{ Psi}$$

Determine allowable stresses

F_b and F_v (from NDS)

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F _v	F₀⊥	F _c	E	Emin	G	
HEM-FIR										
Select Structural No. 1 & Btr No. 1 No. 2 No. 3 Stud Construction	2" & wider	1,400 1,100 975 850 500 675 975	925 725 625 525 300 400	150 150 150 150 150 150 150	405 405 405 405 405 405 405	1,500 1,350 1,350 1,300 725 800 1,550	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000 1,200,000 1,300,000	580,000 550,000 550,000 470,000 440,000 470,000	0.43	WCLIB WWPA
Standard Utility	2" - 4" wide	550 250	325 150	150 150	405 405	1,300 850	1,200,000 1,100,000	440,000 400,000		

University of Michigan, TCAUP

Structures II

Slide 35 of 52

Analysis Example

3. Determine allowable stresses

- $F_b = 1400 \text{ psi}$
- F_v = 150 psi

Determine factors:

CD =

CM =

Ct =

CL =

CF =

Cfu = Ci =

Cr =

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only				AS	SD an	d LRI	FD				LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	C_D	См	C_{t}	C_{L}	C_{F}	C_{fu}	C_{i}	C_{r}	-	-	-	K _F	фь	λ
$F_{\mathbf{v}} = F_{\mathbf{v}}$	х	C_D	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

Determine allowable stresses

M.C. = 15% size: 4x12

				AVIO	V.	AVIO
	Standard	Area	X-)	(AXIS Moment	Y-1	AXIS Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	b x d	A				
bxu		in. ²	S _{xx} in. ³	I _{xx} in. ⁴	S _{yy}	l _{yy}
	in. x in.	In.	In.	ın.	in. ³	in.4
Boards ¹	011 0 110	4 075	0.704			
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N				NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet	Service	Factors,	C_{M}
-----	---------	----------	---------

F_b	F_{t}	F_{v}	$F_{\rm c\perp}$	$F_{\rm c}$	E and E _{min}
0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

Size Factors, CF

No.		F		
		Thickness	(breadth)	
Grades	Width (depth)	2" & 3"	4"	
	2", 3", & 4"	1.5	1.5	
Select	5"	1.4	1.4	
Structural,	6"	1.3	1.3	
No.1 & Btr,	8"	1.2	1.3	
No.1, No.2,	10"	1.1		
No.3	12"	1.0	1.1	
	14" & wider	0.9	1.0	
	2", 3", & 4"	1.1	1.1	
Stud	5" & 6"	1.0	1.0	
	8" & wider	Use No.3 Grade	tabulated desig	
Construction, Standard	2", 3", & 4"	1.0	1.0	
Utility	4"	1.0	1.0	
	2" & 3"	0.4	-	

University of Michigan, TCAUP Structures II Slide 37 of 52

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

b/d = 3.5 / 11.25 = 3.11 (case b)

Assuming ends are braced, CL = 1.0

3.3.3 Beam Stability Factor, C.

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

4.4.1 Stability of Bending **Members**

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) $6 < d/b \le 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

3. Determine allowable stresses

•
$$F_b$$
' = F_b (usage factors)

University of Michigan, TCAUP

Structures II

Slide 39 of 52

Analysis Example

- 3. Determine allowable stresses
 - F_v' = F_v (usage factors)

$$\frac{F_{V}}{C_{D}} = 1.0$$
 $\frac{C_{H_{V}} = 1.0}{C_{E}} = 1.0$
 $C_{i} = 1.0$

$$f_v = \frac{3}{2} \frac{V}{A} = 1.5 \frac{1055.8}{39.38} = 40.22 PSi$$

Check that actual ≤ allowable

- $f_b \le F'_b$ $f_v \le F'_v$

fb < F'b 1006,3 ps <1540: Vox

fuc F'v 40,22 PSi <150 :. Vok

Check deflection Check bearing $(F_{c\perp} \ge Reaction/A_{bearing})$

University of Michigan, TCAUP

Structures II

Slide 41 of 52

Design Procedure

Given: load, wood, span Req'd: member size

- 1. Find Max Shear & Moment
 - · Simple case equations
 - · Complex case diagrams
- 2. Determine allowable stresses
- 3. Solve S=M/F_b'
- 4. Choose a section from Table 1B
 - Revise DL and F_b'
- 5. Check shear stress
 - · First for V max (easier)
 - · If that fails try V at d distance from support.
 - · If the section still fails, choose a new section with A=1.5V/F_v'
- 6. Check deflection
- 7. Check bearing

			X-X AXIS		Y-Y AXIS		
	Standard	Area		Moment		Moment	
Nominal	Dressed	of	Section	of	Section	of	
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia	
b x d	bxd	Α	S _{xx}	l _{xx}	Syy	l _{yy}	
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4	
Boards ¹							
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	
Dimensio	n Lumber (see N	IDS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859	
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161	
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440	
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04	
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65	
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25	
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86	
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51	
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	

Given: load, wood, span **Req'd:** member size

GIVEN: F' = 1000 PSI F' = 100 PSI SPAN = 12' DL+LL = 80 PLF RER'D: SECTION SIZE

1. Find Max Shear & Moment

- Simple case equations
- · Complex case diagrams

University of Michigan, TCAUP

Structures II

Slide 43 of 52

Design Example

2. Determine allowable stresses

(given in this example) F'_b = 1000 psi

 $F'_{v} = 100 \text{ psi}$

 $F_{b}^{\prime} = \frac{M}{S_{x}} \frac{S_{x} = \frac{M}{F_{b}}}{S_{x}}$ $S_{x} = \frac{1440(12)}{1000} = 17.28 \text{ m}^{3}$

- 3. Solve S=M/F_b'
- 4. Choose a section from S table

Revise DL and F_b'

$$2 \times 10$$
 $5x = 21.39 > 17.28$

$$A = 13.88 \text{ id}$$

- 5. Check shear stress
 - First for V max (easier)
 - If that fails try V at d distance (remove load d from support)
 - If the section still fails, choose a new section with A=1.5V/F_v'
- $f_V = \frac{3}{2} \frac{V}{A} = \frac{1.5 (480^*)}{13.88 i^2} = 51.87$

51.87 psi < 100 psi VOK

- 6. Check deflection
- 7. Check bearing

Given: load, wood, span **Req'd:** <u>member size</u>

University of Michigan, TCAUP Structures II Slide 45 of 52

Design Example

Determine allowable stresses

• F_b and F_v (from NDS)

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

	Design values in pounds per square inch (psi)									
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F,	F,	F₀⊥	F _e	Е	E _{min}	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1.100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000	l	
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000	l	
Utility		250	150	150	405	850	1,100,000	400,000	l	

Determine allowable stresses

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	S _{xx}	l _{xx}	S _{yy}	l _{yy}
	in. x in.	in. ²	in.3	in.4	in.3	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N					
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Table 4A Adjustment Factors

 $\begin{array}{c} \textbf{Repetitive Member Factor, C_r} \\ \textbf{Bending design values, F_b, for dimension lumber 2"} \\ \textbf{to 4" thick shall be multiplied by the repetitive member} \end{array}$ to 4" thick shall be multiplied by the repetitive member factor, C= 115 when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C_M
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C _M						
F	Ft	F_v	$F_{c\perp}$	F_c	E and E _{min}	
0.85*	1.0	0.97	0.67	0.8**	0.9	

^{*} when $(F_s)(C_F) \le 1,150$ psi, $C_M = 1.0$ ** when $(F_c)(C_F) \le 750$ psi, $C_M = 1.0$

Flat Use Factor, C_{ta}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be multiplied by the following flat use factors:

Flat Use Factors, Cn Width Thickness (breadth) (depth) 2" & 3" 2" & 3" 4" 5" 6" 8"

10" & wide

NOTE Note To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Utility grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

be multiplied by the following size factors:

		F _b		F _t	F_c
		Thickness (t	oreadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade to	bulated design v	alues and size facto	ors
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
Control of the Contro	2" & 3"	0.4		0.4	0.6

Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No repro

Structures II Slide 47 of 52

Design Example

Determine allowable stresses.

Since the size is not known you have to skip C_F (or make a guess).

$$F_{b}^{1} = F_{b}(FACTORS)$$

= 975 (1.0 × 1.15 × 1.0 × C_F?) \approx 1121 psi
C_o C_r C_M

Determine Moment from Loading

First find the uniform beam load, w, from the floor loading.

$$\omega = (PSF) \frac{O.C.}{12} = PLF$$
 $(7+35) \frac{12}{12} = 42 PLF$

With the beam loading, calculate the maximum moment.

$$M = \frac{\omega l^2}{8} = \frac{42(20')^2}{8} = 2100^{1-4}$$

University of Michigan, TCAUP

Structures II

Slide 49 of 52

Design Example

Estimate the Required Section Modulus.

$$5_{x} = \frac{H}{F_{b}^{1}} = \frac{2100(12)}{1121} = 22.47 \text{ in}^{3}$$

Compare this required Sx to the actual Sx of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

Choose a section and test it (by analysis with all factors including C_{F})

TRY
$$2 \times 10$$
 $C_F = 1.1$

$$F_b' = 975 (1.15 1.1) = 1233.3 \text{ psi}$$

$$f_b = \frac{11}{5} \times \frac{2100 (12)}{21.39} = 1178 \text{ psi} < 1233 \text{ psi}$$

$$f_V = \frac{3}{2} \frac{V}{A} = \frac{1.55 (420)}{13.88} = 45.39 \text{ psi} < 160 \text{ psi}$$

$$VOK$$

$$VOSE 2 \times 10$$

University of Michigan, TCAUP

Structures II

Slide 51 of 52

Design Example

Check Deflection

In this case LL only against code limit of L/360

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or W	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	-	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	1 1 1	//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120	=	=
Farm buildings	_	_	//180
Greenhouses	_	1-1	//120

$$\Delta_{LL} = \frac{5\omega P^4}{384 EL} = \frac{5(35)(20)^4(1728)}{384 (1500000)(98.93)} = 0.849''$$

$$\Delta \text{LIMIT} \frac{L}{360} = \frac{20'(12)}{360} = 0.667''$$