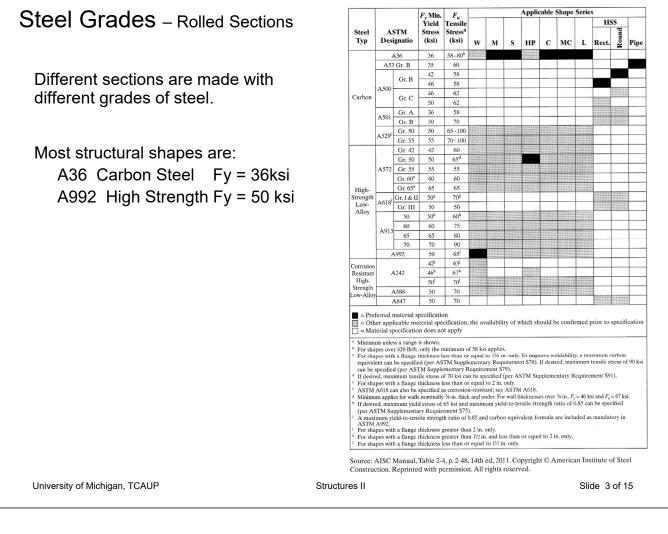
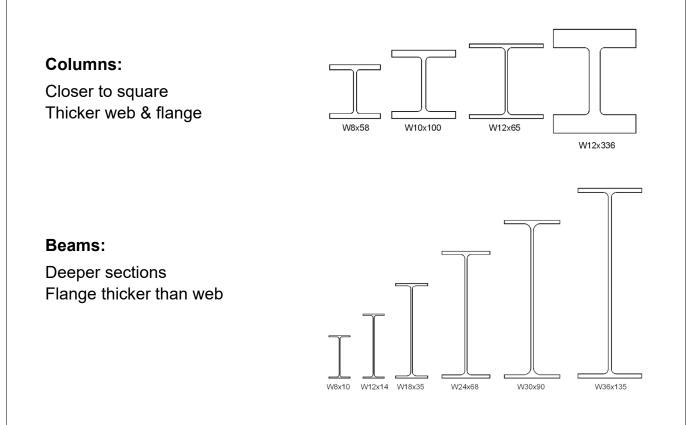


Steel Beam Analysis Part 1

- Steel Properties
- Steel Profiles
- Steel Codes: ASD vs. LRFD
- · Analysis Method



University of Michigan, TCAUP


Structures II

Slide 1 of 15

Nomenclature of steel shapes Standard section shapes: W – wide flange **S** – American standard beam C – American standard channel W8x10 S8x23 C8x11.5 L – angle WT or ST – structural T STD, XS or XXS - Pipe **HSS** – Hollow Structural Sections Rectangular, Square, Round LLBB, SLBB - Double Angles L8x4x.5 WT8x20 4" Pipe TS6x4x.25 4" Pipe STD. XXS

Steel W-sections for beams and columns

Steel W-sections for beams and columns

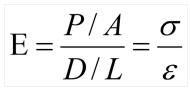
Columns:

Closer to square Thicker web & flange

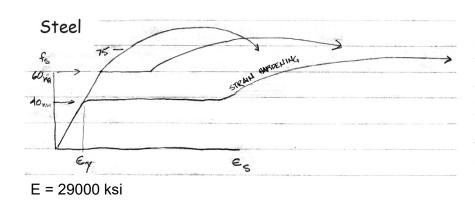
Beams:

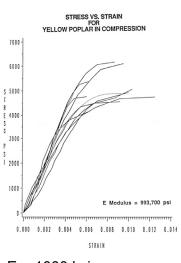
Deeper sections Flange thicker than web

Photo by Gregor Y.

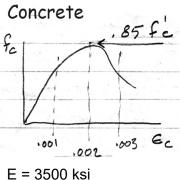

University of Michigan, TCAUP

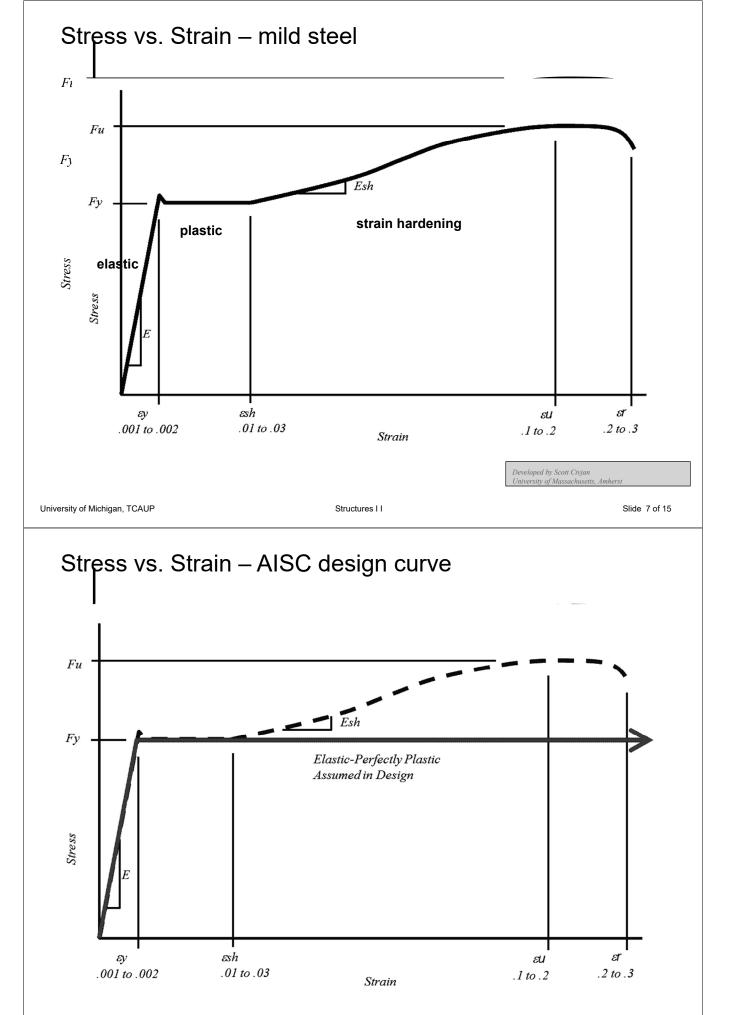
Structures II

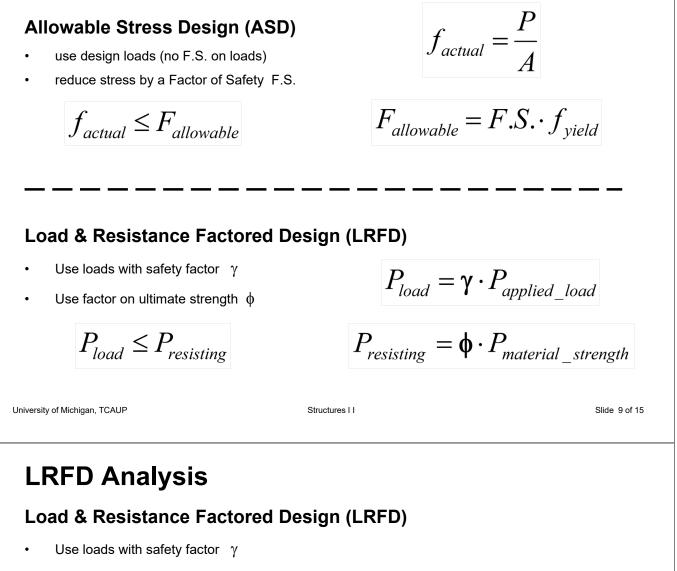

Slide 5 of 15


Young's Modulus

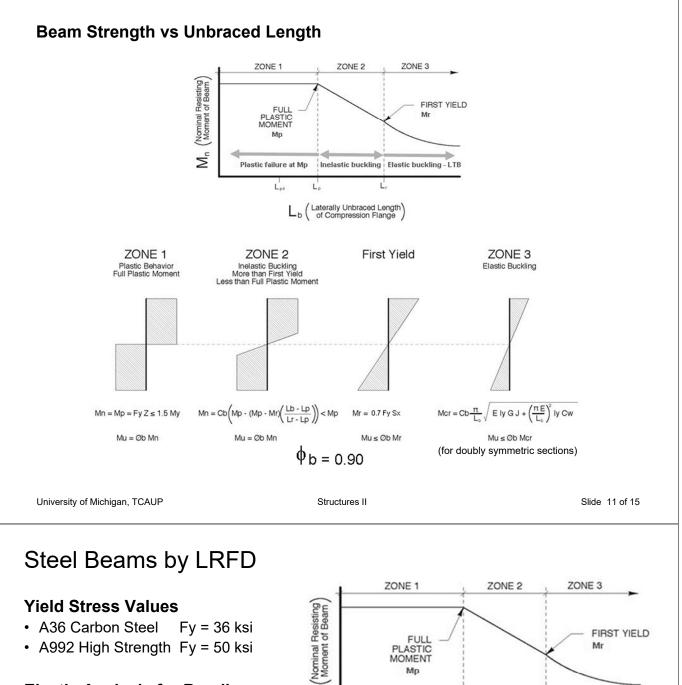
Young's Modulus or the Modulus of Elasticity, is obtained by dividing the stress by the strain present in the material. (Thomas Young, 1807)




It thus represents a measure of the stiffness of the material.



Stress Analysis – Two Methods


- Use forces with strength factor ϕ

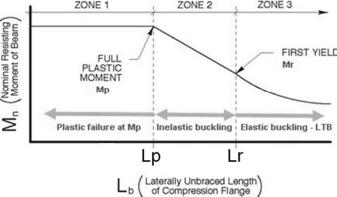
$$P_{load} = \gamma \cdot P_{applied} \qquad P_{load} \le P_{resisting} \qquad P_{resisting} = \phi \cdot P_{material}$$
Design Strength
$$P_{u} \le \phi P_{n}$$
Required (Nominal) Strength

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

1.
$$1.4D$$

2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
5. $0.9D + 1.0W$

Structures I I



Elastic Analysis for Bending

- Plastic Behavior (zone 1) Mn = Mp = Fy Z < 1.5 My
 - Braced against LTB (Lb < Lp)
- Inelastic Buckling "Decreased" (zone 2) Mn = Cb(Mp-(Mp-Mr)[(Lb-Lp)/(Lr-Lp)] < Mp• Lp < Lb < Lr
- Elastic Buckling "Decreased Further" (zone 3) Mcr = Cb * π /Lb $\sqrt{(E^*Iy^*G^*J + (\pi^*E/Lb)^2 * IyCw)}$

• Lb > Lr

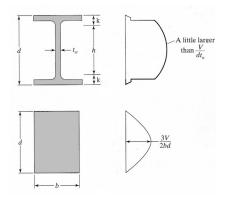

```
Lp = 1.76 r<sub>v</sub> \sqrt{E/Fy}
Mp = Fy Zx
Mr = 0.7 Fy Sx
```

Cb is LTB modification factor

$$C_{\rm b} = \frac{12.5 \text{ Mmax}}{2.5 \text{ Mmax} + 3 \text{ MA} + 4\text{MB} + 3\text{MC}}$$

Yield Stress Values	Z_{2}		Table 3-2 (continued) W-Shapes Selection by Z _x							<i>F_y</i> = 50 ksi			
A36 Carbon Steel Fy = 36 ksi			1									14.70	
A992 High Strength Fy = 50 ksi	Shape	Z _x	M _{px} /Ω _b kip-ft ASD	φ _b M _{px} kip-ft		φ _b M _{rx} kip-ft LRFD		φ _b BF kips LRFD	L _p ft	L _r ft	I _x	V _{nx} /Ω _v kips ASD	kips
Analysis for Bending	W21×44 W16×50 W18×46 W14×53 W12×58 W10×68 W16×45 W18×40 W14×48 W12×53 W10×60	95.4 92.0 90.7 87.1 86.4 85.3 82.3 78.4 78.4 77.9 74.6	238 230 226 217 216 213 205 196 196 194 186	358 345 340 327 324 320 309 294 294 294 292 280	143 141 138 136 136 132 127 119 123 123 116	214 213 207 204 205 199 191 180 184 185 175	11.1 7.69 9.63 5.22 3.82 2.58 7.12 8.94 5.09 3.65 2.54	16.8 11.4 14.6 7.93 5.69 3.85 10.8 13.2 7.67 5.50 3.82	4.45 5.62 4.56 6.78 8.87 9.15 5.55 4.49 6.75 8.76 9.08	13.0 17.2 13.7 22.3 29.8 40.6 16.5 13.1 21.1 28.2 36.6	843 659 712 541 475 394 586 612 484 425 341	145 124 130 103 87.8 97.8 111 113 93.8 83.5 85.7	147 167 169 141
 Plastic Behavior (zone 1) Mn = Mp = Fy Z < 1.5 My 	W16×40 W12×50 W8×67 W14×43 W10×54	73.0 71.9 70.1 69.6 66.6	182 179 175 174 166	274 270 263 261 250	113 112 105 109 105	170 169 159 164 158	6.67 3.97 1.75 4.88 2.48	10.0 5.98 2.59 7.28 3.75	5.55 6.92 7.49 6.68 9.04	15.9 23.8 47.6 20.0 33.6	518 391 272 428 303	97.6 90.3 103 83.6 74.7	14 13 15 12
 Braced against LTB (Lb < Lp) Inelastic Buckling "Decreased" (zone 2) 	W10×54 W12×45 W16×36 W14×38 W10×49 W8×58 W12×40 W10×45	66.5 64.2 64.0 61.5 60.4 59.8 57.0 54.9	166 160 160 153 151 149 142 137	249 241 240 231 227 224 214 206	101 101 98.7 95.4 95.4 90.8 89.9 85.8	150 151 148 143 143 137 135 129	8.14 3.80 6.24 5.37 2.46 1.70 3.66 2.59	12.3 5.80 9.36 8.20 3.71 2.55 5.54 3.89	4.31 6.89 5.37 5.47 8.97 7.42 6.85 7.10	12.3 22.4 15.2 16.2 31.6 41.6 21.1	510 348 448 385 272 228 307 248	106 81.1 93.8 87.4 68.0 89.3 70.2 70.7	159 122 14 ⁻ 13 ⁻ 102 13 ⁴ 105
Mn = Cb(Mp-(Mp-Mr)[(Lb-Lp)/(Lr-Lp)] < Mp	W14×34	54.6	136	205	84.9	128	5.01	7.55	5.40	15.6	340	79.8	
• Lp < Lb < Lr	W16×31 W12×35 W8×48	54.0 51.2 49.0	135 128 122	203 192 184	82.4 79.6 75.4	124 120 113	6.86 4.34 1.67	10.3 6.45 2.55	4.13 5.44 7.35	11.8 16.6 35.2	375 285 184	87.5 75.0 68.0	11:
Elastic Buckling "Decreased Further" (zone 3)	W14×30 W10×39	47.3 46.8	118 117	177 176	73.4 73.5	110 111	4.63 2.53	6.95 3.78	5.26 6.99	14.9 24.2	291 209	74.5 62.5	
Mcr = Cb * π /Lb $\sqrt{(E^*Iy^*G^*J + (\pi^*E/Lb)^2 * IyCw)}$	W16×26 ^v W12×30	44.2 43.1	110 108	166 162	67.1 67.4	101 101	5.93 3.97	8.98 5.96	3.96 5.37	11.2 15.6	301 238	70.5 64.0	
• Lb > Lr	ASD $\Omega_b = 1.67$ $\Omega_r = 1.50$	therefore, $\phi_{\nu} = 0.90$ and $\Omega_{\nu} = 1.67$.											
AISC 15 th ed.	L			AME	RICAN IN	STITUTE	OF STEE	EL CONS	RUCTIO	N			

Design for Shear


Shear stress in steel sections is approximated by averaging the stress in the web:

$$F_v = V / A_w$$

$$A_w = d * t_v$$

To adjust the stress a reduction factor of 0.6 is applied to F_v

$$F_v = 0.6 F_y$$

so, $V_n = 0.6 F_y A_w$ (Zone 1)

The equations for the 3 stress zones: (ϕ in all cases = 1.0)

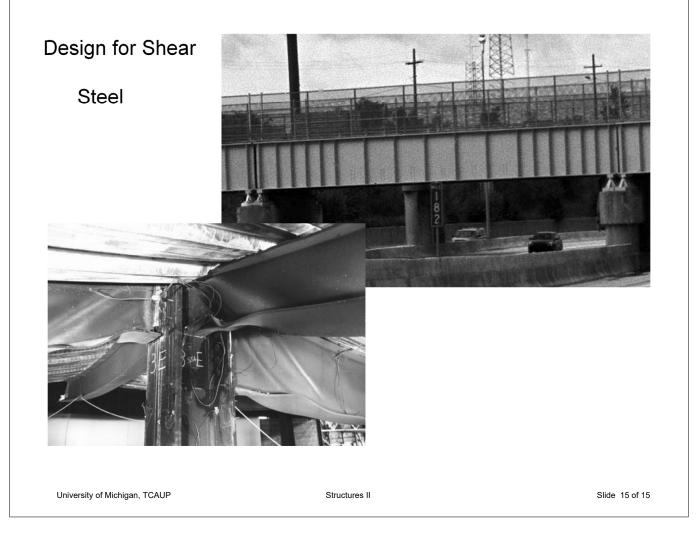
Zone 1:

WEB YIELDING (Most beam sections fall into this category)

if
$$\frac{h}{t_w} \le 2.45 \sqrt{E/F_y} = 59$$
 (for 50 ksi steel)

then: $V_n = 0.6 F_y A_w$

Zone 2:


INELASTIC WEB BUCKLING

if
$$2.45 \sqrt{E/F_y} < \frac{h}{t_w} \le 3.07 \sqrt{E/F_y} = 74$$
 (for 50 ksi steel)
then: $V_n = 0.6 F_y A_w (2.45 \sqrt{E/F_y}) / \frac{h}{t_w}$

Zone 3: ELASTIC WEB BUCKLING

if
$$3.07 \sqrt{E/F_y} < \frac{h}{t_w} \le 260$$

then: $V_n = A_w \left[\frac{4.25 E}{\left(\frac{h}{t_w}\right)^2} \right]$

University of Michigan, TCAUP

