Architecture 324

Structures II

Steel Beam Analysis Part 2

- · Steel Codes: ASD vs. LRFD
- Analysis Methods

University of Michigan, TCAUP

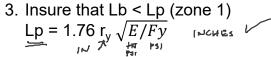
Structures II

Slide 1 of 14

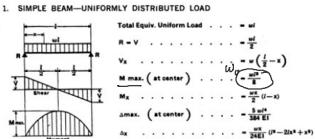
Pass/Fail Analysis of Steel Beams – for Zone 1 L_b <

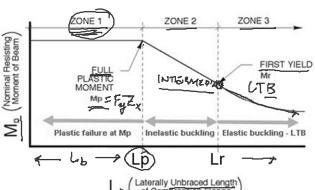
Given: yield stress, steel section, loading 5000

Find: pass/fail of section


SIMPLE BEAM—UNIFORMLY DISTRIBUTE

1. Calculate the factored design load W_u


Total Equiv. Unit

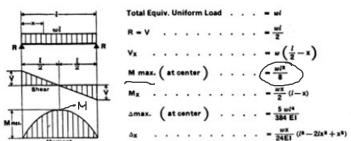

R = V . . .

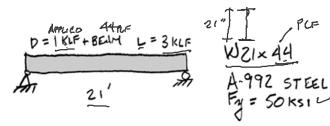
- W_u = 1.2W_{DL} + 1.6W_{LL} L \(\beta \) \(\beta \)
- Determine the design moment Mu. Mu will be the maximum beam moment using the factored loads

- 4. Determine the nominal moment, Mn Mn = Fy Zx (look up Zx for section), Mn < 1.5 Mg
- 6. Check that Mu < øMn b
- 7. Check shear
- 8. Check deflection

Pass/Fail Analysis of Steel Beams – for Zone 1

Example:


50 KS1


Given: yield stress, steel section, loading, braced @ 24" o.c.

Find: pass/fail of section

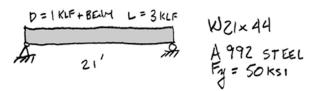
- Calculate the factored design $w_u = 1.2 w_{DL} + 1.6 w_{LL}$
- 2. Determine the design moment Mu. Mu will be the maximum beam moment using the factored loads.

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

FROM TABLE 1-1 AISC
$$Z_x = 95.4 \text{ m}^3$$

$$w_0 = 1.2(1 + .044) + 1.6(3) = 6.05 \text{ KLF}$$

$$M_0 = \frac{3}{8} = \frac{6.05 \text{ KLF} \times 21^2}{8} = \frac{333.5 \text{ K}^{-1}}{8}$$


University of Michigan, TCAUP

Structures II

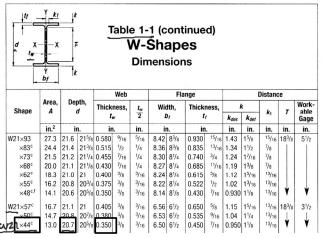
Slide 3 of 14

Pass/Fail Analysis of Steel Beams – for Zone 1 L_h < L_n Example:

- 3. Insure that Lb < Lp (zone 1) $Lp = 1.76(\hat{r_v})\sqrt{E/Fy}$ $Lp = 1.76 (1.26) \sqrt{29000/50}^{1<56}$ $Lp = 53.4 \text{ in.} = 4.45 \text{ ft} > 2 \text{ ft_ok}$ 724 hac.
- 4. Determine the nominal moment. Mn Mn = Mp = Fy Zx (look up Zx for section)
- 5. Factor the nominal moment ϕ Mn = 0.90 Mn
- Check that Mu < øMn

FROM THELE 1-1 DISC Z = 95.4 m3 $M_{n} = F_{y} \cdot Z = 50 \text{ K/l} (95.4 \text{ m}) = \frac{4770 \text{ K-l}}{12} = 397.5 \text{ K-l}$ $M_{n} = 4770 \text{ K-l}/12 = 397.5 \text{ K-l}$ $M_{m} = 0.9 (397.5) = 357.7 \text{ K-l}$ $M_{u} = \frac{333.5 \text{ K-l}}{1.5} < \frac{357.7 \text{ K-l}}{1.5} = \frac{4 \text{ Mn}}{1.5}$ Ples

Analysis of Steel Beam – L_b < L_p


W21x44

7. Check shear

CHECK SHEAR:

FROM AISC TABLE 1-1 Fy=50

h_w = 53.6 < 59 (zone 1)

Table 1-1 (continued) W-Shapes Properties											W21-W18			
Nom- inal	Compact Section Criteria		Axis X-X				Axis Y-Y				r _{ts}	h _o	Torsional Properties	
Wt.	b, *	77	1	S	r	(Z)	1	S	r	Z			J	C_{w}
lb/ft	$2t_{l}$	t _w	in.4	in.3	in.	in.3	in.4	in.3	in.	in.3	in.	in.	in.⁴	in. ⁶
93	4.53	32.3	2070	192	8.70	221	92.9	22.1	1.84	34.7	2.24	20.7	6.03	9940
83	5.00	36.4	1830	171	8.67	196	81.4	19.5	1.83	30.5	2.21	20.6	4.34	8630
73	5.60	41.2	1600	151	8.64	172	70.6	17.0	1.81	26.6	2.19	20.5	3.02	7410
68	6.04	43.6	1480	140	8.60	160	64.7	15.7	1.80	24.4	2.17	20.4	2.45	6760
62	6.70	46.9	1330	127	8.54	144	57.5	14.0	1.77	21.7	2.15	20.4	1.83	5960
55	7.87	50.0	1140	110	8.40	126	48.4	11.8	1.73	18.4	2.11	20.3	1.24	4980
48	9.47	53.6	959	93.0	8.24	107	38.7	9.52	1.66	14.9	2.05	20.2	0.803	3950
57		46.3	1170	111	8.36	129	30.6	9.35	1.35	14.8	1.68	20.5	1.77	3190
50	6.10	49.4	984	94.5	8.18	110_	24.9	7.64	1.30	12.2	1.64	20.3	1.14	2570
44	7.2	53.6	843	81.6	8.06	95.4	20.7	6.37	1.26	10.2	1.60	20.3	0.770	2110

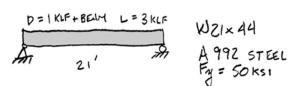
University of Michigan, TCAUP

Structures II

Slide 5 of 14

Pass/Fail Analysis of Steel Beam – L_b < L_p

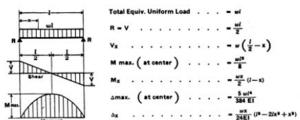
Example cont.:


7. Check shear

$$V_{n} = \underbrace{O_{1}6}_{217.35} \underbrace{K}_{N} = \underbrace{O_{1}6(50)(20.7 \times 0.35)}_{(20.7 \times 0.35)}$$

$$V_{n} = \underbrace{217.35}_{10} \underbrace{K}_{10}(217.35) = \underbrace{217.35}_{N}$$

$$\underbrace{V_{u} = 63.5^{K}}_{10}(217.3^{K} = 4V_{n})$$


Therefore, pass.

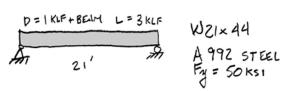
FROM THELE 1-1 DISC Zx= 95.4 m3

Wu = 1.2(1+.044) + 1.6(3) = 6.05 KLF

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Pass/Fail Analysis of Steel Beam – L, < L,

Example cont.:


8. Check deflection

$$\Delta_{\text{MAX}} = \frac{5 \, \text{w} \, l^4}{384 \, \text{EI}} = \frac{5 \, (3000) \, 21 \, (1728)}{384 \, (29000000) \, (843)}$$

$$EROM THE I-1 AISC Z_x = 95.4 \, \text{m}^3$$

$$\omega_0 = 1.2(1+.044) + 1.6(3) = 6.05 \, \text{KLF}$$

$$\frac{2}{360} = \frac{21(12)}{360} = \frac{0.7}{}$$

FROM TABLE 1-1 AISC Zx= 95.4 m3

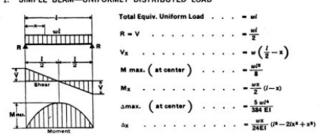
TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

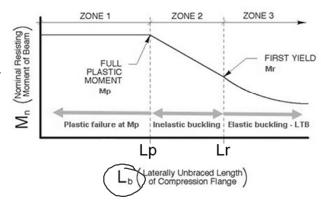
CONSTRUCTION	Ĺ	S or W f	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360) —	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	111	//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	#360 #240 #120	111	111
Farm buildings		_	//180
Greenhouses		_	//120

University of Michigan, TCAUP

Structures II

Slide 7 of 14


Capacity Analysis of Steel Beam

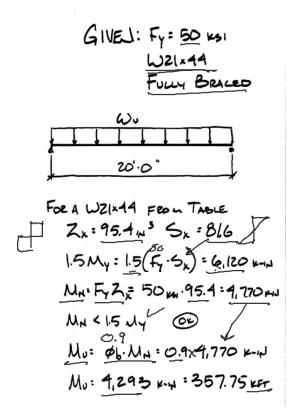

Given: yield stress, steel section, bracing — Lour?

Find: moment or load capacity

- 1. Determine the unbraced length of the compression flange (Lb).
- 2. Find the Lp and Lr values from the AISC properties table 3-6
- Compare Lb to Lp and Lr and determine which equation for Mn or Mcr to be used.
- 4. Determine the beam load equation for maximum moment in the beam. Solve for Mn._
- 5. Calculate load based on maximum moment. Mu = ϕ_b Mn

Example - Capacity Analysis of Steel Beam

Find applied live load capacity, wLL in KLF wu = 1.2wDL + 1.6wLL wDL = beam + floor = 44plf + 1500plf


Fy = 50 ksi, Fully Braced

 $My = Fy * Sx = 50 \text{ ksi } x 81.6 \text{ in}^3 = 4080 \text{ k-in}$

- 1. Find the Plastic Modulus (Zx) and Section Modulus (Sx) for the given section from the AISC table 1-1
- 2. Determine 1.5 My (limit of Mp)
- 3. Determine Mp = Fy Zx
- 4. Compare Mp and 1.5 My, and choose the lesser of the two for Mn
- 5. Calculate Mu: = ϕ_b Mn ϕ_b = 0.90

University of Michigan, TCAUP

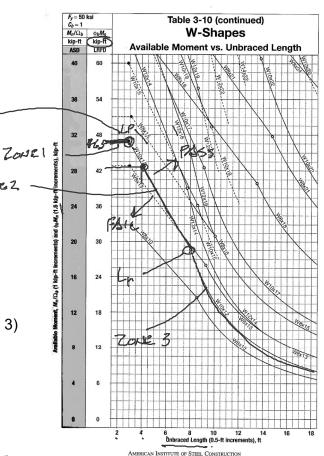
Structures II

Slide 9 of 14

Example - Load Analysis cont.

W21x44

- 6. Using the maximum moment equation, solve for the factored distributed loading, w₁₁
- 7. The applied (unfactored) load $w = w_u / (\gamma \text{ factors})$ $w_u = 1.2 \text{wDL} + 1.6 \text{wLL}$


$$\omega_0 = 7.155 \text{ KLF} = 1.2(0.044 + 1.5) + 1.6(\omega_{LL})$$
 $\omega_0 = 1.853 + 1.6 \omega_{LL} = 7.155 \text{ KLF}$
 $\omega_{LL} = 3.31 \text{ KLF}$

Steel Beams by LRFD

Moment Capacity Graphs

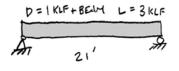
Analysis for Bending

- Plastic Behavior (zone 1)
 Mn = Mp
 Braced against LTB (Lb < Lp)
- Inelastic Buckling "Decreased" (zone 2)
 Mn < Mp
 Lp < Lb < Lr
- Elastic Buckling "Decreased Further" (zone 3)
 Mn = Mcr
 Lb > Lr

AISC 15th ed.

University of Michigan, TCAUP

Structures II

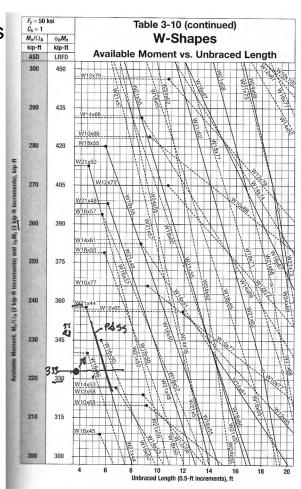

Slide 11 of 14

Pass/Fail Analysis of Steel Beams for Zone 1 $L_b < L_D$

Example:

Given: yield stress, steel section, loading, braced @ 24" o.c.

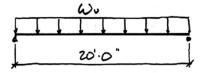
Find: pass/fail of section



WZIX 44 A 992 STEEL Fy = 50 KS1

FROM TABLE 1-1 AISC 7x= 95.4 m3

$$\omega_0 = 1.2(1+.044) + 1.6(3) = 6.05 \text{ KLF}$$


$$M_0 = \frac{\omega_0 I^2}{8} = \frac{6.05 \text{ KLF} \times 21'^2}{8} = \frac{333.5 \text{ K}^{-1}}{8}$$

Steel Beams by LRFD

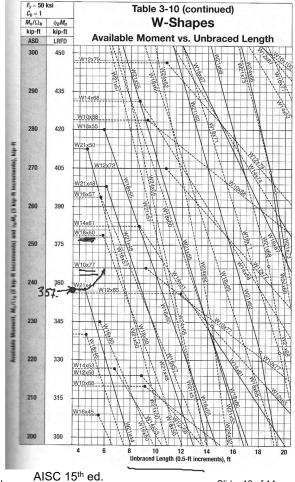
Moment Capacity Graphs

GIVEL: Fy: 50 kgs W21×44 FULLY BRACED

FOR A WZIX44 FROM TABLE

Zx: 95.4 m³ Sx: 816

1.5 My: 1.5 (Fy. Sx) = 6,120 km

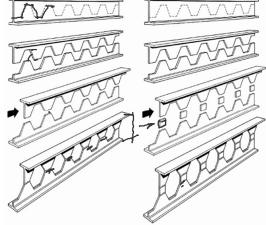

Mn: Fy.Zz 50 km. 95.4: 4,770 km

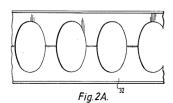
Mn < 1.5 My @

Mu: \$\phi_b.Mn: 0.9.4,770 km

Mu: 4,293 km: 357.75 km

University of Michigan, TCAUP


Structures II


Slide 13 of 14

Modified Sections

- Castellated Sections:
- "Boyd beam"
- round, hexagonal, rectangular, sinusoidal
- extendable (added depth)
- cost-efficient /
- lightweight ~

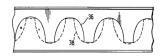


Fig.2B.

