ARCHITECTURE 324 STRUCTURES II #### **Course Introduction:** Course Syllabus **Course Format** Online Resources ## Teaching Staff: Dr.-Ing. Peter von Bülow pvbuelow@umich.edu GSI's: | 002 | Mohsen Vatandoost | mohsenv@umich.edu | |-----|-------------------|--------------------| | 003 | Mohsen Vatandoost | mohsenv@umich.edu | | 004 | Yifan Ma | yifanma@umich.edu | | 005 | Aditya Jaiswal | jaaditya@umich.edu | | 006 | Dylan Ling | tyling@umich.edu | University of Michigan, Taubman College Structures II Slide 1 of 11 ## **Course Syllabus** ### Organization - Lecture Monday & Wednesday - Recitation Friday - HW Problems on web - · Topic Quiz weekly #### **Evaluation** | • | 25 Lecture Quizze | 250 | |---|--------------------|-----| | • | 13 Topic Quizzes | 260 | | • | 12 HW Problems | 860 | | • | Tower Project | 250 | | • | 10 Recitation Labs | 200 | #### Text - Structures by Schodek - Statics and Strength of Materials by Onouye - · Code material on Canvas - Web site https://structures.tcaup.umich.edu/ Architecture 324 http://www.structures.tcaup.umich.edu #### ARCHITECTURAL STRUCTURES II Prof. Peter von Buelow pvbuelow@umich.edu Office 1205c TCAUP Phone 763-4931 office hours: by appointment Section 001 9:30-10:30 MW Recitation Sections F Section 002 8:30-9:30 Section 003 9:30-10:30 Section 004 9:30-10:30 Section 005 9:30-10:30 Section 006 11:30-12:30 GSI's Mohsen Vatandoost Mohsen Vatandoost Vffan Ma Aditya Jaiswal Dylan Ling GSI's mohsenv@umich.edu vifanma@umich.edu vifanma@umich.edu vjfang@umich.edu vjfung@umich.edu #### CATALOG DESCRIPTION This course covers the basic principles of elastic behavior for different materials such as wood, steel, concrete and composite materials, and compares the properties and applications of materials generally. It investigates cross sectional stress and strain behavior in flexure and in shear, and torsion as well as the stability of beams and columns. The qualitative behavior of combined stresses and fracture in materials is also covered. Prerequisite: ARCH 314 Students are introduced to the fundamentals of analysis and design of simple structural members in wood, steel, concrete and masonry. Basic code requirements of strength, stability and serviceability are discussed. Both vertical and lateral loads based on ASCE-7 are considered. Principles of composite materials design, structural continuity, and combined stresses are covered. ORGANIZATION The course is comprised of lectures (Monday & Wednesday) and a recitation (Friday). The lectures will be posted on the course website and may be watched asynchronously if you cannot attend in person. Lecture attendance is not required. The lectures cover structural concepts and procedures of design using the primary building materials of wood, steel, concrete and masonry. Each Friday the class is broken into smaller recitation sections in which the GSIs review analysis procedures of the various structural elements discussed in the lectures. Recitations may also includes an in-class lab assignment. Solutions to homework problems are entered online through the course website. Topics are summarized weekly through Canvas quizzes. In addition, a construction/testing project gives students an opportunity to apply concepts to a physical design. Computer facilities, including software, are available on machines in the building, for supporting computations. Evaluation is based on an accumulated total number of points. Points are earned based on performance in all course activities – 25 lecture quizzes, 13 Canvas topic quizzes, 12 homework problems, 10 recitation labs, and the tower project. Grades are assigned according to the number of points achieved during the semester: 25 lecture quizzes 10 pts each 250 13 topic quizzes 20 pts each 260 13 topic quizzes 20 pts each 260 tower testing project 250 10 recitation labs, 20 pts each 200 TOTAL 1820 The point scale relates to a full range of letter grades assigned as follows: A+ 1759 A 1699 A-B+ 1577 B 1517 B-C+ 1395 C 1335 C-D+ 1213 D 1153 D-E 1091 and below A- 1638 B- 1456 C- 1274 D- 1092 By University policy the minimum passing grade is a D (1153). The highest recorded grade in Architecture is an A. For graduate students C- (1274) is required to pass. ## **Course Schedule** #### Lectures Monday & Wednesday video recorded and posted #### Recitation Friday with GSI #### Homework course website #### Quizzes Canvas (weekly) #### Project tower weight and load | DATE | TOPIC | Text Reading | PROBLEMS (due dates online) | |-----------------------------------|--|--|---| | JAN 10
JAN 12 | Course Intro
Wood Properties | Onouye, Schodek
NDS | | | JAN 15
JAN 17
JAN 19 | Martin Luther King Day **** No
Wood Beam Analysis
Recitation [1-Wood Beams] | Class **** Martin Luther King
Schodek 6.4.2 | | | JAN 22
JAN 24
JAN 26 | Wood Beam Design
Column Buckling
Recitation | Onouye 8
Onouye 9.1-9.2 & 9.4, Scho | | | JAN 29
JAN 31
FEB 2 | Wood Columns - Tower Intro
Cross Laminated Timbers
Recitation [2-Wood Columns] | NDS
CLT Handbook | Wood Beam Design Wood Column Analysis | | FEB 5
FEB 7
FEB 9 | Steel Properties
Steel Beam Analysis
Recitation [3-Steel Beams] | AISC, Onouye 8.7
Schodek 6.4.3 | 4 Steel Beam Analysis | | FEB 12
FEB 14
FEB 16 | Steel Beam Design
Steel Column Analysis
Recitation [4-Steel Columns] | Schodek 6.4.3
Onouye 9.3, Schodek 7.4.4 | Prelim. Tower Report Due 5. Steel Beam Design | | FEB 19
FEB 21
FEB 32 | Steel Column Design
"Skyscrapers" David Macaulay
Recitation | Onouye 9.3, Schodek 7.4.4 video | Steel Column Analysis | | FEB 26
FEB 27
MAR 1 | WINTER RECESS **** NO CLA
WINTER RECESS **** NO CLA
WINTER RECESS **** NO CLA | ASS **** WINTER RECESS ** | *** NO CLASS ****
*** NO CLASS **** | | MAR 4
MAR 6
MAR 8 | Continuous Beams
Gerber Beams
Recitation [5-Continuous Bear | I. Engel Ch. 17, Schodek 8
Schodek 8.4.4
ns] | 7. Three Moment Theorem | | MAR 11
MAR 13
MAR 15 | Intro to Concrete – PCA video.
Concrete Beams
Recitation | Schodek 6.4.4 – 6.4.6 | 7. The Mohen Medicin | | MAR 18
MAR 20
MAR 22 | Tower Testing **** Tower Test
Concrete Beams
Recitation [6-Stress vs Strain] | ting **** Tower Testing **** I. Engel Ch.15 | Tower Testing **** 8. Concrete Beam Analysis | | MAR 25
MAR 27
MAR 29 | Concrete Beams
Concrete Columns
Recitation [7-Concrete Reinfor | Schodek 7.4.5 | Concrete Beam Design | | APR 1
APR 3
APR 5 | Composite Sections
Masonry Walls
Recitation [8-Composite Sections] | TMS 402
TMS 402
ons] | 10. Composite Sections | | APR 8
APR 10
APR 12 | Masonry Walls
Shells and Vaults
Recitation [9-Lateral Stability] | TMS 402
Schodek 12
Final Tower Report Due | 11. Masonry Walls | | APR 15
APR 17
APR 19 | Combined Stress
Combined Stress
Recitation [10-Combined Stres | I. Engel Ch. 19
I. Engel Ch. 19
ss] | 12. Combined Stress | | APR 22 | Prestress & Post Tension | | | University of Michigan, Taubman College Structures II Slide 3 of 11 ### **Course Web Site** http://www.structures.tcaup.umich.edu/ #### Lectures University of Michigan, Taubman College Structures II Slide 5 of 11 ### **Recitation** ### **Tower Test** University of Michigan, Taubman College Structures II Slide 7 of 11 ## **Computer Problems** Uniqname **UM ID Number** ## **Computer Problems** ### Problem Menu **Check Grades** Problem FAQ Select Problem **Download Instructions** Work Problem (3 versions) University of Michigan, Taubman College Structures II Slide 9 of 11 ## **Computer Problems** ## **Problem Page** Choose Data Set **Enter Answers** Submit **Read Score** Correct if Necessary # Tips on how engineering students study for exams University of Michigan, Taubman College Structures II