Architecture 324 Structures II

Steel Column Analysis

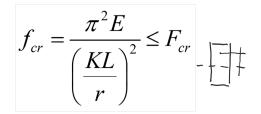
- · Failure Modes
- Effects of Slenderness
- · Stress Analysis of Steel Columns

University of Michigan, TCAUP

Structures II

Slide 1 of 20

Leonhard Euler (1707 - 1783)

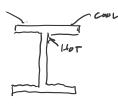

Euler Buckling (elastic buckling)

$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{\underline{r}}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$

 $I = Ar^2$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)


portrait by Emanuel Handmann,1753

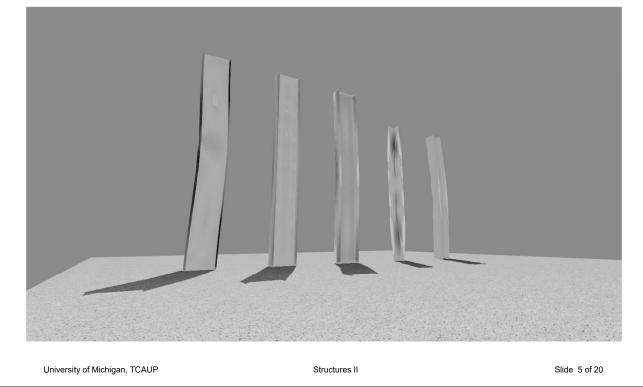
Analysis of Steel Columns

Conditions of an Ideal Column

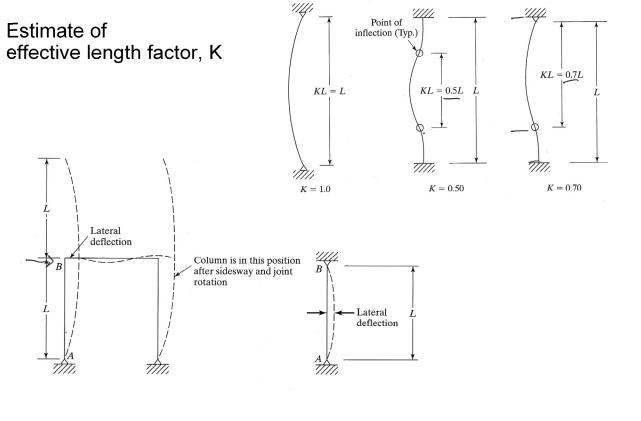
- initially straight
- axially loaded ~
- uniform stress (no residual stress)
- uniform material (no holes)
- no transverse load
- pinned (or defined) end conditions

University of Michigan, TCAUP

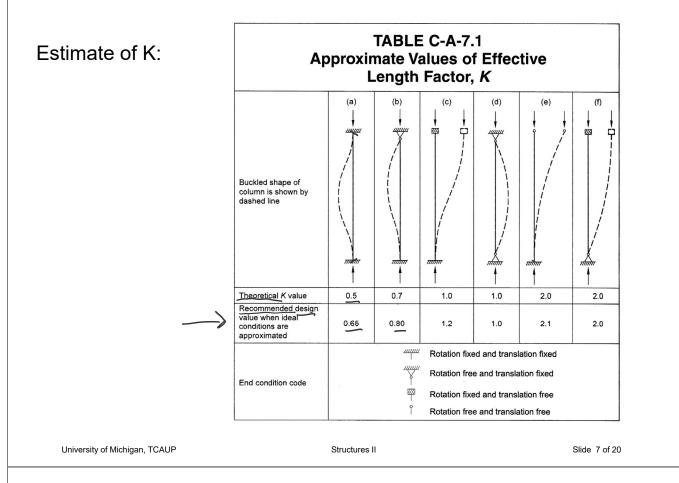
Structures II


Slide 3 of 20

Analysis of Steel Columns E3-2 E3-3 SHORT Short columns AISC Equat flexural buckling stress YIKLD (inelastic buckli Fail by material crushing Plastic behavior Point of tangency of curves AISC Equation E3-3 (elastic buckling) INTERMERIA F.c. LONG Intermediate columns Transition <u>*KL*</u> between equations Crush partially and then buckle (134 for $F_v = 36$ ksi, 113 for $F_v = 50$ ksi, etc.) Inelastic behavior Local buckling - flange or web KL slenderness = Flexural torsional buckling - twisting short intermediate long Long columns Fail in Euler buckling Elastic behavior

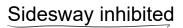

Failure Modes

Column 1: Strong axis flexural buckling Column 2: Web local buckling Column 3: Weak axis flexural buckling Column 4: Torsional buckling Column 5: Flange local buckling


"Dancing Columns" Sherif El-Tawil

Analysis of Steel Columns

Analysis of Steel Columns


Determining K factors by Alignment Charts

Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned: If Ic/Lc is large and Ig/Lg is small The connection is more pinned

More Fixed: If Ic/Lc is small and Ig/Lg is large The connection is more fixed

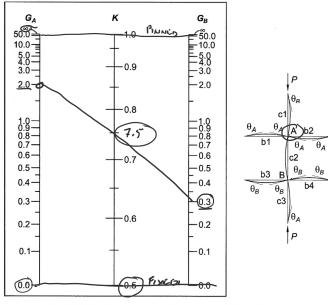
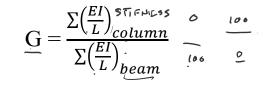
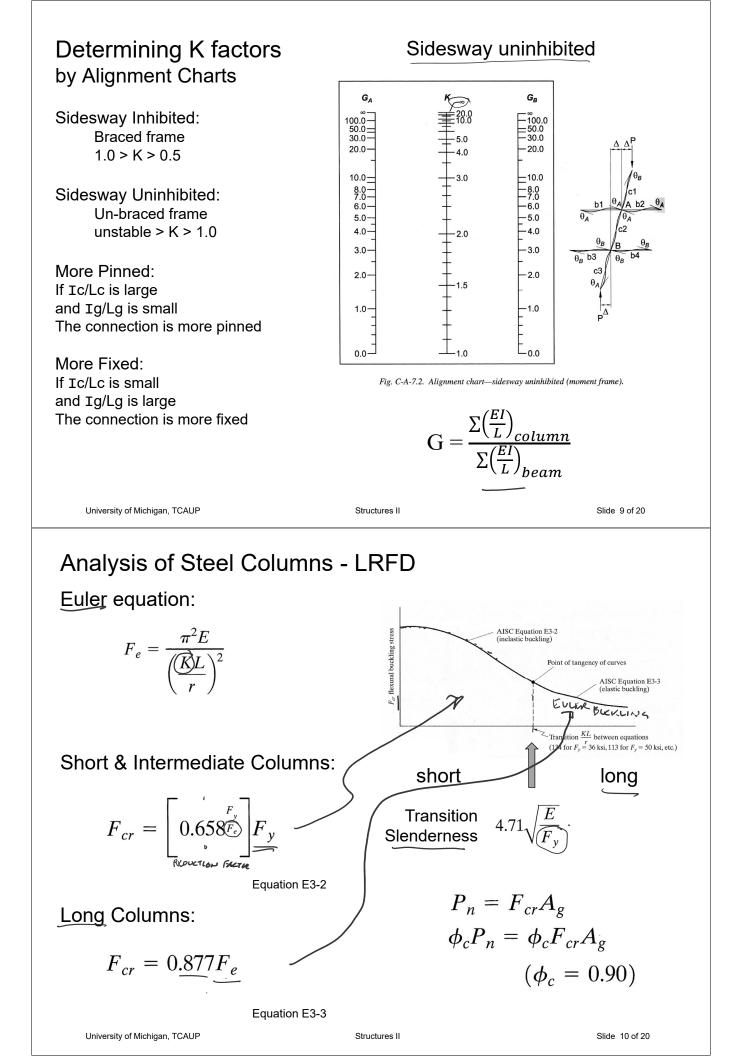
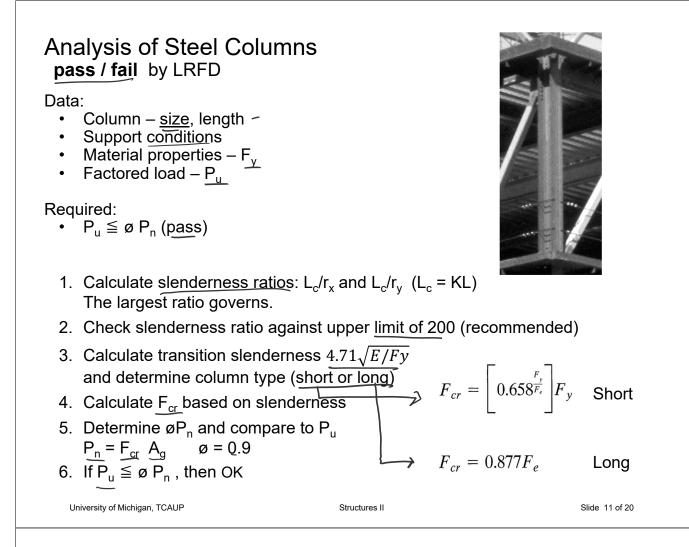
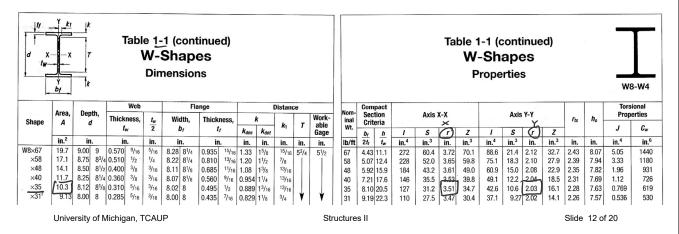





Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).

Example - Analysis of Steel Columns pass / fail by ASD


Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_y
- Factored Load Pu

Required:

• $P_u \leq ø P_n$ (pass)

- $\int \frac{F_u = 280}{10} K$ DATA : 12
- 1. Calculate slenderness ratios: L_c/r_x and L_c/r_v ($L_c = KL$) The largest ratio governs.

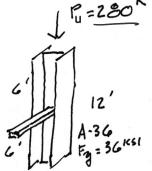
Example - Analysis of Steel Columns

pass / fail by ASD

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_y
- Factored Load P_u

Required:


• $Pu \leq ø P_n (pass)$

University of Michigan, TCAUP

- 1. Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- DATA: W $3 \times 35^{-}$ A-36 $r_{x} = 3.51^{''}$ $F_{g} = 36^{KS1}$ $r_{y} = 2.03^{''}$ $A = 10.3 \approx^{2}$ $f_{x} = 12^{'}$ $f_{y} = 6^{'}$ $K_{x} = K_{g} = 1.0$ x - x Axis Y-Y Axis $\frac{K_{y}f_{x}}{r_{x}} = \frac{144^{''}}{3.51^{''}}$ $\frac{K_{y}f_{y}}{r_{y}} = \frac{72^{''}}{2.03^{''}}$ $\frac{41.03}{r_{2}} < 200$ 35.47

Example - Analysis of Steel Columns pass / fail by ASD

W8x35

- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 6. If $P_u \leq ø P_n$, then OK

 $\frac{1}{5} = \frac{1}{5} = 4.71 \frac{7}{36} = 134$ $4.71 \frac{1}{F_{H_{2}}} = 4.71 \frac{29000}{36} = 134$ $4.71 \frac{1}{F_{H_{2}}} = 4.71 \frac{29000}{36} = 134$ $4.71 \frac{1}{F_{H_{2}}} = 4.71 \frac{29000}{36} = 170.2 \frac{1}{5}$ Euler Equation $\frac{1}{F_{E}} = \frac{\pi^{2}E}{(\frac{1}{K_{H}})^{2}} = \frac{\pi^{2}}{41^{2}} = 170.2 \frac{1}{5}$ Short Column Equation $F_{er} = \left[4.558 \frac{1}{5}\right] F_{Y} = 0.9153 (36) = 32.95 \frac{1}{5} \frac{1}{5}$ Column Strength $\frac{1}{h} = \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} = 32.95 \frac{1}{5} \frac{1}{$

Structures II

Slide 13 of 20

Analysis of Steel Columns capacity by LRFD

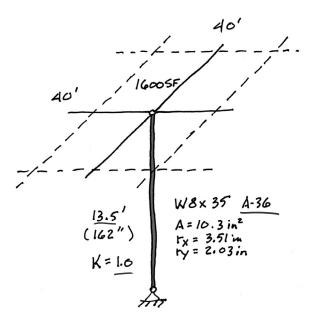
Data:

- Column size, length
- Support conditions
- Material properties F_y

Required:

- Max load capacity
- 1. Calculate <u>slenderness ratios</u>. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

Slide 15 of 20


Fn

```
University of Michigan, TCAUP
```

Structures II

Capacity Example 1

Free standing column Third floor studio space Supports roof load = 20 psf DL + SLsnow \approx 15lbs / FT depth

Capacity Example 1

- 1. Calculate slenderness ratios. The largest ratio governs.
- Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

$$\frac{N-N}{K_{3} l_{3}} = \frac{1.(162^{\circ})}{\frac{2.03}{7}} = \frac{79.8}{200} < 200$$

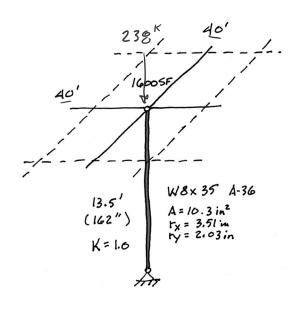
Euler Buckling

$$F_{e} = \frac{\pi^{2} E}{(K_{f})^{2}} = \frac{\pi^{2} 29000}{79.8^{2}} = 44.94 \text{ ksi}$$

Short Column Equation

$$F_{er} = \left[0.658^{\frac{F_{e}}{F_{e}}}\right] F_{y} = \left[0.7151\right] 36 = 25.74 \text{ ksi}$$

University of Michigan, TCAUP


Structures II

Slide 17 of 20

Capacity Example 1

DL = 20 psf

20 psf (1600 sf) = 32k on column

Column nominal strength

$$P_{n} = F_{cr} A_{g} = 25.74 \text{ Ksi} 10.3 \text{ m}^{2} = 265.1^{k}$$

$$\Phi P_{u} = 0.9(265) = 238.6^{k} = P_{0}$$
Load capacity 12L
$$P_{0} = 1.2(32) + 1.6(5L) = 238.6^{k}$$

$$SL = 125.1^{k}$$
For $A_{r} = 40 \times 40 = 1600 \text{ sf}$

$$SL = \frac{125100^{4}}{1600 \text{ sf}} = \frac{78.2}{78.2} \text{ Psf}$$

University of Michigan, TCAUP

Capacity Example 2 long column – using equations

Find the ca 25 ft. colur			าย	r _x r _y	= 3.51 i = 2.03 i	n. n.		25'	51 (HO E	51 Reden	6)			ļ	25'		K	:0,2
Table G1 Buckling modes Theoretical Ke value Recommended design K when ideal conditions approximated End condition code	Bucklin	0.7 0.80 Rotatie Rotatie	th Coef	1.0 1.0 translation translation	2.0 2. 2.10 2 on fixed on free	+ 222 1 1 1 1 1 1 1 1 1 1 1 1 1	Slende $\frac{K \int_{T_{y}}^{T_{y}} dT_{T_{y}}}{F_{y}}$ $\frac{4.7}{F_{y}}$ $\frac{4.7}{F_{y}}$ $\frac{7}{F_{y}}$	$= \frac{1}{10000000000000000000000000000000000$	= 11 $= 11$ $= 11$ $= 10$ $= 10$ $= 10$ $= 10$ $= 10$	$\frac{\pi^2}{11}$	18.1 2900 8.2 ¹ ion .47	0	: l = 2	95 1	17 1 KSI		- 16	le . 1
University of Mich Capacity ong colum	′ Exam	-		le	S	ructures II	4-24	pe ft	A.	Ta Ava cial	lab Con w	e S npre /-Sha	conti trer essi apes wa	nued ngth on,	n of c 1) n in kip)S	$F_y = \frac{1}{2}$	
Capacity	' Exam nn – u همانغهه	ising	tabl		S K:0.8		WE	pe tt tign 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19	87 87<	Ava cial	58 58 ce, fe, fe, fe, fe, fe, fe, fe, fe, fe, f	e S npre /-Sha	Conti trer apes 8 04-Po 543 551 563 554 543 554 543 554 543 554 543 554 543 554 354 497 447 394 497 421 394 421 394 208 208 208 208 209 198 106 142 102 208 209 5 20 5 20	Ax 400 Asx Asp Asp 350 350 350 350 320 320 298 298 298 213 198 198 198 198 198 198 198 198	N OF C	308 7 7 7 7 7 7 7 7 7 7	ESSION Fy = 1 0 0, F, F LRFD 4 463 2 409 2 301 1 301 1 221 1 221 1 221 1 221 1 121 1 221 1 121 1 166 98.5 84.9 74.0	50 ks

University of Michigan, TCAUP

Structures II