

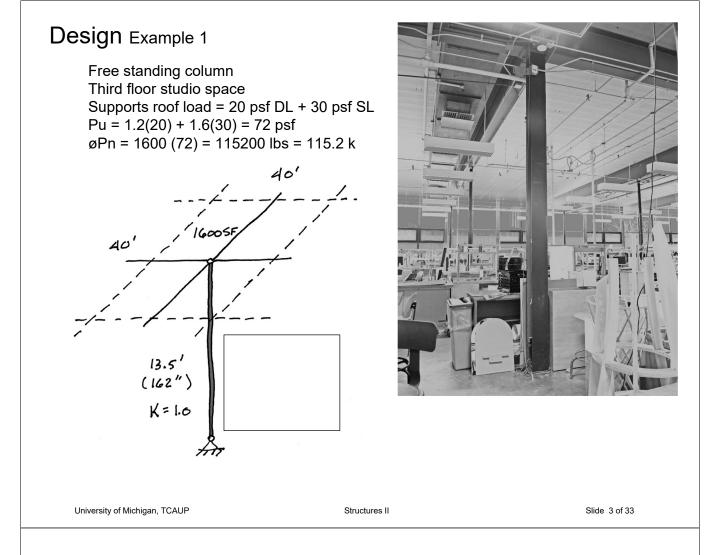
University of Michigan, TCAUP

Structures II

Slide 1 of 33

Design of Steel Columns with AISC Strength Tables

Data:


- Column length •
- Support conditions
- Material properties Fy
- Applied design load Pu

Required:

- Column Size
- 1. Enter table with height, KL = Lc
- 2. Read allowable load for each section to find the smallest adequate size.
- 3. Tables assume weak axis buckling. If the strong axis controls the length must be divided by the ratio rx/ry
- 4. Values stop in table (black line) at slenderness limit, KL/r = 200

	3			ail	abl	1a (c e Si npre -Sha	trer essi	ngtł	n in		F _y =	50 k	si
Sha	pe						W	3×					
lb/	ſŧt	67		58		48		40		35		31	
Des	lan	$P_n/\Omega_o \phi_o P_n$		$P_n/\Omega_o \phi_o P_n$		$P_n/\Omega_o \phi_o P_n$		$P_n/\Omega_o \phi_o P_n$		$P_n/\Omega_c \phi_c P_n$		P_n/Ω_c $\phi_c P_i$	
005	iyn	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	590	886	512	769	422	634	350	526	308	463	273	411
5	6	542	815	470	706	387	581	320	481	281	423	249	374
Effective length, $L_{\rm c}$ (ft), with respect to least radius of gyration, $r_{\rm f}$	7	526	790	455	685	375	563	309	465	272	409	241	362
atio	8	508	763	439	660	361	543	298	448	262	394	232	348
gyr	9	488	733	422	634	347	521	285	429	251	377	222	333
đ	10	467	701	403	606	331	497	272	409	239	359	211	317
ins	11	444	668	384	576	314	473	258	388	226	340	200	301
rad	12	421	633	363	546	297	447	243	366	213	321	189	283
ast	13	397	597	342	514	280	421	228	343	200	301	177	266
le	14	373	560	321	482	262	394	213	321	187	281	165	248
t 1	15	348	523	299	450	244	367	198	298	174	261	153	230
be	16	324	487	278	418	226	340	183	275	160	241	141	212
Isa	17	300	450	257	386	209	314	169	253	147	221	130	195
ē	18	276	415	236	355	192	288	154	232	135	203	118	178
Ň	19	253	381	216	325	175	264	141	211	123	184	108	162
Ē	20	231	347	197	296	159	239	127	191	111	166	97.2	146
Le	22	191	287	163	244	132	198	105	158	91.5	138	80.3	121
£	24	160	241	137	205	111	166	88.2	133	76.9	116	67.5	101
GUÍ	26	137	205	116	175	94.2	142	75.2	113	65.5	98.5	57.5	86.5
9	28	118	177	100	151	81.2	122	64.8	97.4	56.5	84.9	49.6	74.5
cti	30	103	154	87.5	131	70.7	106	56.5	84.9	49.2	74.0	43.2	64.9
Effe						62.2		49.6		43.3	65.0	38.0	
	32 34	90.3 79.9	136 120	76.9 68.1	116	55.1	93.5 82.8	49.0	74.6	43.3	65.0	30.0	57.1
	34	19.9	120	00.1	102			44.0	00.1				
						Propert				-			
Pwo, kips		126	190	102	153	72.0	108	57.2	85.9	45.9	68.9	39.4	59.1
P _{w/} , kip/i	n.	19.0	28.5	17.0	25.5	13.3	20.0	12.0	18.0	10.3	15.5	9.50	14.3
Pwb, kips		507	761	363	546	174	262	127	192	81.1	122	63.0	94.7
Pfb, kips		164	246	123	185	87.8	132	58.7	88.2	45.9	68.9	35.4	53.2
L_p, ft		7.49 47.6		7.42 41.6		7.35 35.2		7.21 29.9		7.17 27.0		7.18 24.8	
Lr, ft												- 4	_
A _g , in. ²		2	19.7	2	7.1	18	4.1		11.7 46		10.3	11	9.13
x, in.4			72 38.6		28 75.1		14 10.9		46 49.1		42.6		0 87.1
l _y , in.⁴		1 '	2.12		2.10		2.08	1 '	2.04	'	2.03		2.02
r _y , in. r _x /r _y			1.75		1.74		1.74		1.73		1.78		1.72
$P_{ex}L_c^2/10$	4 k-in 2	779		653		527		418		363		315	
$P_{ev}L_c^2/10$		25		215		174		14		12		106	
AS		LRF		Note: H									

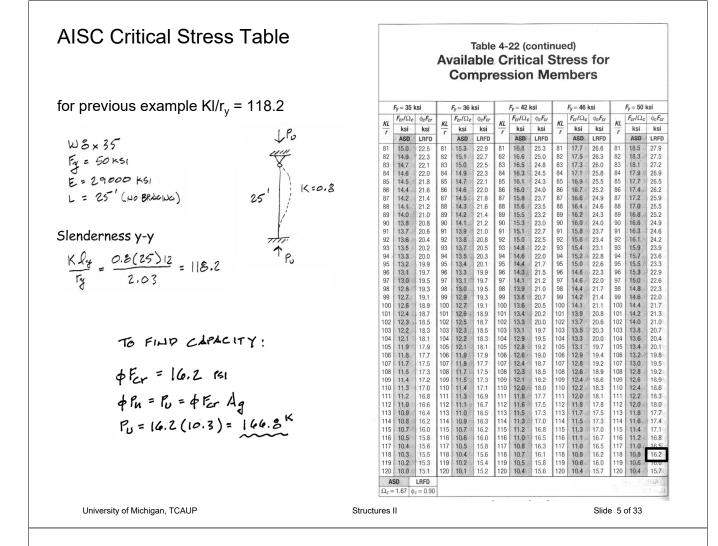
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

øPn = 1600 (72) = 115200 lbs = 115.2 k

DESIGN OF COMPRESSION MEMBERS

4-24

			A	vail	abl	1a (c e Si ipre	trer	ngtł	n in		F _y =	50 I	csi
w	в				w	-Sha	pes						
Sha							Wa	_					
lb/ft		6	5		4	-	40		3		3		
Design		P_n/Ω_c	¢cPn	P_n/Ω_c	¢cPn	P_n/Ω_o	¢cPn	P_n/Ω_c	¢₀Pn LRFD	P_n/Ω_c	¢₀Pn LRFD	P_n/Ω_c	¢ <i>cPn</i> LRFD
		ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD		ASD	
Effective length, L_c (ft), with respect to least radius of gyration, r_y	0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30	590 542 526 508 488 467 444 421 397 373 348 324 300 276 253 231 191 160 137 118 103	886 815 790 763 701 668 668 668 663 597 560 523 487 450 523 487 450 381 381 381 381 381 205 177 154	512 470 455 439 422 403 384 321 299 278 257 236 216 197 163 137 116 100 87.5 5	769 706 685 660 634 606 576 576 576 576 574 482 450 418 386 5325 296 244 205 175 151 131	422 387 375 361 347 331 314 297 280 262 244 226 209 192 175 159 132 111 94.2 81.2 70.7	634 581 563 521 497 473 447 421 394 367 340 314 288 264 239 198 166 142 122 106	350 320 309 298 285 272 258 243 228 213 198 183 169 154 141 127 105 88.2 75.2 64.8 56.5	526 481 465 448 429 409 388 343 321 298 275 253 232 211 191 158 133 113 97.4 84.9	308 281 272 262 251 239 226 213 200 187 174 160 147 135 123 111 91.5 76.9 65.5 56.5 49.2	463 423 409 394 377 359 340 321 281 261 241 203 184 166 138 116 98.5 84.9 74.0	273 249 241 232 222 211 200 177 165 153 141 130 118 97.2 80.3 67.5 57.5 549.6 43.2	411 374 362 348 333 317 301 283 266 248 230 212 195 178 162 146 121 101 86.5 74.5 64.9
20	32	90.3	136	76.9	116	62.2	93.5	49.6	74.6	43.3	65.0	38.0	57.1
	34	79.9	120	68.1	102	55.1	82.8	44.0	66.1				
						Propert							
P _{wo} , kips P _{wl} , kip/ii P _{wb} , kips P _{fb} , kips	n.	126 19.0 507 164	190 28.5 761 246	102 17.0 363 123	153 25.5 546 185	72.0 13.3 174 87.8	108 20.0 262 132	57.2 12.0 127 58.7	85.9 18.0 192 88.2	45.9 10.3 81.1 45.9	68.9 15.5 122 68.9	39.4 9.50 63.0 35.4	59.1 14.3 94.7 53.2
L _p , ft L _r , ft		7.49 47.6		7.42 41.6		7.35 35.2		7.21 29.9		7.17 27.0		7.18 24.8	
A_{g} , in. ² l_{x} , in. ⁴ l_{y} , in. ⁴ r_{y} , in. r_{x}/r_{y} $P_{ax}L_{c}^{2}/10^{4}$, k-in. ² $P_{ay}L_{c}^{2}/10^{4}$, k-in. ²		19.7 1 272 22 88.6 7 2.12 1.75 7790 653 2540 215		17.1 14.1 28 184 75.1 60.9 2.10 2.08 1.74 1.74 30 5270 50 1740		11.7 146 49.1 2.04 1.73 4180 1410		10.3 127 42.6 2.03 1.78 3630 1220		9.13 110 37.1 2.02 1.72 3150 1060			
ASD $\Omega_c = 1.67$		$\phi_c = 0$		Note: H	eavy line	indicates	L _c /r _y eq	ual to or g	preater th	ian 200.			


F	y = 50	ksi		Ava	ilak	ole s	Stre	tinue engi sior	th i		ſ]
					s	quar	e HS	SS		•	HS	S8-HS	S 7
s	hape			HSS							7×7×		
		1/4 0.233 25.82		^{3/16^[0] 0.174 19.63}		1/8 ^[c] 0.116 13.26		5/8 0.581 50.81		1/2 0.465 42.05		3% 0.349 32.58	
	_{less} in.												
	lb/ft												
D	esian	P_n/Ω_c	φ _c P _n	P_n/Ω_c		P_n/Ω_c		P_n/Ω_c	$\phi_c P_n$	P_n/Ω_c	¢ _c P _n	P_{π}/Ω_{c}	¢ _c P _n
	oongn	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
	0	213	319	137	206	66.6	100	419	630	347	522	269	404
	6	205	308	134	201	65.2	98.0	396	595	329	494	255	383
	7	202	303	133	199	64.7	97.2	388	583	322	484	250	376
	8	199	299	131	197	64.1	96.3	379	569	315	474	245	368
	9	195	293	130	195	63.4	95.3	369	554	307	461	239	359
5	10	191	287	128	193	62.7	94.2	358	538	298	448	232	349
e,	11	187	281	126	190	61.9	93.0	346	520	289	434	225	338
rati	12	182	274	124	187	61.0	91.7	334	502	279	419	218	327
gy	13	178	267	122	184	60.1	90.3	321	482	269	404	210	316
sol	14	173	260	120	180	59.1	88.8	307	462	258	387	202	303
를	15	167	252	118	177	58.0	87.2	294	441	247	371	194	291
tra	16	162	243	115	173	56.9	85.6	280	420	235	354	185	278
eas	17	156	235	112	169	55.8	83.8	265	399	224	336	176	265
2	18	151	227	110	165	54.6	82.0	251	377	212	319	168	252
to	19	145	218	107	160	53.3	80.1	237	356	200	301	159	239
sp	20	139	209	104	156	52.0	78.2	223	335	189	284	150	226
Ē	21	133	200	101	151	50.7	76.2	209	314	177	267	141	212
¥,	22	127	191	97.1	146	49.3	74.2	195	293	166	250	133	200
Ê	23	121	182	92.7	139	47.9	72.1	182	273	155	233	124	187
Le (24	115	173	88.3	133	46.5	69.9	169	253	145	217	116	175
£	25	110	165	83.9	126	45.1	67.8	156	234	134	201	108	163
Effective length, L_{c} (ft), with respect to least radius of gyration, r_{y}	26	104	156	79.5	120	43.6	65.6	144	216	124	186	100	151
e l	27	98.1	147	75.3	113	42.2	63.4	133	201	115	173	92.9	140
ecti	28	92.5	139	71.1	107	40.7	61.1	124	186	107	161	86.4	130
E	29	87.1	131	67.0	101	39.2	58.9	116	174	99.6	150	80.6	121
	30	81.7	123	63.0	94.7	37.7	56.6	108	162	93.1	140	75.3	113
	32	71.8	108	55.4	83.2	34.6	52.0	95.0	143	81.8	123	66.2	99.
	34	63.6	95.6	49.0	73.7	31.9	48.0	84.1	126	72.4	109	58.6	88.
	36	56.7	85.3	43.7	65.7	29.5	44.4	75.1	113	64.6	97.1	52.3	78.
	38	50.9	76.5	39.3	59.0	27.0	40.5	67.4	101	58.0	87.2	46.9	70.
	40	46.0	69.1	35.4	53.2	24.3	36.6	60.8	91.4	52.3	78.7	42.3	63.
_			_			Prop	erties					_	
A _p i	n. ²	7.10		5.	37	3.	62	14.	0	11.	6	8.	97
$l_x = l_y$, in. ⁴		70.7		54.4		37.4		93.4		80.5		65.	0
$I_{\chi} =$	ry, in.	3.	15	3.	18	3.	21	2.	2.58		63 -	2.	69
		LRFD	Kichana	ie elandar	for com	rection with E - E		0 ksi; tabulated val					

STEEL COMPRESSION MEMBER SELECTION TABLES

American Institute of Steel Construction

TION

4-73

Steel Connections

Methods of Connections

Bolted

Welded

Steel Connections Shop vs. Field Connections

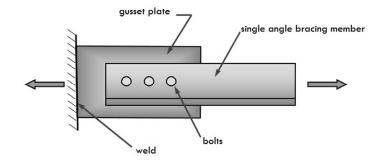
Shop Connections:

- Welding preferably performed in the shop as opposed to the field due to controlled environment
- Members can be positioned for more economical welding (welding upside down is difficult)
- Welding may have an equipment advantage in the shop
- Shops use both welding and bolting

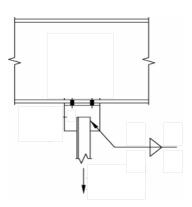
Field Connections:

- Bolting easily performed in the field and generally preferred when possible
- Bolting provides a method to erect the members and release the crane hook quickly

University of Michigan, TCAUP

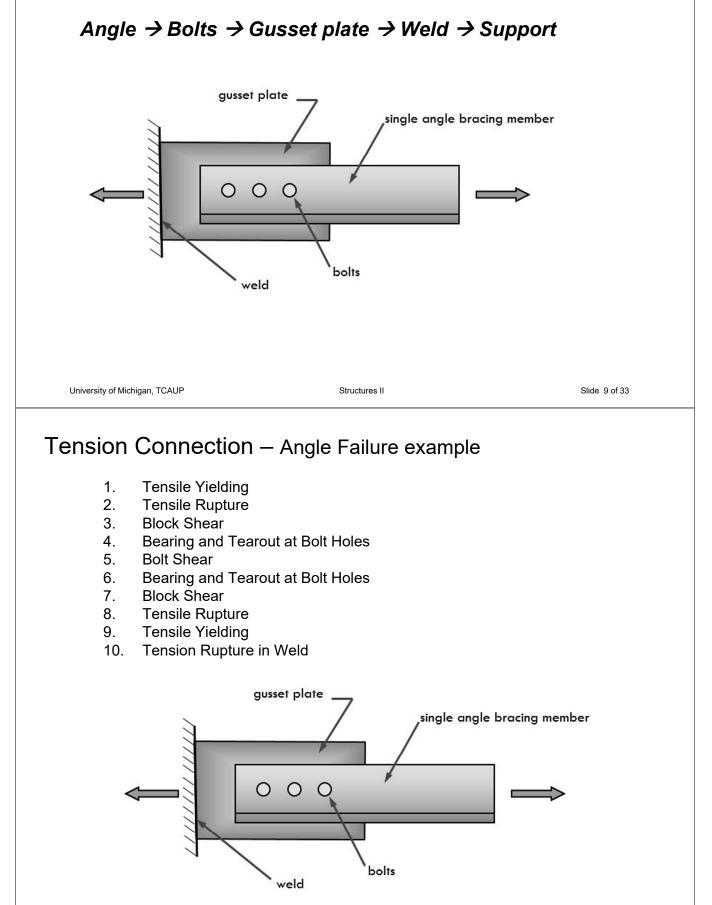

Structures II

Slide 7 of 33

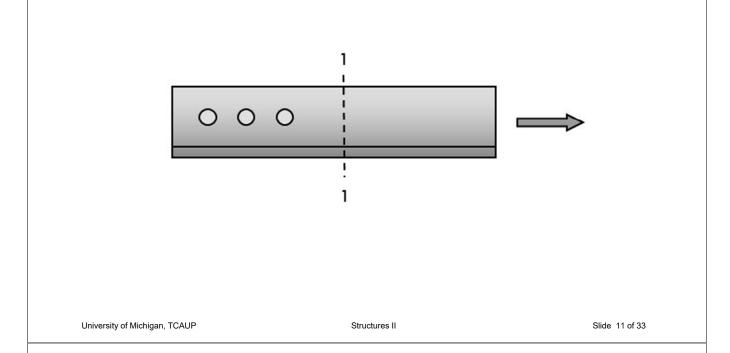

Steel Connections

Failure modes - Limit States

- Fasteners (bolts or welds)
 - shear
 - tension
 - bearing
- Connecting elements (plates or tees)
 - tension
 - block shear
 - tear out
- Supporting or supported members



Tension Connection: Example Angle – Bolts – Gusset Plate

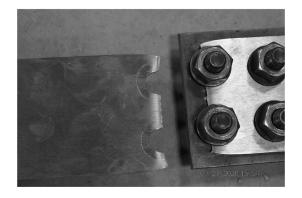

Load Path

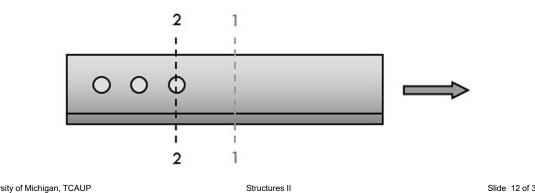
Tension Connection – Angle Failure

1. **Tensile Yielding**

- at gross section Rn = Fy Ag $\phi = 0.9$
- Fy = minimum yield stress, ksi
- Ag = gross area of member, in^2

Tension Connection – Angle Failure

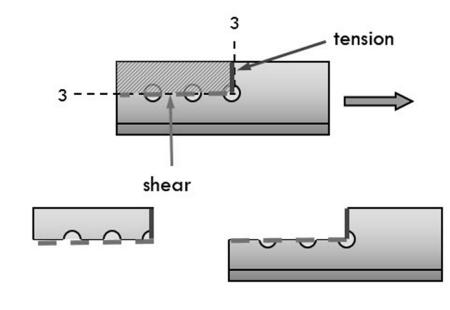

2. Tensile Rupture

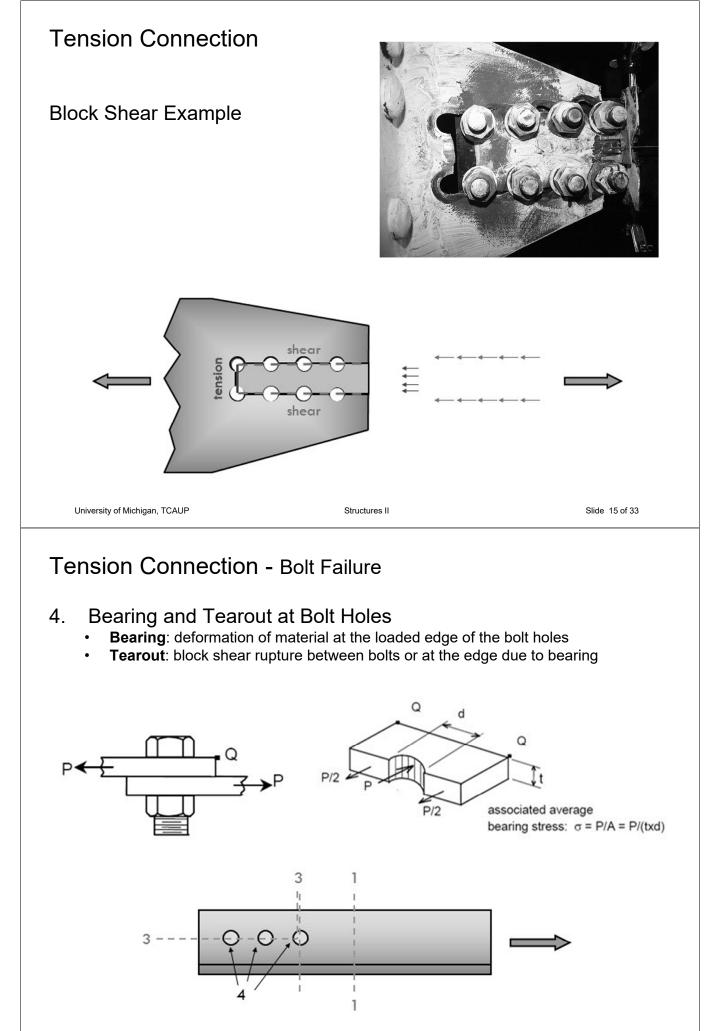

Flat Bar


- Rn = Fu Ae ø = 0.75 •
- Fu = minimum tensile strength, ksi ٠
- Ae = effective net area, in^2 •

Section (not flat)

- Ae = An U
- An = net area
- U = shear lag factor (Table D3.1)

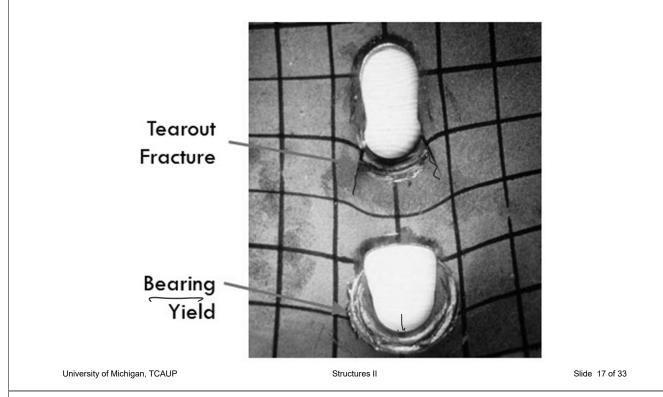




Tension Connection – Angle Failure

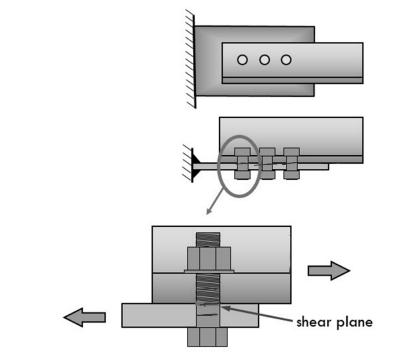
3. Block Shear

- Rn = 0.60 Fu Anv + Ubs Fu Ant ø = 0.75
- Anv = net area in shear
- Ant = net area in tension
- Ubs = 1.0 (uniform stress) Ubs = 0.5 (non-uniform stress)



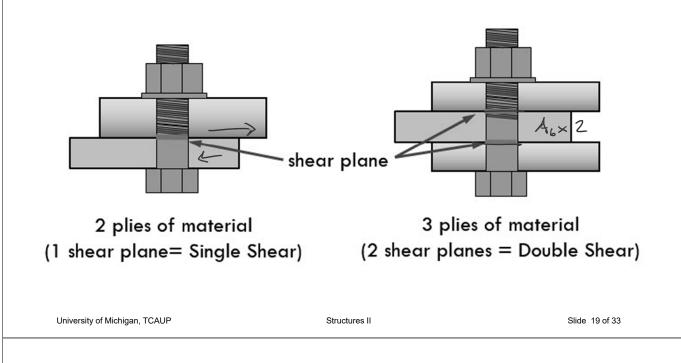
Tension Connection - Bolt Failure

4. Bearing and Tearout at Bolt Holes


- Bearing: deformation of material at the loaded edge of the bolt holes
- Tearout: block shear rupture between bolts or at the edge due to bearing

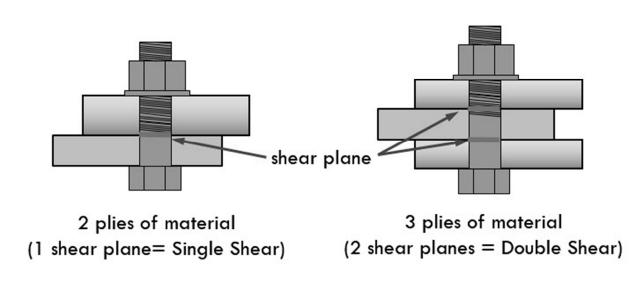
Tension Connection - Bolt Failure

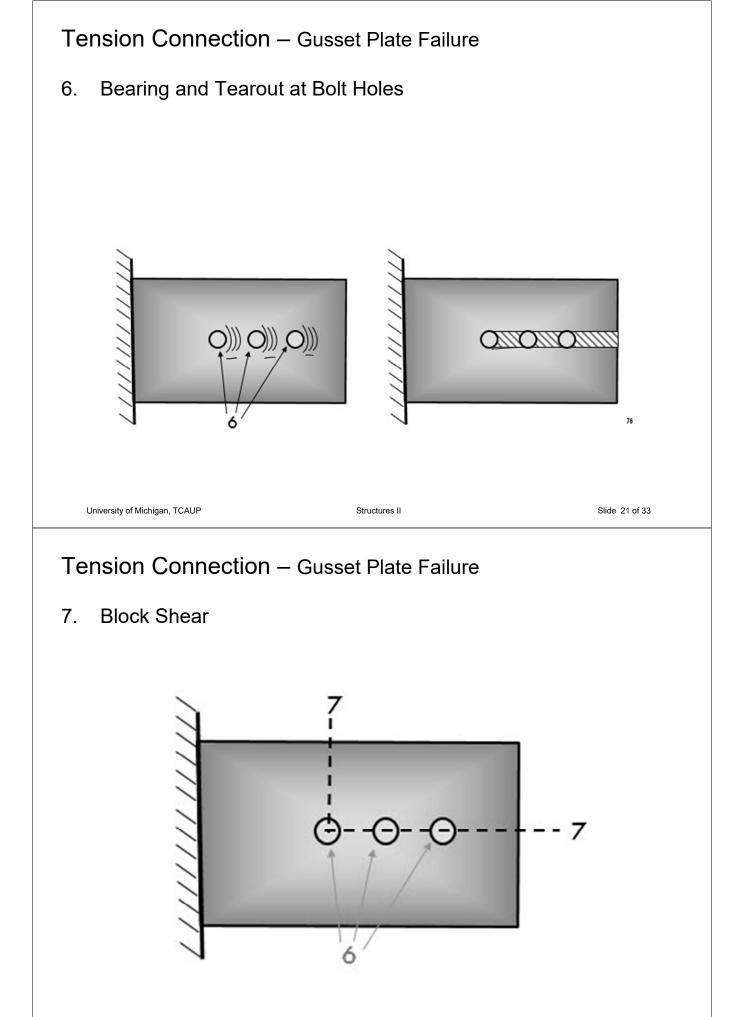
5. Bolt Shear


• Shear failure of the bolts along the shear plane (interface)

Tension Connection - Bolt Failure

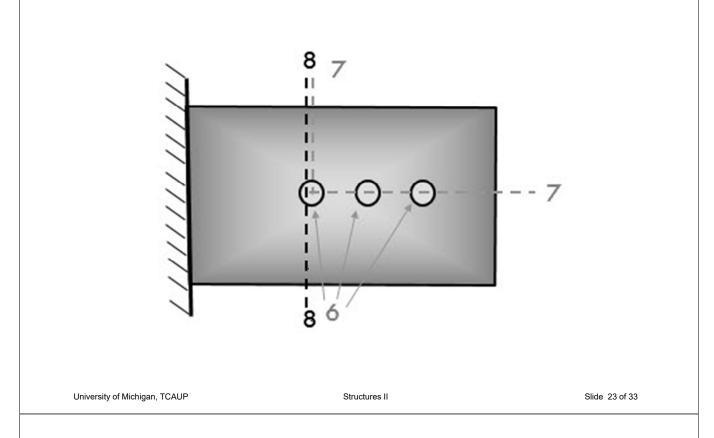
5. Bolt Shear

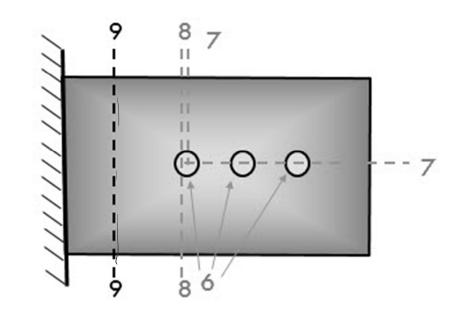

- Shear failure of the bolts along the shear plane (interface)
- Rn = Fn Ab ø = 0.75
- Fn = nominal shear stress, Fnv (or tensile stress Fnt)
- Ab = nominal bolt area (threaded or unthreaded)



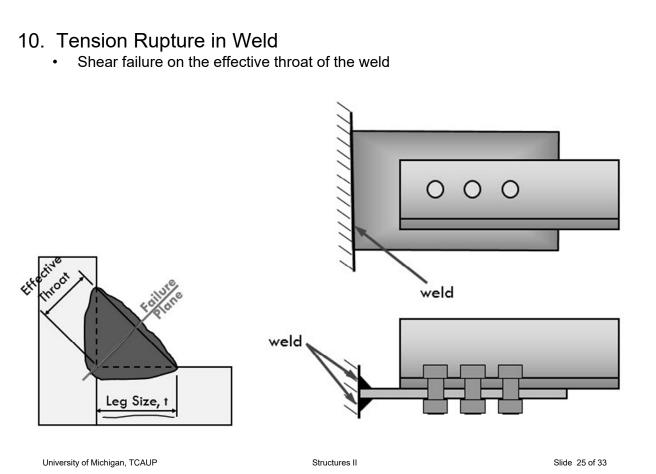
Tension Connection - Bolt Failure

5. Bolt Shear


- Shear failure of the bolts along the shear plane (interface)
- Rn = Fn Ab $\phi = 0.75$
- Fn = nominal shear stress, Fnv (or tensile stress Fnt)
- Ab = nominal bolt area (threaded or unthreaded)

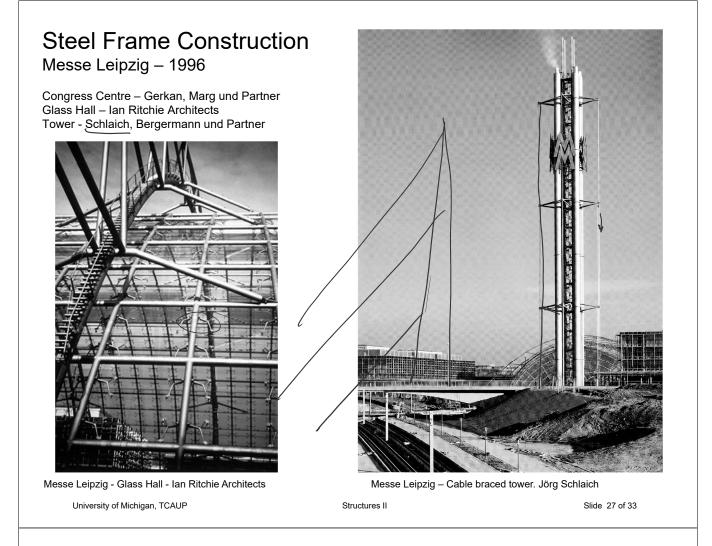

Tension Connection – Gusset Plate Failure

8. Tensile Rupture



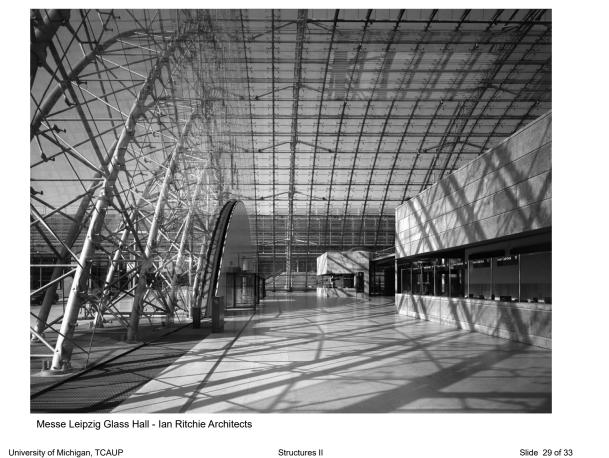
Tension Connection – Gusset Plate Failure

9. Tensile Yielding

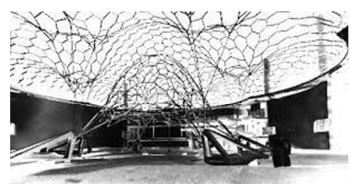

Tension Connection – Gusset Plate Failure

Steel Frame Construction

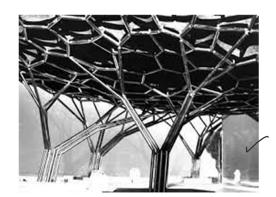
University of Michigan – North Quad

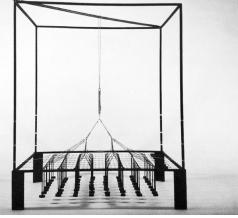


Steel Frame Construction



Messe Leipzig Glass Hall - Ian Ritchie Architects


Steel Frame Construction



Branching Columns (tree columns) Frei Otto

University of Michigan, TCAUP

Slide 30 of 33

Branching Columns (tree columns)

bridge in Pragsattel, Stuttgart, 1992 Schlaich, Bergermann und Partner

University of Michigan, TCAUP

Structures II

Slide 31 of 33

Branching Columns (tree columns)

