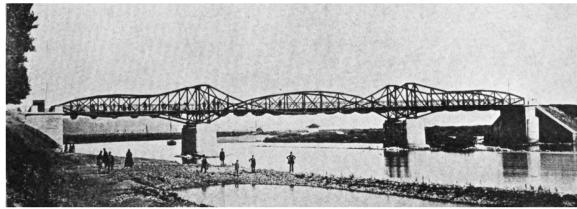


Splice or Hinge

- Can add one hinge for each redundant reaction
- Reduces length for transport
- Moment = 0 at hinge
- Can be used to balance and + moments for optimization

University of Michigan, TCAUP

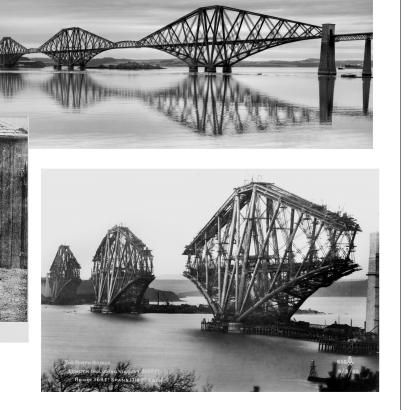
Structures II


3 of 15

Gottfried Heinrich Gerber (1832-1912)

Developed a cantilever bridge spanning system used in many bridges worldwide. The system became know as the "Gerber Beam" and uses cantilever segments to support a simple span.

Haßfurter Brücke, 1864. Span of 38 m over the Main River.



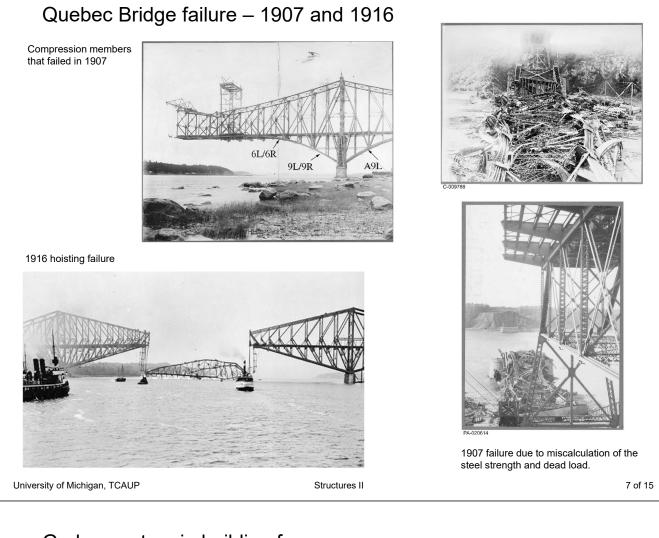
Examples of the Gerber system

Firth of Fourth Bridge, 1890

- total length 8094 ft.
- central span 1700 ft.
- Design Fowler & Baker
- Construction 1882 1889

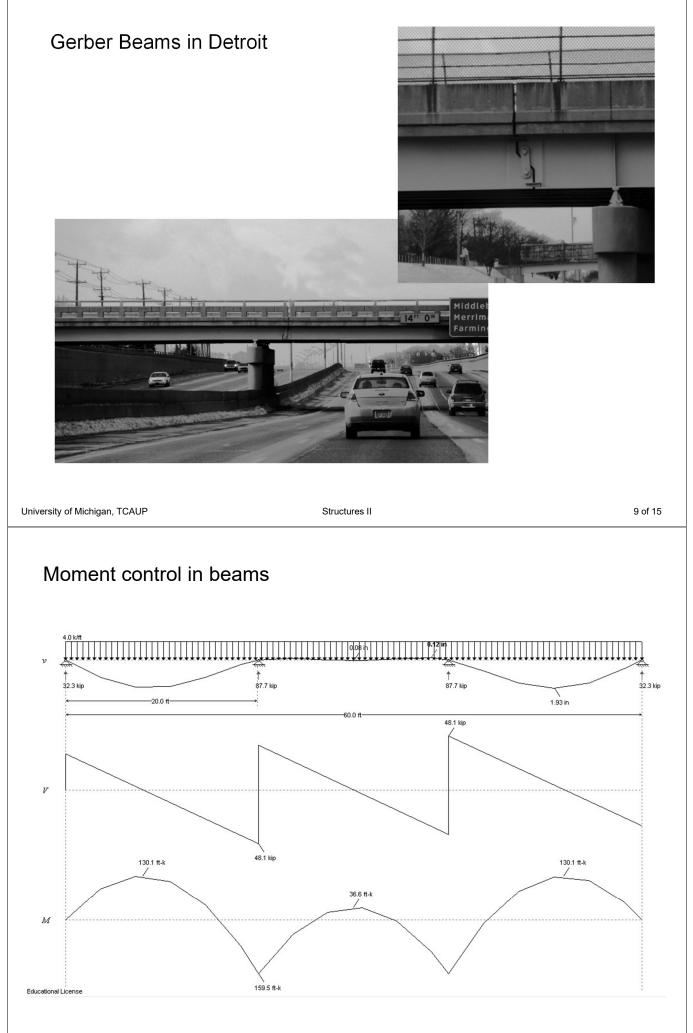
Static modeling of the Firth of Forth Bridge

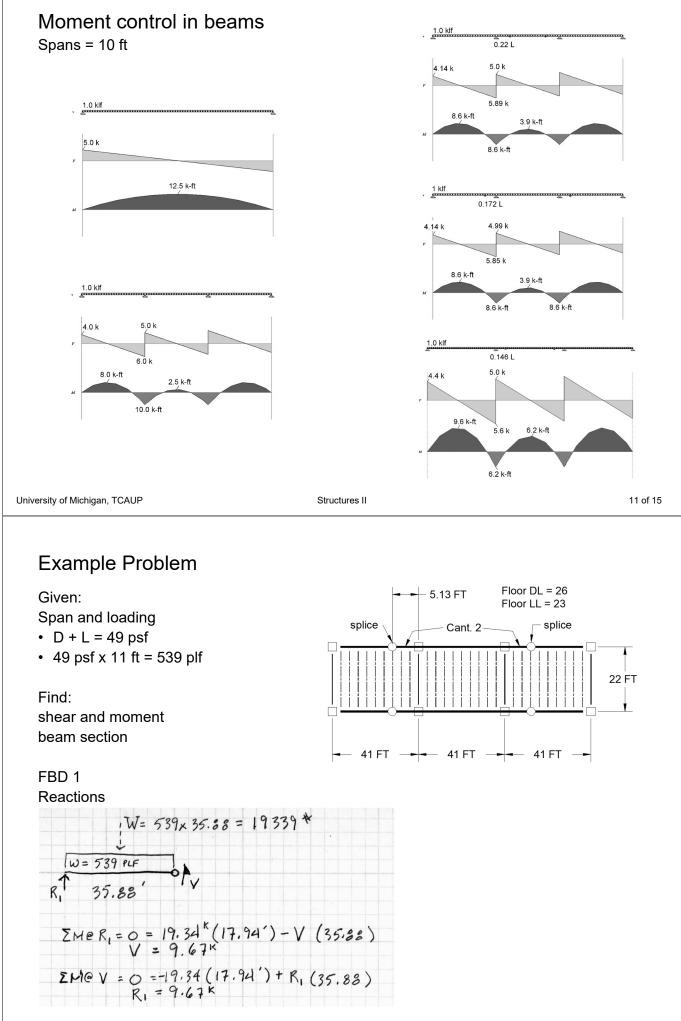
University of Michigan, TCAUP


by Fowler & Baker

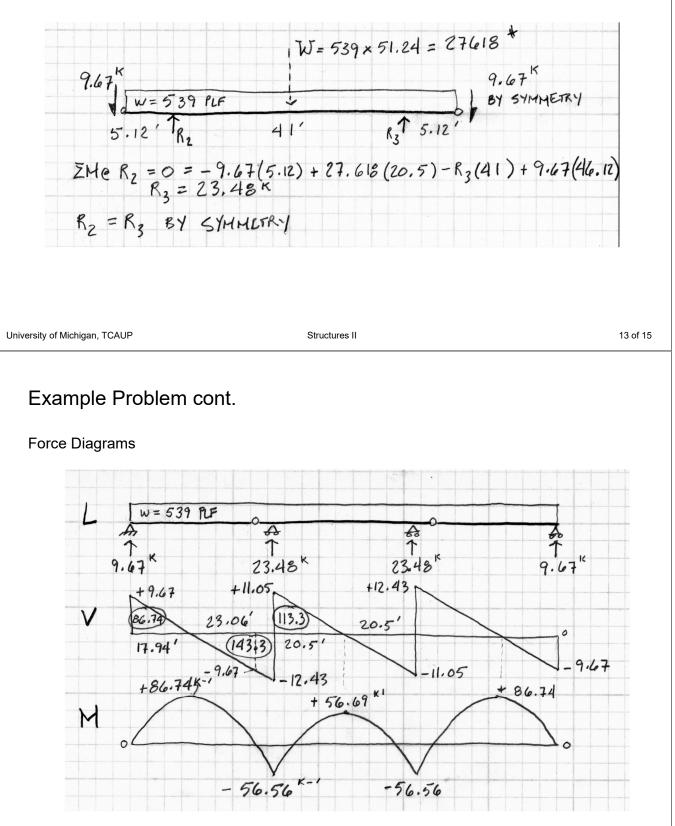
Structures II

5 of 15


<image><image>


Final successful completion 1917

Gerber system in building frames



University of Michigan, TCAUP

Structures II

Example Problem cont.

FBD 2 Reactions

xample Problem cont.	Fy =	Table 3-2 (continued) W-Shapes Selection by <i>Z_x</i>								Z				
STEEL BEAM DESIGN														
Mu = 86.74 K-FT Vu = 12.43 K	Shape	Zx	M _{px} /Ω _b kip-ft	¢ <i>bMpx</i> kip-ft	M _{rx} /Ω _b kip-ft	φ _b M _{rx} kip-ft	BF/Ω _b	φ _b BF kips	Lp	Lr	I _x	V _{nx} /Ω kips	-	
		in. ³	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	_	
Ju=& Mn	W14×26 W8×40		100 99.3	151 149	61.7 62.0	92.7 93.2	5.33 1.64	8.11 2.46	3.81 7.21	11.0 29.9	245 146	70.9 59.4		
- MU BG.74 Q1 23 K-FT	W10×33		96.8		61.1	91.9	2.39	3.62	6.85	21.8	171	56.4		
$A_{\mu} = \frac{M_{U}}{\Phi} = \frac{86.74}{0.9} = 96.38 \text{ K-FT}$	W12×26 W10×30	36.6	92.8 91.3		58.3 56.6	87.7 85.1	3.61 3.08	5.46 4.61	5.33 4.84	14.9 16.1	204 170	56.1 63.0		
	W8×35 W14×22		86.6 82.8		54.5 50.6	81.9 76.1	1.62 4.78	2.43 7.27	7.17 3.67	27.0 10.4	127 199	50.3		
In = ty tx	W10×26 W8×31 [†]	31.3	78.1	117	48.7 48.0	73.2	2.91	4.34	4.80	14.9	144	63.0 53.6		
- Mh 96.38(12) 23, 13 m3	W12×22		73.1	110	48.0	72.2 66.7	1.58 4.68	2.37 7.06	7.18 3.00	24.8 9.13	110 156	45.6 64.0		
$t_{H} = F_{H} Z_{X}$ $x = \frac{M_{h}}{F_{H}} = \frac{96.38(12)}{50^{1161}} = 23.13 \text{ m}^{3}$	W8×28		67.9	102	42.4	63.8	1.67	2.50	5.72	21.0	98.0	45.9		
0	W10×22 W12×19		64.9 61.6	97.5 92.6	40.5 37.2	60.9 55.9	2.68 4.27	4.02 6.43	4.70 2.90	13.8 8.61	118 130	49.0 57.3		
OK UP SECTION IN ZX TABLE	W8×24	23.1	57.6	86.6	36.5	54.9	1.60	2.40	5.69	18.9	82.7	38.9		
	W10×19 W8×21	21.6 20.4	53.9 50.9	81.0 76.5	32.8 31.8	49.4 47.8	3.18 1.85	4.76 2.77	3.09 4.45	9.73 14.8	96.3 75.3	51.0 41.4		
SE WIZX19	W12×16		50.1	75.4	29.9	44.9	3.80	5.73	2.73	8.05	103	52.8		
Zx = 24.7 > 23.13	W10×17 W12×14	18.7 17.4	46.7 43.4	70.1 65.3	28.3 26.0	42.5 39.1	2.98 3.43	4.47 5.17	2.98 2.66	9.16 7.73	81.9 88.6	48.5 42.8		
	W8×18 W10×15	17.0 16.0	42.4 39.9	63.8 60.0	26.5 24.1	39.9 36.2	1.74	2.61	4.34	13.5 8.61	61.9 68.9	37.4	l	
\$Mn = 92,6 7 86.74 -	W8×15	13.6	33.9	51.0	20.6	31.0	1.90	2.85	3.09	10.1	48.0	39.7		
	W10×12 ^r W8×13		31.2 28.4	46.9 42.8	19.0 17.3	28.6 26.0	2.36 1.76	3.53 2.67	2.87 2.98	8.05 9.27	53.8 39.6	37.5 36.8		
HECK SHEAR	W8×10'	8.87	21.9	32.9	13.6	20.5	1.54	2.30	3.14	8.52	30.8	26.8		
1/4w = 46.2 × 59 -														
$Aw = twd = 0.235(12.5) = 2.87 m^2$														
Vy = (1.0) 0.6 Fy Aw = 0.6 (50) (2.87)		. 7												
V	ASD	LRFD	accordin	gly.				,			nave been	,		
DVn = 86,01 > 12.43 = VU Vok	$Ω_b = 1.67$ $Ω_r = 1.50$			$\phi_{\nu} = 0.9$			or shear i	AISC Spe	ecification	Section 6	62.1(a) with	h $F_y = 50$	<i>i</i> k	