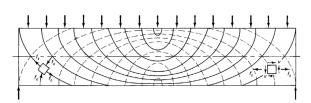
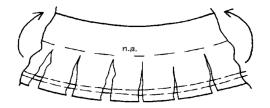

Architecture 324 Structures II

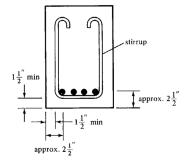
Reinforced Concrete Beams Ultimate Strength Design (ACI 318-19) – PART I

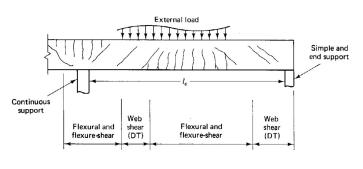
- Flexure in Concrete
- Ultimate Strength Design (LRFD)
- Failure Modes
- Flexure Equations
- Rectangular Beam Analysis

University of Michigan, TCAUP Structures II Slide 1 of 14


Flexure


The stress trajectories in this simple beam, show principal tension as solid lines.


Reinforcement must be placed to resist these tensile forces


In beams continuous over supports, the stress reverses (negative moment).
In such areas, tensile steel is on top.

Shear reinforcement is provided by vertical or sloping stirrups.

University of Michigan, TCAUP Structures II Slide 2 of 14

Ultimate Strength – (LRFD)

Nominal Strength ≥ Design Strength (strength of member ≥ required by loads)

LRFD uses 2 safety factors: γ and ϕ ϕ nominal strength $\geq \gamma$ required strength

- γ increases the required strength of the member and is placed on the loads
- reduces the member strength capacity and is
 placed on the calculated force

Loads increased:

γ Factors: DL=1.2 LL=1.6 U is the required strength U=1.2DL+1.6LL (factors from ASCE 7)

Strength reduced:

φ Factors: e.g. flexure = 0.9 in tension-controlled beams

Table 21.2.1—Strength reduction factors ♦

Ac	tion or structural element	ф	Exceptions
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21.2.2	Near ends of pretensioned members where strands are not fully developed, \$\phi\$ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	
(d)	Bearing	0.65	_
(e)	Post-tensioned anchorage zones	0.85	_
(f)	Brackets and corbels	0.75	_
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and- tie method in Chapter 23	0.75	_
(h)	Components of connec- tions of precast members controlled by yielding of steel elements in tension	0.90	_
(i)	Plain concrete elements	0.60	_
(j)	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	_

University of Michigan, TCAUP

Structures II

Slide 3 of 14

Ultimate Strength – (ACI 318-14)

Reduced Nominal Strength ≥ Factored Load Effects

ΦSn ≥ U

γ Factored Loads (see ACSE 7)

1) 1.4D

2) 1.2D + 1.6L + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W)

4) 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + 1.0L + 0.2S

6) 0.9D + 1.0W

7) 0.9D + 1.0E

D = service dead loads

L = service live load

Lr = service roof live load

S = snow loads

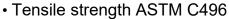
W = wind loads

R = rainwater loads

E = earthquake loads

Strength Reduction Factors, Φ

_		
Mn	Flexural (ε > 0.005)	0.90
Vn	Shear	0.75
Pn	Compression (spiral)	0.75
Pn	Compression (other)	0.65
Bn	Bearing	0.65
Tn	Torsion	0.75
Nn	Tension	0.90
Combin	0.65 to 0.90	


ACI 318 21.2.2

University of Michigan, TCAUP Structures II Slide 4 of 14

Strength Measurement

- Compressive strength
 - 12" x 6" cylinder
 - 28 day moist cure
 - Ultimate (failure) strength
 - Usable strain $\mathcal{E}_{cu} = 0.003$ (ACI 318)

- 12" x 6" cylinder
- 28 day moist cure
- Ultimate (failure) strength
- Split cylinder test
- ca. 10% of f'c
- Neglected in flexure analysis

University of Michigan, TCAUP

Structures II

Slide 5 of 14

Failure Modes Based on As

No Reinforcing

- Less than As_{min}
- o Brittle failure

• Reinforcing < balance (use this)

- Steel yields before concrete fails
- o Ductile failure
- \circ (~As_{min}) 0.06 \geq ε_{t} \geq 0.004 (~As_{max})
- $\varepsilon_t \ge 0.005$ for tension controlled

Reinforcing = balance

- Concrete fails just as steel yields
- $_{0}$ ε_t at balance = 0.0285 for Gr 60 ksi steel with 4000 psi concrete

Reinforcing > balance

- Concrete fails before steel yields
- Low ductility
- Sudden failure

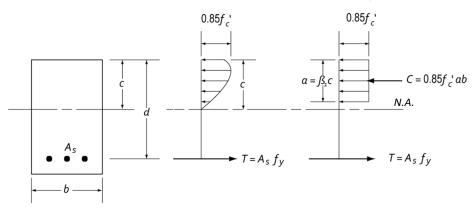
$$\rho = \frac{A_s}{bd}$$

As,min: greater of a and b

(a)
$$\frac{3\sqrt{f_c'}}{f_y}b_w d$$

(b)
$$\frac{200}{f_y}b_w d$$

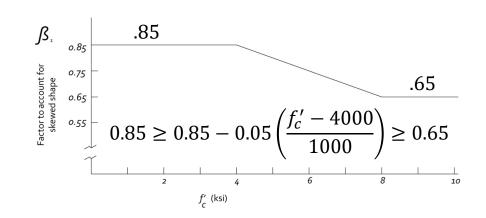
As_{max} when
$$\varepsilon_t = 0.004$$


$$\rho_{bal} = \left(\frac{0.85\beta_1 f_c'}{f_y}\right) \left(\frac{87000}{87000 + f_y}\right)$$

 $|As > As_{max}|$ SuddenDeath!!

ACI Stress Block

 eta_1 is a factor to account for the non-linear shape of the compression stress



Actual stress block

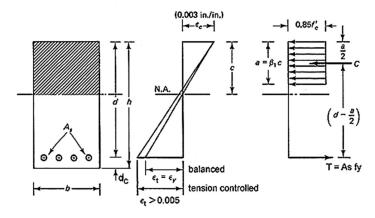
psi

block.

f'c	β_1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	8.0
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

University of Michigan, TCAUP

Structures II


Slide 7 of 14

ACI equivalent stress

Flexure Equations

strain

ACI equivalent stress block

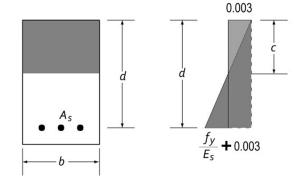
$$C = T$$
$$0.85f_c'ab = A_s f_v$$

solving for a, $a = \frac{A_s f_y}{0.85 f_s' b} = \frac{\rho f_y d}{0.85 f_s'}$

$$\varepsilon_t = \frac{d-c}{c}(0.003) \qquad \rho = \frac{A}{b}$$

$$M_n = T\left(d - \frac{a}{2}\right) = A_s f_y \left(d - \frac{a}{2}\right)$$

 $M_u = \phi M_n$


$$M_{u} = \phi M_{n} = \phi A_{s} f_{y} \left(d - \frac{a}{2} \right)$$

$$M_{u} = \phi A_{s} f_{y} d \left(1 - 0.59 \frac{\rho f_{y}}{f_{c}'} \right)$$

Balance Condition

From similar triangles at balance condition:

$$\frac{c}{d} = \frac{0.003}{0.003 + (f_y/E_s)} = \frac{0.003}{0.003 + (f_y/29 \times 10^6)}$$
$$c = \frac{87,000}{87,000 + f_y}d$$

Strain diagram for balanced condition.

Use equation for a. Substitute into $c = a / \beta_1$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

$$c = \frac{a}{\beta_1} = \frac{\rho f_y d}{0.85 \beta_1 f_c'}$$

Table A.8 Balanced Ratio of Reinforcement ρ_b for Rectangular Sections with Tension Reinforcement Only

	f_c'	2,500 psi	3,000 psi	4,000 psi	5,000 psi	6,000 psi
		(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(34.5 MPa)	(41.4 MPa)
$f_{\mathbf{y}}$		$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.80$	$\beta_1 = 0.75$
Grade 40	ρ_b	0.0309	0.0371	0.0495	0.0582	0.0655
40,000 psi	$0.75\rho_b$	0.0232	0.0278	0.0371	0.0437	0.0492
(275.8 MPa)	$0.50\rho_b$	0.0155	0.0186	0.0247	0.0291	0.0328
Grade 50	ρ_b	0.0229	0.0275	0.0367	0.0432	0.0486
50,000 psi	$0.75\rho_b$	0.0172	0.0206	0.0275	0.0324	0.0365
(344.8 MPa)	$0.50\rho_b$	0.0115	0.0138	0.0184	0.0216	0.0243
Grade 60	ρ_b	0.0178	0.0214	0.0285	0.0335	0.0377
60,000 psi	$0.75\rho_b$	0.0134	0.0161	0.0214	0.0252	0.0283
(413.7 MPa)	$0.50\rho_b$	0.0089	0.0107	0.0143	0.0168	0.0189
Grade 75	ρ_b	0.0129	0.0155	0.0207	0.0243	0.0274
75,000 psi	$0.75\rho_b$	0.0097	0.0116	0.0155	0.0182	0.0205
(517.1 MPa)	$0.50\rho_b$	0.0065	0.0078	0.0104	0.0122	0.0137

Equate expressions for c:

$$\frac{\rho f_y d}{0.85 \beta_1 f_c'} = \frac{87,000}{87,000 + f_y} d$$

$$\rho_b = \left(\frac{0.85 \beta_1 f_c'}{f_y}\right) \left(\frac{87,000}{87,000 + f_y}\right)$$

University of Michigan, TCAUP

Structures II

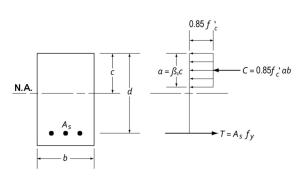
Slide 9 of 14

Rectangular Beam Analysis

Data:

- Section dimensions b, h, (span)
- Steel area As
- Material properties f'c, fy

Required:


- Nominal Strength (of beam) Moment Mn
- Required (by load) Design Moment Mu
- Load capacity

greater of (a) and (b)

- (a) $\frac{3\sqrt{f_c'}}{f_w}b_w d$ 1. Calculate d
- 2. Check As min
- Calculate a

(b) $\frac{200}{f_v}b_w d$

- 4. Determine c
- 5. Check that $\varepsilon_t \ge 0.005$ (tension controlled)
- 6. Find nominal moment, Mn
- (if $\varepsilon_t \ge 0.005$ then $\phi = 0.9$)
- 8. Determine max. loading (or span)

$$c = \frac{a}{\beta_1}$$

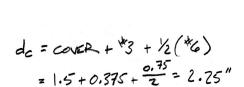
$$\varepsilon_t = \frac{d - c}{c} \, 0.003 \ge 0.005$$

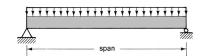
$$a = \frac{A_s f_y}{0.85 f_c' b} \qquad M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

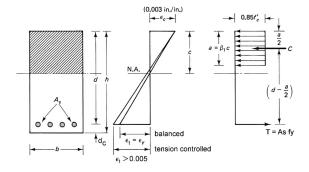
$$\varphi M_n \ge M_u$$

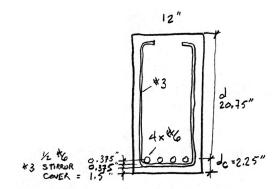
$$M_u = \frac{(1.2w_{DL} + 1.6w_{LL})l^2}{8}$$
$$1.6w_{LL} = \frac{M_u 8}{l^2} - 1.2w_{DL}$$


Rectangular Beam Analysis


Data:


- Dimensions 12"x23"
- Steel $-4 \times #6$ fy = 60ksi
- Concrete f'c = 6000 psi
- Stirrup # 3, Cover 1.5"


Required:


Required Moment – φMn = Mu (capacity)

University of Michigan, TCAUP

Structures II

Slide 11 of 14

Rectangular Beam Analysis cont.

Data:

dimensions – 12"x23"

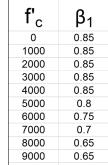
Steel $-4 \times #6 - As = 1.76 \text{ in}^2$

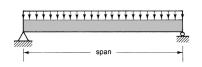
f'c = 6000 psi fy = 60 ksi

Customary Units				SI Units		
Bar No.	Diameter (in.)	Cross- sectional Area (in.2)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

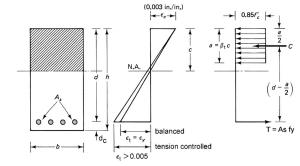
2. Check As_{min}

(2)
$$\frac{200 \text{ b d}}{\text{fy}} = \frac{200(12)(20.75)}{60000} = 0.83\text{ m}^2$$


Rectangular Beam Analysis cont.


Data:

Beta1: $0.85 \ge$


dimensions - 12"x23" Steel $-4 \times #6 - As = 1.76 \text{ in}^2$ f'c = 6000 psi fy = 60 ksi

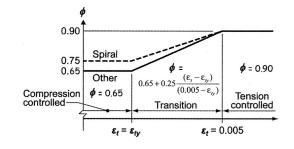
 $0.85 - 0.05 \left(\frac{f_c' - 4000}{1000} \right)$

f'c	β_1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

 ≥ 0.65

$$a = \frac{Asfy}{0.85f_c^2b} = \frac{(1.76)(60)}{.85(6)(12)} = 1.725''$$

$$C = \frac{d}{\beta_1} = \frac{1,725}{0.75} = 2.300''$$


University of Michigan, TCAUP

Structures II

Slide 13 of 14

Rectangular Beam Analysis cont.

$$\varepsilon_t = \frac{d-c}{c} 0.003 \ge 0.005$$

- Check that $\varepsilon_t \ge 0.005$ (for tension controlled section) $\phi = 0.9$
- $E_{t} = \frac{d-c}{c} 0.003 = \frac{20.75-2.3}{2.3} 0.003$ =0.02406 >0.004 : OKV = 0.02406 > 0.005 : tension controlled

- Find nominal moment, Mn
- T = As fy = 1.76 (60 KSI) = 105.6 K $Mn = T(d-\frac{2}{2}) = 105.6(20.75 - \frac{1.725''}{2})$
- Calculate required moment φMn ≥ Mu
- Mn = 2100 K-11 dMu = 0.9 (2100) = 1890 K-11

$$\phi M_{U} = 0.9(2100) = 1890 \text{ K-1}$$

$$M_{U} = \phi M_{U} = 1890/12 = 157.5 \text{ K-1}$$