Structures II

Reinforced Concrete Beams
 Ultimate Strength Design (ACI 318-19) - PART I

- Flexure in Concrete
- Ultimate Strength Design (LRFD)
- Failure Modes
- Flexure Equations
- Rectangular Beam Analysis

Flexure

The stress trajectories in this simple beam, show principal tension as solid lines.

Reinforcement must be placed to resist these tensile forces

In beams continuous over supports, the stress reverses (negative moment). In such areas, tensile steel is on top.

Shear reinforcement is provided by vertical or sloping stirrups.

Ultimate Strength - (LRFD)

Nominal Strength \geq Design Strength (strength of member \geq required by loads)

LRFD uses 2 safety factors: γ and ϕ ϕ nominal strength $\geq \gamma$ required strength
γ increases the required strength of the member and is placed on the loads
ϕ reduces the member strength capacity and is placed on the calculated force

Loads increased:
γ Factors: DL=1.2 LL=1.6
U is the required strength $\mathrm{U}=1.2 \mathrm{DL}+1.6 \mathrm{LL}$ (factors from ASCE 7)

Strength reduced:

ϕ Factors: e.g. flexure $=0.9$
in tension-controlled beams

Table 21.2.1-Strength reduction factors ϕ

Action or structural element		ϕ	Exceptions
(a)	Moment, axial force, or combined moment and axial force	$\begin{aligned} & \rightarrow 0.65 \text { to } \\ & \rightarrow 0.90 \text { in } \end{aligned}$ accordance with 21.2.2	Near ends of pretensioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	-
(d)	Bearing	0.65	-
(e)	Post-tensioned anchorage zones	0.85	-
(f)	Brackets and corbels	0.75	-
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-andtie method in Chapter 23	0.75	-
(h)	Components of connections of precast members controlled by yielding of steel elements in tension	0.90	-
(i)	Plain concrete elements	0.60	-
(j)	Anchors in concrete elements	$\begin{aligned} & 0.45 \text { to } \\ & 0.75 \text { in } \\ & \text { accor- } \end{aligned}$ dance with Chapter 17	-

Ultimate Strength - (ACI 318-14)

Reduced Nominal Strength \geq Factored Load Effects

$$
\Phi S n \geq U
$$

γ Factored Loads (see ACSE 7)

1) 1.4 D
2) $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
3) $1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S or R$)+(1.0 \mathrm{~L}$ or 0.5 W$)$
4) $1.2 \mathrm{D}+1.0 \mathrm{~W}+1.0 \mathrm{~L}+0.5(\mathrm{Lr}$ or S or R$)$
5) $1.2 \mathrm{D}+1.0 \mathrm{E}+1.0 \mathrm{~L}+0.2 \mathrm{~S}$
6) $0.9 \mathrm{D}+1.0 \mathrm{~W}$
7) $0.9 \mathrm{D}+1.0 \mathrm{E}$

Strength Reduction Factors, Φ

| $\underline{\mathrm{Mn}}$ | Flexural $(\varepsilon>0.005)$ | $\underline{0.90}$ |
| :--- | :--- | :--- | :--- |
| Vn | Shear | $\underline{0.75}$ |
| Pn | Compression (spiral) | $\underline{0.75}$ |
| Pn | Compression (other) | $\underline{0.65}$ |
| Bn | Bearing | 0.65 |
| Tn | Torsion | 0.75 |
| Nn | Tension | 0.90 |

Combined stress

D = service dead loads
L = service live load
Lr = service roof live load
S = snow loads
W = wind loads
$\mathrm{R}=$ rainwater loads
$E=$ earthquake loads

ACI 318 21.2.2

Strength Measurement

- Compressive strength
- 12 " x 6" cylinder
- 28 day moist cure

f_{c}^{\prime}

- Ultimate (failure) strength
- Usable strain $\varepsilon_{c u}=0.003(\mathrm{ACl} \mathrm{318)}$
- Tensile strength ASTM C496
- 12 " x 6 " cylinder
- 28 day moist cure
- Ultimate (failure) strength \longrightarrow
- Split cylinder test
- ca. 10% of fec
- Neglected in flexure analysis

Failure Modes Based on As

- No Reinforcing BSD
- Less than $\mathrm{As}_{\text {min }}$

As,min:

- Brittle failure
- Reinforcing < balance (use this) $A_{s}>A_{s \text { min }}$
- Steel yields before concrete fails
- Ductile failure
- $\left(\sim A s_{\min }\right) 0.06 \geq \varepsilon_{t} \geq 0.004\left(\sim A s_{\max }\right)$
- $\varepsilon_{t} \geq 0.005$ for tension controlled
- Reinforcing $=$ balance \times
- Concrete fails just as steel yields
- ε_{t} at balance $=0.0285$

SAFE

$$
\rho=\frac{A_{s}}{\underline{b d}} \cdot A_{s}
$$

greater of a and b
for Gr 60 ksi steel with 4000 psi concrete
Reinforcing $>$ balance LoTs of STEはL

- Concrete fails before steel yields
- Low ductility
- Sudden failure
(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
(b) $\frac{200}{f_{y}} b_{w} d$
β_{1} is a factor to account for the non-linear shape of the compression stress block.

$$
a=\beta_{1} c
$$

psi

cows. f_{C}^{\prime}	$\boldsymbol{\beta}_{1}$
0	$\underline{0.85}$
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
$\downarrow 9000$	0.65
10000	0.65

Flexure Equations
strain $\quad \mathrm{ACl}$ equivalent stress block

$$
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{a}}{\underline{a}}=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} \underline{\underline{\prime}}}=\frac{\rho f_{y} \underline{d}}{0.85 f_{c}^{\prime}} \\
& \underline{\varepsilon_{t}}=\frac{d-c}{c}(0.003) \quad \rho=\frac{A_{s}}{b d} \quad \quad M_{u}=\phi A_{s} f_{y} d\left(1-0.59 \frac{\rho f_{y}}{f_{c}^{\prime}}\right) \\
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d-\frac{a}{2}\right)
\end{aligned}
$$

Balance Condition

From similar triangles at balance condition:

$$
\frac{c}{d}=\frac{0.003}{\frac{0.003+\left(f_{y} / E_{s}\right)}{87,000}}=\frac{0.003}{0.003+\left(f_{y} / \frac{9 \times 10^{6}}{E_{s}}\right.}
$$

$$
\int \underline{\underline{c}}=\frac{87,000}{87,000+f_{y}} d
$$

Use equation for a. Substitute into $c=a / \beta_{1}$

$$
\left\{\begin{array}{l}
a=\frac{\rho f_{y} d}{0.85 f_{c}^{\prime}} \\
s_{c}=\frac{a}{\beta_{1}}=\frac{\rho f_{y} d}{0.85 \beta_{1} f_{c}^{\prime}}
\end{array} \quad \rho=\frac{A_{s}}{b d}\right.
$$

Equate expressions for c :

$$
\begin{gathered}
C=C \\
\frac{\varrho f_{y} d}{0.85 \beta_{1} f_{c}^{\prime}}=\frac{87,000}{87,000+f_{y}} d \\
\oint_{b}=\left(\frac{0.85 \beta\left(f_{c}^{\prime}\right.}{f_{y}}\right)\left(\frac{87,000}{87,000+f_{y}}\right)
\end{gathered}
$$

Rectangular Beam Analysis

Data:

- Section dimensions - b, h, (span)
- Steel area - As
- Material properties - ftc, fy

Required:

- Nominal Strength (of beam) Moment - Mn
- Required (by load) Design Moment - M

Table A. 8 Balanced Ratio of Reinforcement ρ_{b} for Rectangular Sections with

Strain diagram for balanced condition.

- Load capacity

(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$

1. Calculate d
2. Check As min
(b) $\frac{200}{f_{y}} b_{w} d$
3. Calculate a
4. Determine c
5. Check that $\underline{\varepsilon_{t}} \geq 0.005$ (tension controlled)
6. Find nominal moment, Mn
7. Calculate required moment, $\phi \mathrm{Mn} \geq \mathrm{Mu}$ (if $\varepsilon_{\mathrm{t}} \geq 0.005$ then $\phi=0.9$)

$c=\frac{a}{\beta_{1}} \quad \varepsilon_{t}=\frac{d-c}{c} 0.003 \geq 0.005$

Rectangular Beam Analysis

Data:

- Dimensions - 12" $23^{\prime \prime}$
- Steel -4x\#6 fy $=60 \mathrm{ksi}$
- Concrete fec = 6000 psi
- Stirrup \# 3, Cover 1.5"

Required:

- Required Moment $-\phi \mathrm{Mn}=\mathrm{Mu}$ (capacity)

1. Calculate d

$$
\begin{aligned}
d_{c} & =\text { covER }+*_{3}+1 / 2\left({ }^{*} 6\right) \\
& =1.5+0.375+\frac{0.75}{2}=\frac{2.25^{\prime \prime}}{d} \\
d & =h-d_{c}=23^{\prime \prime}-2.25^{\prime \prime}=20.75^{\prime \prime}
\end{aligned}
$$

Rectangular Beam Analysis cont.

Data:
dimensions - 12"x23"
Steel $-4 \mathrm{x} \# 6-\mathrm{As}=1.76 \mathrm{in}^{2}$
$\mathrm{f}^{\prime} \mathrm{c}=6000 \mathrm{psi}$ fy $=60 \mathrm{ksi}$

Table A. 2 Designations, Areas, Perimeters, and Weights of Standard Bars

2. Check $\mathrm{As}_{\text {min }}$

Rectangular Beam Analysis cont.
Data:
dimensions - 12"x23"
Steel $-4 \mathrm{x} \# 6-\mathrm{As}=1.76 \mathrm{in}^{2}$
$\mathrm{f}^{\prime} \mathrm{c}=\underline{\underline{6000} \mathrm{psi}} \mathrm{fy}=\underline{60 \mathrm{ksi}}$

Beta:

$0.85 \geq$
$\geq 0 . \overline{0.85-0.05\left(\frac{f_{c}^{\prime}-4000}{1000}\right)}$
3. Find a

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{b}^{\prime \prime} \mid} \left\lvert\,=\frac{(1.76)(60)^{1<s 1}}{.85(6)(12)}=\underline{k+725^{11}}\right.
$$

4. Find c

$$
\begin{aligned}
& \beta_{1}=\frac{0.85-0.05 \frac{f_{c}-4000}{1000}}{}=0.85-0.1=\frac{0.75}{} \\
& c=d / \beta_{1}=\frac{1.725}{0.75}=2.300^{\prime \prime}
\end{aligned}
$$

Rectangular Beam Analysis cont.

$$
\varepsilon_{t}=\frac{d-c}{c} 0.003 \geq 0.005
$$

5. Check that $\varepsilon_{\mathrm{t}} \geq \underline{0.005}$
(for tension controlled section)
6. Find nominal moment, Mn

$$
T=A_{s} f_{g}=1.76^{i^{2}}(60 \mathrm{ksi})=105.6 \mathrm{~K}
$$

$$
M_{n}=T\left(d-\frac{a}{2}\right)=105.6\left(20.75-\frac{1.725^{\prime \prime}}{2}\right)
$$

7. Calculate required moment $\phi \mathrm{Mn} \geq \mathrm{Mu}$

$$
H_{n}=2100 \mathrm{k}-11
$$

$$
\begin{aligned}
& w_{v}=\frac{M_{v}^{k-1} 8}{l^{2}} \quad \frac{w_{v} l^{2}}{8} \quad=M_{u}=d_{n}=0.9(2100)=1890 \mathrm{k}-11 \\
& \hline 1890 / 12=157.5 \mathrm{k-1}
\end{aligned}
$$

