
Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART II

- Rectangular Slab Analysis
- · Reinforcement Detailing
- Rectangular Beam Design Method I

University of Michigan, TCAUP Structures II Slide 1 of 21

One-way Slab Analysis

Data:

- Section dimensions b, h, (span)
- Steel area As , bar diam. b_d , o.c. spacing
- Material properties f'c, fy

Required:

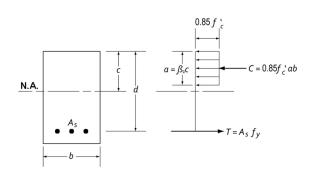

- · Nominal Strength (of beam) Moment Mn
- Required (by load) Design Moment Mu
- · Load capacity
- 1. Calculate $d = h cover bar_d/2$
- 2. Find As/ft. Check As min
- 3. Calculate a
- 4. Determine c
- 5. Check that $\varepsilon_t \ge 0.005$ (tension controlled)

Table 7.6.1.1—A_{s,min} for nonprestressed

- 6. Find nominal moment, Mn
- $As/ft = As \times 12/o.c.$

Ag = bh

- 7. Calculate required moment,
 φ Mn ≥ Mu (if ε_t ≥ 0.005 then φ = 0.9)
- 8. Determine max. loading (or span)

$$\varepsilon = \frac{a}{\beta_1} \qquad \varepsilon_t = \frac{d-c}{c} \quad 0.003 \ge 0.005$$

$$a = \frac{A_s f_y}{0.85 f_c' b} \qquad M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

$$\varphi M_n \ge M_u$$

$$M_u = \frac{(1.2w_{DL} + 1.6w_{LL})l^2}{8}$$
$$1.6w_{LL} = \frac{M_u 8}{l^2} - 1.2w_{DL}$$

Slab Analysis

Data:

- Span = 18 ft
- h = 11" take b = 12"
- Steel #8 @ 18" o.c.
- $f'_c = 3000 \text{ psi}$
- $f_v = 60 \text{ ksi}$

Bar size designa- tion	Nominal cross section area, sq. in.	Weight, lb per ft	Nominal diameter in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
#8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

Required:

- Design moment capacity M_{...}
- Maximum LL in PSF

- 1. Find d
- $A_{S} = \frac{12''}{18''} (0.79 in^{2})$ $= 0.5267 in^{2}/FT$
- 2. Find A_s Check A_{s.min}

[0.0018(60)/60] 132 = 0.237 in²

 $0.0014 (132) = 0.1848 in^2$

0.527 > 0.237 ok

University of Michigan, TCAUP

Structures II

Slide 3 of 21

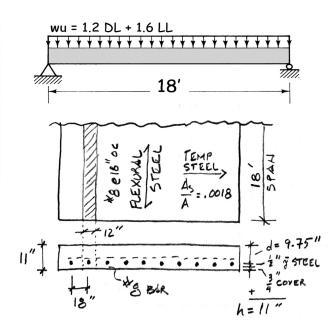


Table 7.6.1.1— $A_{s,min}$ for nonprestressed one-way slabs

Reinforcement type	f_y , psi		$A_{s,min}$
Deformed bars	< 60,000		$0.0020A_g$
Deformed bars or welded wire reinforcement	≥ 60,000	Greater of:	$\frac{0.0018\times60,000}{f_y}A_{\xi}$
reinforcement			$0.0014A_{g}$

Slab Analysis

t' _c	β_1
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	8.0
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

4. Find
$$c = \beta_1$$
 a

3. Find a

- 5. Check failure mode $\varepsilon_t \ge 0.005$ for tension controlled
- 6. Find force T
- 7. Find moment arm z
- 8. Find nominal strength moment, M_n

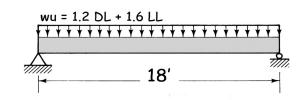
$$d = \frac{A_5 fy}{.85 f_c'b} = \frac{0.5267(60)}{.85(3)(12)} = 1.033''$$

$$\frac{.85 f_c'b}{.85 f_c'b} = \frac{0.5267(60)}{.85(3)(12)} = 1.033''$$

$$\frac{.85 f_c'b}{.85 f_c'b} = \frac{0.5267(60)}{.85(3)(12)} = 1.033''$$

$$\frac{.85 f_c'b}{.85 f_c'b} = \frac{0.5267(60)}{.85(3)(12)} = 1.033''$$

$$C = \frac{\partial}{\beta_1} = \frac{1.033}{0.85} = 1.215$$


ACI 318-14

$$\epsilon_t = \frac{0.003 \, d}{c} - 0.003$$

$$\epsilon_t = \frac{0.003 (9.75'')}{1.215''} - 0.003 = 0.021 ''$$

$$T = A_s fy = 0.5267(60) = 31.6 K$$

 $E = d - \frac{9}{2} = 9.75 - \frac{1.033}{2} = 9.23$

Slab Analysis

- 9. Find required moment, M_{II}
- Ho= ΦHn = 0,9 (291.8) 1000 = 218851-4

10. Find slab DL

WPL = 2 1/2 = 150 1/2 = 137.5 PSF

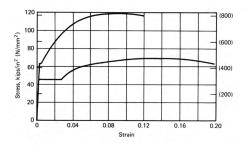
- 11. Determine max. loading
- $M_0 = 21885 \frac{1.4}{8} = \frac{(1.2 \, \omega_{DL} + 1.6 \, \omega_{LL}) \, A^2}{8}$ $\frac{21885 \, (8)}{(18^7)^2} = 1.2 \, (137.5) + 1.6 \, (\omega_{LL})$ $540.37 = 165 + 1.6 \, (\omega_{LL})$ $W_{LL} = 234.6 \, PSF$

University of Michigan, TCAUP

Structures II

Slide 5 of 21

Details of Reinforcement


Size

· Nominal 1/8" increments

Grade

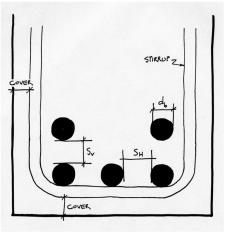
- 40 (40 ksi)
- 60 (60 ksi)
- 75 (75 ksi)

Bar size designa- tion	Nominal cross section area, sq. in.	Weight, lb per ft	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
#8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

- Cover (ACI 20.6.1)
- Horizontal spacing in beams, s_h (ACI 25.2.1)
 1 inch
 d_b
 4/3 d_{agg,max}
- Vertical spacing in beams (ACI 25.2.2) Min 1 inch

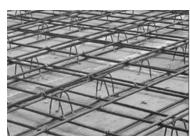

https://www.constructioncost.co/honeycombing-in-concrete.htm

University of Michigan, TCAUP

Structures II

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in	and walls	No. 11 bar and smaller	3/4
contact with ground	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2

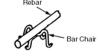


Slide 7 of 21

Details of Reinforcement

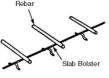
ACI 318 Chapter 25 Placement of Reinforcement

- Chairs
- Bolsters



https://catalog.formtechinc.com

http://contractorsupplymagazine.com



Slab Bolster

Slide 8 of 21

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter

factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

• ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} in.	Type of standard hook
	No. 3 through No. 8	$6d_b$		Point at which bar is developed
90-degree	No. 9 through No. 11	8 <i>d</i> _b	124	90-degree bend
hook	No. 14 and No. 18	10 <i>d_b</i>	1246	Diameter
	No. 3 through No. 8	6 <i>d</i> _b		Point at which bar is developed
180-degree	No. 9 through No. 11	8 <i>d</i> _b	Greater of	180-degree
hook	No. 14 and No. 18	10 <i>d_b</i>	bar is d d Diameter— Lan Point as dw d d Can	laxt

[&]quot;A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} in.	Type of standard hook
90-degree	No. 3 through No. 5	4d _b	Greater of $6d_b$ and 3 in.	d _b 90-degree bend
hook	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
135-degree	No. 3 through No. 5	4d _b	Greater of 6d _b and	135-degree bend
hook	No. 6 through No. 8	6 <i>d</i> _b	3 in.	Diameter
180-degree	No. 3 through No. 5	4d _b	Greater of	d _b 180-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	4 <i>d_b</i> and 2.5 in.	Diameter bend

^{11/}A standard hook for stirrups, tics, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

University of Michigan, TCAUP

Structures II

Slide 9 of 21

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

- 12" min
- Based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
Lightweight λ	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
F(II)	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
Epoxy ^[1] Ψ_e	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
ψ_s	No. 6 and smaller bars and deformed wires	0.8
Casting position ^[1]	position ^[1] reinforcement	
Ψι	Other	1.0

^[1] The product $\psi_t \psi_e$ need not exceed 1.7.

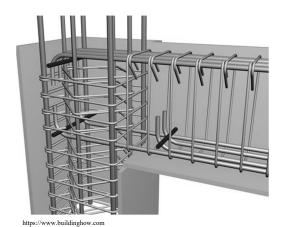


Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\left(\frac{f_{y}\Psi_{t}\Psi_{e}}{25\lambda\sqrt{f_{c}^{\prime}}}\right)d_{b}$	$\left(\frac{f_y \psi_i \psi_e}{20 \lambda \sqrt{f_c'}}\right) d_b$
Other cases	$\left(\frac{3f_{y}\psi_{i}\psi_{e}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$	$\left(\frac{3f_y\psi_i\psi_e}{40\lambda\sqrt{f_c'}}\right)d_b$

Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

Custo	mary Units	SIU	Jnits
f' (psi)	E _c (psi)	f' _c (MPa)	E _c (MPa)
3,000	3,140,000	20.7	21 650
3,500	3,390,000	24.1	23 373
4,000	3,620,000	27.6	24 959
4,500	3,850,000	31.0	26 545
5,000	4,050,000	34.5	27 924

Jack C McCormac, 1978, Design of Reinforced Concrete,

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	C	ustomary Uni	ts	SI Units				
Bar No.	Diameter (in.)	Cross- sectional Area (in.2)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)		
3	0.375	0.11	0.376	9.52	71	0.560		
4	0.500	0.20	0.668	12.70	129	0.994		
5	0.625	0.31	1.043	15.88	200	1.552		
6	0.750	0.44	1.502	19.05	284	2.235		
7	0.875	0.60	2.044	22.22	387	3.042		
8	1.000	0.79	2.670	25.40	510	3.973		
9	1.128	1.00	3.400	28.65	645	5.060		
10	1.270	1.27	4.303	32.26	819	6.404		
11	1.410	1.56	5.313	35.81	1006	7.907		
14	1.693	2.25	7.650	43.00	1452	11.384		
18	2.257	4.00	13.600	57.33	2581	20.238		

Table A.4 Areas of Groups of StandardBars (in.2)

						Num	ber of Ba	ırs					
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 11 of 21

Rectangular Beam Design

Two approaches:

Method 1:

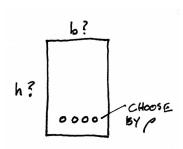
Data:

- Load and Span
- Material properties f'_c, f_y
- All section dimensions: h and b

Required:

Steel area – A_s

h As?

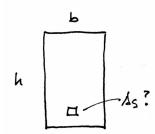

Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'c, fv
- Choose ρ

Required:

- Steel area A_s
- Beam dimensions b or h


Rectangular Beam Design - Method 1

Data:

- Load and Span
- Material properties f'c, fy
- All section dimensions b and h

Required:

- Steel area A_s
- 1. Calculate the factored load and find factored required moment, M_{II}
- 2. Find $d = h cover stirrup d_h/2$
- 3. Estimate moment arm z = jd, for beams $j \approx 0.9$ for slabs $j \approx 0.95$
- 4. Estimate A_s based on estimate of jd.
- 5. Use As to find a
- 6. Use a to find A_s (repeat...until **2%** accuracy)
- 7. Choose bars for A_s and check A_s max & min
- 8. Check that $\varepsilon_t \ge 0.005$
- 9. Check $M_u \le \phi M_n$ (final condition)
- 10. Design shear reinforcement (stirrups)
- 11. Check deflection, crack control, rebar development length

$$M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$$

$$A_{S} = \frac{M_{u}}{\varphi f_{y} \left(d - \frac{a}{2} \right)}$$

$$a = \frac{A_s f_y}{0.85 f_c' b}$$

$$M_n = A_s f_y \left(d - \frac{a}{2} \right)$$

University of Michigan, TCAUP

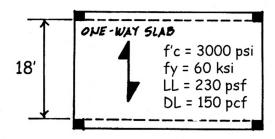
Structures II

Slide 13 of 21

One-way Slab Design Method 1

Data:

- Load and Span
- Material properties f'_c, f_y
- · All section dimensions:
- h (based on deflection limit)
- b = typical 12" width


Required:

Steel area – A_s

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.

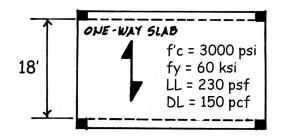

PLAN VIEW

Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs

Support condition	Minimum $h^{[1]}$
Simply supported	ℓ/20
One end continuous	ℓ/24
Both ends continuous	ℓ/28
Cantilever	€/10

THICKNESS, h, BASED ON DEFLECTION
$$h = \frac{1}{20} = \frac{18 \times 12}{20} = 10.8" \text{ USE II"}$$

One-way Slab Slab Design

PLAN VIEW

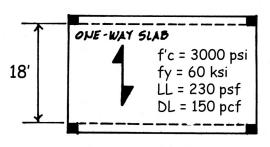
1. Calculate the dead load and find required $\rm M_{\rm u}$

FACTOR LOAPS
$$DL = \frac{11''}{12}(150) = 137.5 \text{ PSF}$$

$$LL (41VEN) = 230 \text{ PSF}$$

$$W_{D} = 1.2(137.5) + 1.6(230) = 533$$

$$M_{0} = \frac{\omega_{0} \, \ell^{2}}{8} = \frac{533 \, RF (18')^{2}}{8} = 21 \, 587' - *$$


$$= 259'' - K$$

University of Michigan, TCAUP

Structures II

Slide 15 of 21

One-way Slab Slab Design

PLAN VIEW

- Find d based on the estimated h and rebar size (guessing #4)
- 3. Estimate moment arm $z \approx 0.95 d$

One-way Slab Slab Design

- 4. Estimate A_s based on estimate of z
- 5. Use A_s to find a
- 6. Use a to find A_s (repeat...)

TRIAL I
$$A_{S} = \frac{M u}{\phi f_{y}(z)} = \frac{259''^{-15}}{0.9(60 \text{ Ksi})(9.5)''} = 0.505 \text{ in}^{2}$$

$$A = \frac{A_{S} f_{y}}{.85 f_{c}' b} = \frac{0.505(60)}{.85(3)(12)} = 0.99''$$

TRIAL 2
$$A_{5} = \frac{H_{0}}{\phi f_{3}(d - \frac{e_{1}^{2}}{2})} = \frac{259}{0.9(60)(10 - \frac{.99}{2})}$$

$$A_{5} = 0.5046h^{2} \quad \text{WITHIN 2\%}$$

University of Michigan, TCAUP

Structures II

Slide 17 of 21

One-way Slab Slab Design

7. Choose bars for A_s required:

either

choose bars and calculate spacing or

choose spacing and find bar size If the bar size changes, re-calculate to find new d. Then, re-calculate A_s ...

Check $A_{s,min}$

(for slabs $A_{s,min}$ from ACI Table 7.6.1.1)

Table 7.6.1.1— $A_{s,min}$ for nonprestressed one-way slabs

Reinforcement type	f_y , psi		$A_{s,min}$
Deformed bars	< 60,000	$0.0020A_{g}$	
Deformed bars or welded wire reinforcement	≥ 60,000	Greater of:	$\frac{0.0018\times60,000}{f_y}A_{\xi}$
			$0.0014A_{g}$

CHOOSE BARS

i, use
$$4''o.c.$$
 (always round down)
 $4s = 0.60 \text{ m}^2/\text{FT} > 0.505 \text{ }$

ALTERNATE FOR MAX.
$$S = 18''$$

$$\frac{0.505}{12''} : \frac{A_b}{18''} \qquad A_b = 0.75 \text{ in}^2$$

$$\frac{A_b}{12''} : \frac{A_b}{18''} \qquad \frac{A_b}{8} = 0.79$$

$$i. USE \qquad \frac{48}{8} e 18'' \text{ o.c.}$$

$$A_5 = 0.526 \text{ in}^2/\text{FT} > 0.505 \text{ V}$$

Check As, min

One-way Slab Slab Design

8. Check that $\varepsilon_t \ge 0.005$

RE-CALC 2 FOR
$$A_5 = 0.6 \frac{m^3}{67}$$

$$a = \frac{A_5 f_{yy}}{0.85 f_2'} = \frac{0.6(60)}{0.85(3)(12)} = 1.176''$$

$$C = \frac{2}{B_1} = \frac{1.176}{0.85} = 1.384''$$

$$G_1 = \frac{d-c}{c} 0.003 = \frac{1.384''}{0.003} = 0.01759$$

$$1.384'''$$

$$0.01759 > 0.005$$

$$1.764510A CONTROLLED V$$

University of Michigan, TCAUP

Structures II

Slide 19 of 21

One-way Slab Slab Design

9. Check $M_u \le \phi M_n$ (final condition)

$$A_s = A_{s,used}$$

 $M_n = Tz$

- 10. Add stirrups (no stirrups in slab)
- 11. Check deflection, crack control, and rebar development length

$$M_n = A_3 f_y \left(d - \frac{27}{2}\right)$$
 $M_n = 0.6(60)\left(9.5^{n} - \frac{1.176}{2}\right)$
 $M_n = 36\left(8.911^{n}\right) = 320.8^{n}$
 $M_n = 0.9\left(320.8\right) = 288.7^{n}$
 $M_0 = 259^{n}$
 $M_0 < 4M_0$
 $M_0 < 4M_0$

Rectangular Beam Design - Method 2

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'_c, f_y

Required:

- Steel area A_s
- Beam dimensions b and h
- 1. Estimate the dead load (estimate h and b) (L/8 \leq h \leq L/21, h \approx L/12 and b:h \approx 1:2 to 2:3), find M_{II}
- 2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$)
- 3. Calculate bd²
- 4. Choose b and solve for d (or d and solve b)
- 5. Revise h, weight, M_u, and bd²
- 6. Find $A_s = \rho bd$
- 7. Choose bars for A_s, determine spacing and cover, and revise d
- 8. Check that $\varepsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$$

$$\rho = \frac{\beta_1 f_c'}{4 f_y}$$

$$bd^{2} = \frac{M_{u}}{\varphi \rho f_{y} \left(1 - 0.59 \rho (f y/f_{c}^{\prime})\right)}$$

$$A_s = \rho b d$$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

University of Michigan, TCAUP

Structures II

Slide 21 of 21