
Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) - PART II

- Rectangular Slab Analysis
- · Reinforcement Detailing
- Rectangular Beam Design Method I

University of Michigan, TCAUP

Structures II

Slide 1 of 21

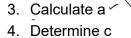
One-way Slab Analysis

Data:

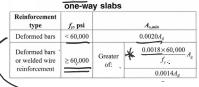
• Section dimensions – b, h, (span)

Steel area – As , bar diam. b_d , o.c. spacing

Material properties – f'c, fy

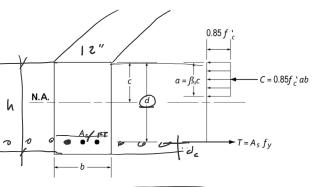

Required:

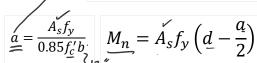
Nominal Strength (of beam) Moment - Μπ


Required (by load) Design Moment – Mu

Load capacity

- 1. Calculate $\underline{d} = h \text{cover} \text{bar}_d/2$
- 2. Find As/ft. Check As min Table 7.6.1.1-




5. Check that $\varepsilon_t \ge 0.005$ (tension controlled)

–<u>A_{s,min}</u> for nonprestressed

- 6. Find nominal moment, Mn
- 7. Calculate required moment, Aq = bh
 - ϕ Mn \geq Mu (if $\varepsilon_t \geq 0.005$ then $\phi = 0.9$)
- 8. Determine max. loading (or span)

 $\underline{\varepsilon_t} = \frac{d - c}{c} 0.003 \ge 0.005$

$$\varphi M_n \ge \underline{M_u}$$

$$\varphi M_n \ge \underline{M_u}$$

$$\varphi M_n \ge \underline{M_u}$$

$$\varphi M_n \ge \underline{M_u}$$

$$\underline{M_u} = \frac{(1.2w_{DL} + 1.6w_{LL})l^2}{8} \\
\underline{1.6w_{LL}} = \frac{M_u 8}{l^2} - 1.2w_{DL}$$

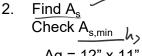
→ As/ft = As x 12/o.c.

Slab Analysis

Data:

- Span = 18 ft
- h = 11" take b = 12"
- Steel #8 @ 18" o.c.
- $f'_c = 3000 \text{ psi}$
- $f_v = 60 \text{ ksi}$

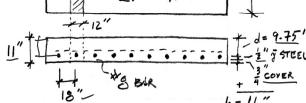
Bar size designa- tion	Nominal cross section area, sq. in.	Weight,	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
≽/ #8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257


Required:

- Design moment capacity M_u
- Maximum LL in PSF

F:	220, COV	
d=11"-	12-34	= 9.75 "

 $A_{S} = \frac{12''}{18''} (0.79''^{2})$ $= 0.5267 in^{2}/FT \checkmark$


Ag = $\underline{12}$ " x 11" = $\underline{132}$, in² $\underline{[0.0018(60)/60]}$ $\underline{132}$ = 0.237 in²

 $0.0014 (132) = 0.1848 \text{ in}^2$

0.527 > 0.237 ok

University of Michigan, TCAUP

18'

wu = 1.2 DL + 1.6 LL

12"

Table 7.6.1.1—A_{s,min} for nonprestressed one-way

Reinforcement type	f _y , psi	$A_{s,min}$
Deformed bars	< 60,000	$0.0020A_g$
Deformed bars or welded wire reinforcement	≥ 60,000	Greater of: 0.0018×60,000 Ag 0.0014Ag 0.0014Ag

ACI 318-14

Structures II

Slide 3 of 21

Slab Analysis

3. Find a

f'c β_1 0 0.85 1000 0.85 2000 3000 4000 0.85 5000 0.8 6000 0.75 7000 0.7 8000 0.65 9000 0.65 10000

- $d = \frac{\hat{A}_{5} \frac{f_{4}}{f_{5}}}{.85 \frac{f_{6}}{f_{6}}} = \frac{0.5267(60)}{.85(3)(12)} = \frac{1.033}{1.033}$ $\frac{1.033}{2}$ $\frac{1.033}{2}$ $\frac{1.033}{2}$
- $\lambda = \frac{\partial}{\beta_1} = \frac{1.033}{0.85} = 1.215$

5. Check failure mode

4. Find $c = \beta_1$ a -

 $\varepsilon_t \ge 0.005$ for tension controlled

- 6. Find force T
- 7. Find moment arm z
- 8. Find nominal strength moment, M_n

$$\varepsilon_{t} = \frac{0.003 \, d}{C \, k} - 0.003$$
 $0.003 \, (9.75^{\circ})$

$$\underline{\epsilon}_{t} = \frac{0.003 (9.75'')}{1.215''} - 0.003 = 0.021'',$$

(Et = 0.021 > 0.005 : TENSION CONTROLLED)

$$T = A_5 fy = 0.5267 (60)^2 = 31.6 \frac{K}{2}$$

 $Z = J - 2 = 9.75 - \frac{1.033}{2} = 9.23$

Slab Analysis

wu = 1.2 DL + 1.6 LL

- 9. Find required moment, M,

10. Find slab DL

- 11. Determine max. loading
- $\frac{H_{0} = \phi H_{h} = 0.9 (291.8) \frac{1000}{12} = 21885 \frac{1-4}{12}}{150 (\text{REINF. CONC.})}$ $W_{DL} = \frac{2}{12} \frac{h}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{150 (\text{REINF. CONC.})}{12} = 150 \frac{11}{12} = 137.5 \text{ PSF}$ $\frac{15$

$$\frac{21385(3)}{540.37} = \frac{1.2(137.5) + 1.6(\omega_{LL})}{540.37} = \frac{1.2(137.5) + 1.6(\omega_{LL})}{165 + 1.6(\omega_{LL})}$$

Nominal

WLL = 234.6 PSF CAPACITY

University of Michigan, TCAUP

Structures II

Slide 5 of 21

Details of Reinforcement

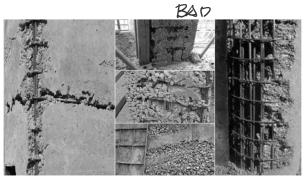
Size

Nominal 1/8" increments

2		Bar size designa- tion	section area.	Weight, lb per ft	Nominal diameter, in.
3/8		#3	0.11	0.376	0.375
		#4	0.20	0.668	0.500
1/2 5/8		#5	0.31	1.043	0.625
1/8		#6	0.44	1.502	0.750
		#7	0.60	2.044	0.875
E/ = ("		#8	0.79	2.670	1.000
18		#9	1.00	3.400	1.128.
		#10	1.27	4.303	1.270
()		#11	1.56	5.313	1.410
•	-	#14	2.25	7.650	1.693
		#18	4.00	13.600	2.257

Grade

- 40 (40 ksi) ~
- 60 (60 ksi) *
- 75 (75 ksi)

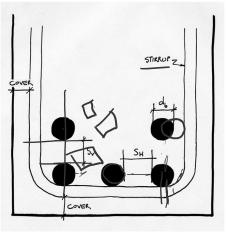

¹²⁰					(800
100 gmm ² 80					(600
Stress, kips/in² (N/mm²) 09 09 08 00 00 00 00 00 00 00 00 00 00 00 00					(400
30 40 20 20 20 20 20 20 20 20 20 20 20 20 20					(200
وا	0.04	0.08	0.12	0.16	0.20

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

- Cover (ACI 20.6.1)
- Horizontal spacing in beams, s_h (ACI 25.2.1)
 1 inch
 d_b
 4/3 d_{agg,max}

 Vertical spacing in beams (ACI 25.2.2) Min 1 inch

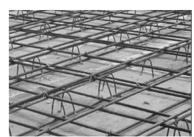

https://www.constructioncost.co/honeycombing-in-concrete.htm

University of Michigan, TCAUP

Structures II

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in contact with ground	and walls	No. 11 bar and smaller	3/4
	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2



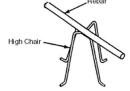
Slide 7 of 21

Details of Reinforcement

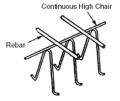
ACI 318 Chapter 25 Placement of Reinforcement

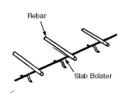
- Chairs
- Bolsters

https://catalog.formtechinc.com



http://contractorsupplymagazine.com





Continuous High Chair

Slide 8 of 21

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter

factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

• ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} in.	Type of standard hook	
	No. 3 through	6d _b 3	63 9	Point at which bar is developed	
90-degree	No. 9 through No. 11	8 <i>d_b</i>	12dh	90-degree	
hook	No. 14 and No. 18	10 <i>d_b</i>	1206	Diameter - Laxt	
	No. 3 through No. 8	6 <i>d</i> _b		Point at which bar is developed	
180-degree hook	No. 9 through No. 11	$8d_b$	Greater of	180-degree	
	No. 14 and No. 18	10 <i>d</i> _b	4d _b and 2.5 in.	Diameter bend	

¹¹A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ_{ext} in.	Type of standard hook
90-degree	No. 3 through No. 5	4d _b	Greater of 6d _b and 3 in.	90-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
135-degree	No. 3 through No. 5	4d _b	Greater of 6th and 3 in.	135-degree
hook	No. 6 through No. 8	6 <i>d</i> _b		/,
180-degree hook	No. 3 through No. 5	4 <i>d</i> _b	Greater of 4d _b and 2.5 in.	d _b -
	No. 6 through No. 8	$6d_b$		

¹¹A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

University of Michigan, TCAUP

Structures II

Slide 9 of 21

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

- 12" min
- Based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
Lightweight λ	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
P (II)	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
$\frac{\text{Epoxy}^{[1]}}{\Psi_e}$	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
ψ_s	No. 6 and smaller bars and deformed wires	0.8
Casting position ^[1]	More than 12 in. of fresh con- crete placed below horizontal reinforcement	1.3
Ψι	Other	1.0

^[1] The product $\psi_t \psi_e$ need not exceed 1.7.

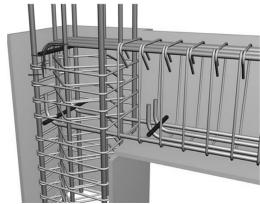


Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

https://www.buildinghow.com

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\left(\frac{f_{\nu}\Psi_{\bullet}\Psi_{e}}{25\lambda\sqrt{f_{c}'}}\right)d_{b}$	$\left(\frac{f_{y}\psi_{i}\psi_{e}}{20\lambda\sqrt{f_{c}'}}\right)d_{b}$
Other cases	$\left(\frac{3f_{y}\psi_{t}\psi_{\epsilon}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$	$\left(\frac{3f_y\psi_i\psi_e}{40\lambda\sqrt{f_c'}}\right)d_b$

Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

Custo	mary Units	SI Units		
f _c ' (psi)	E _c (psi)	(MPa)	E _c (MPa)	
3,000	3,140,000	20.7	21 650	
3,500	3,390,000	24.1	23 373	
4,000	3,620,000	27.6	24 959	
4,500	3,850,000	31.0	26 545	
5,000	4,050,000	34.5	27 924	

Jack C McCormac, 1978, Design of Reinforced Concrete,

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	_ 7	Customary Units				SI Units	
İ	Bar No.	Diameter (in.)	Cross- sectional Area (in.2)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm²)	Unit Weight (kg/m)
!	1 3	0.375	0.11	0.376	9.52	71	0.560
	4	0.500	0.20	0.668	12.70	129	0.994
Ι.	5	0.625	0.31	1.043	15.88	200	1.552
1/	6	0.750	0.44	1.502	19.05	284	2.235
(7	0.875	0.60	2.044	22.22	387	3.042
:\	8	1.000	0.79	2.670	25.40	510	3.973
	9	1.128	1.00	3.400	28.65	645	5.060
	10	1.270	1.27	4.303	32.26	819	6.404
	11	1.410	1.56	5.313	35.81	1006	7.907
	14	1.693	2.25	7.650	43.00	1452	11.384
_	18	2.257	4.00	13.600	57.33	2581	20.238

Table A.4 Areas of Groups of StandardBars (in.2)

	Number of Bars												
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
· 4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
- 4	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 11 of 21

Rectangular Beam Design

Two approaches:

Method 1:

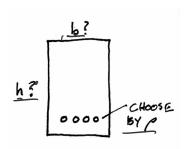
Data:

- Load and Span
- Material properties f'_c, f_y
- All section dimensions: h and b

Required:

Steel area – A_s

h As?

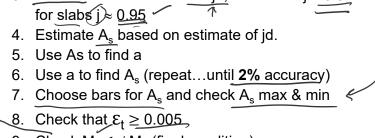

Method 2:

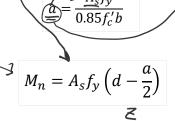
Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_v
- Choose ρ

Required:

- Steel area A_s
- Beam dimensions b or h


Rectangular Beam Design – **Method 1**


Data:

- Load and Span
- Material properties f'_c, f_y
 All section dimensions b and h

Required:

- Steel area A_s
- Calculate the factored <u>load</u> and find factored ¬required moment, M,, ペルタッペレン ~
- 2. Find $d = h cover stirrup d_b/2$
- 3. Estimate moment arm z = jd, for beams $j \approx 0.9$ for slab≰ j ≥ 0.95
- 9. Check $M_u \le \phi M_n$ (final condition)
- 10. Design shear reinforcement (stirrups)
- 11. Check deflection, crack control, rebar development length

 $M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$

ESTIMANTE

University of Michigan, TCAUP

Structures II

Slide 13 of 21

One-way Slab Design Method 1

Data:

- Load and Span
- Material properties f'_c , f_v
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width

f'¢ = 3000 psi 18 = 60 ksi = 230 psfDL = 150 pcf PLAN VIEW

Required:

Steel area – A_s

ACI

First estimate the slab thickness, h.

Try first the recommended minimum.

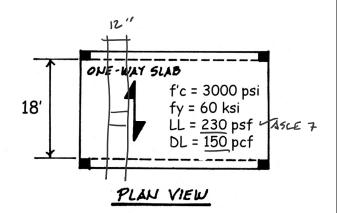

Deeper sections require less steel, but of course more concrete.

Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs

Support condition	Minimum $h^{[1]}$		
Simply supported	ℓ/20)		
One end continuous	€/24		
Both ends continuous	S		
Cantilever	€/10,		

THICKNESS, h, BASED ON DEFLECTION h = \$/20 = 18x12 = 10.8" USE 11"

One-way Slab Slab Design

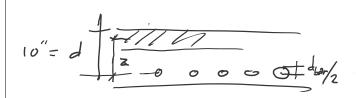
1. Calculate the dead load and find required M_{II}

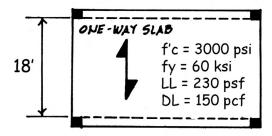
FACTOR LOAPS
$$DL = \frac{11''}{12} (150)^{6} = 137.5 \text{ PSF}$$

$$LL (41964) = 230 \text{ PSF}$$

$$W_{0} = 1.2(137.5) + 1.6(230) = 533 \text{ PSF} = 946$$

$$M_{0} = \frac{w_{0} P^{2}}{8} = \frac{533 \text{ PLF} (18')^{2}}{8} = 21587' - 4$$


$$\Phi M_{0} = 259'' - K$$


University of Michigan, TCAUP

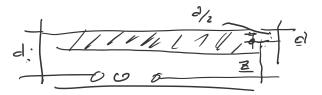
Structures II

Slide 15 of 21

One-way Slab Slab Design

PLAN VIEW

- Find d based on the estimated h and rebar size (guessing #4)
- Estimate moment arm $z \approx 0.95 d$


FOR
$$j \approx 0.95$$
, $d = h - \frac{10000}{\text{cover}} - \frac{1}{2} \text{ BAR}$

$$d = 11 - \frac{34}{4} - \frac{1}{2} (\frac{1}{2})$$

$$d = 11 - 1 = 10$$

$$E \approx \int_{0.95}^{1} d \approx 0.95 (10 - 1) = 9.5$$
ESTIMATE

One-way Slab Slab Design

- 4. Estimate A_s based on estimate of z
- 5. Use A_s to find a
- 6. Use a to find A_s (repeat...)

TRIAL 1

As =
$$\frac{Mu}{\phi f_{y}(z)} = \frac{259''^{-15}}{0.9(60 \text{ Ks}_1)(9.5)}'' = 0.505 \text{ in}^{2}$$
 $a = \frac{A_{5}f_{y}}{.85f_{6}b} = \frac{0.505(3)(12)}{.85(3)(12)} = 0.99''$

TRIAL 2
$$A_{S} = \frac{M_{U}}{4f_{3}(d-\frac{q}{2})} = \frac{259}{0.9(60)(10-\frac{99}{2})}$$

$$A_{S} = 0.5046h^{2} \quad \text{WITHIM 2\%}$$

$$0.505$$

University of Michigan, TCAUP

Structures II

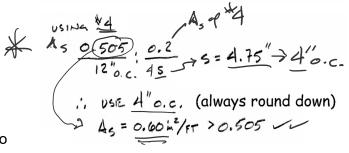
Slide 17 of 21

One-way Slab Slab Design

7. Choose bars for A_s required:

either

choose bars and calculate spacing


choose spacing and find bar size If the bar size changes, re-calculate to find new d. Then, re-calculate A_s...

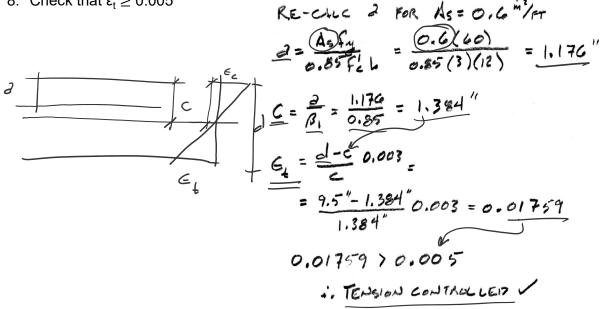
Check A_{s,min}

(for slabs A_{s min} from ACI Table 7.6.1.1)

Table 7.6.1.1—A_{s,min} for nonprestressed one-way slabs

Reinforcement type	f_y , psi	$A_{s,min}$			
Deformed bars	< 60,000		$0.0020A_{g}$		
Deformed bars or welded wire	≥ 60,000	Greater of:	0.0018×60,000 f.G.		
reinforcement			$0.0014A_{g}$		

Check As, min


$$\frac{A_{\text{S min}}}{= 0.0018} = 0.0018(12)(11")$$

$$= 0.24 \text{ in}^2 < 0.526 \text{ in}^2 \text{ vok}$$

$$= 0.600 \text{ vok}$$

One-way Slab Slab Design

8. Check that $\varepsilon_t \ge 0.005$

University of Michigan, TCAUP

Structures II

Slide 19 of 21

One-way Slab Slab Design

9. Check $M_{II} \leq \phi M_{n}$ (final condition)

$$A_s = A_{s,used}$$

 $M_n = Tz$

- 10. Add stirrups (no stirrups in slab)
- 11. Check deflection, crack control, and rebar development length