
Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART III

- Rectangular Beam Design Method 2
- Non-Rectangular Beam Analysis
- Reinforced Concrete Examples
- 3D-Print Evolution (Video)

University of Michigan, TCAUP

Structures II

Slide 1 of 22

Rectangular Beam Design

Two approaches:

Method 1:

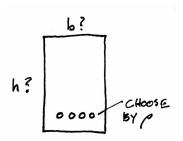
Data:

- Load and Span
- Material properties f'_c, f_y
- · All section dimensions: h and b

Required:

Steel area – A_s

h As?


Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_v
- Choose ρ

Required:

- Steel area A_s
- Beam dimensions b and h

Rectangular Beam Design - Method 2

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'_c, f_v

Required:

- Steel area A_s
- Beam dimensions b and h
- 1. Estimate the dead load (estimate h and b) (L/21 \leq h \leq L/8, h \approx L/12 and b:h \approx 1:2 to 2:3), find M_{II}
- 2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$)
- 3. Calculate bd²
- 4. Choose b and solve for d (or d and solve b)
- 5. Revise h, weight, M_u, and bd²
- 6. Find $A_s = \rho bd$
- 7. Choose bars for A_s, determine spacing and cover, and revise d
- 8. Check that $\varepsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL}) l^2}{8}$$

$$\rho = \frac{\beta_1 f_c'}{4f_y}$$

$$bd^{2} = \frac{M_{u}}{\varphi \rho f_{y} \left(1 - 0.59 \rho (f y/f_{c}^{\prime})\right)}$$

$$A_{s} = \rho b d$$

$$a = \frac{\rho f_y d}{0.85 f_c'}$$

University of Michigan, TCAUP

Structures II

Slide 3 of 22

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'_c, f_v

Required:

- Steel area A_s
- Beam dimensions b and d
- 1. Estimate the dead load (self-weight), and find M_u (h \approx L/12 and b:h \approx 1:2 to 2:3)

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $h^{[1]}$
Simply supported	€/16
One end continuous	€/18.5
Both ends continuous	€/21
Cantilever	ℓ/8

The pressions applicable for normalweight concrete and $f_y = 60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

2. Choose ρ (equation assumes ε_t = 0.0075)

Assume
$$h \approx \frac{L}{12} = \frac{360''}{12} = 30''$$

Assume bih & 1:2 :. $6 \approx 15''$
BEAM PL = 150 $\frac{15 \times 30}{144} = 469$ PLF

ESTIMATE MU
$$M_{U} = P_{\omega} + \frac{\omega f^{2}}{8}$$

$$= 1.6(20)(10^{1}) + \frac{1.2(2.469 \text{ KUF})(30^{1})^{2}}{8}$$

$$= 320 + 333.3 = 653.3 \text{ K}-1$$

CHOOSE P
$$P = \frac{\beta_1 f_2^2}{4 f_3} = \frac{0.85(3)}{4(60)} = 0.010$$

Rectangular Beam Design cont.

3. Calculate bd²

$$bd^{2} = \frac{M_{0}}{\phi \rho f_{y} (1 - 0.59 \rho (f_{3}/f_{c}))}$$

$$bd^{2} = \frac{653.3 (12)}{0.01(0.9)60 \left[1 - 0.59(0.01) \left(\frac{60}{3}\right)\right]}$$

$$bd^2 = \frac{7840}{0.573(0.882)} = 15492 \text{ m}^3$$

- 4. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h ≈ L/12, b:h ≈ 1:2 to 2:3
- 5. Revise h, weight, M_u, and bd²

University of Michigan, TCAUP

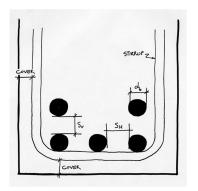
Structures II

Slide 5 of 22

Rectangular Beam Design cont.

5. Revise h, weight, M_u, and bd²

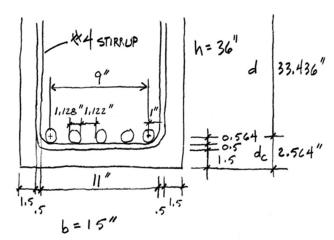
$$M_0 = 320 + \frac{1.2(2,563)30^2}{8} = 666 \text{ K-1}$$


$$bd^2 = \frac{666(12)}{0.505} = 15814 \text{ m}^3$$

6. Find $A_s = \rho bd$

$$A_5 = \rho \, bd = (0.01)(15)(32.5)$$

 $A_5 = 4.87 \, m^2$


Rectangular Beam Design

7. Choose bars for A_s, determine spacing and cover, and revise d

If bars do not fit in one layer, d is measured to the centroid of the pattern.

choose bars (see there 1.4)

$\overline{x} = \frac{\sum \mathbf{A} \times d_x}{\overline{\mathbf{A}}}$	Table A.4 Areas of Groups of StandardBars (in.2)													
$\sum \mathbf{A}$					+	Number of Bars								
	Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
	4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
	5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
	6	0.88	1.32	1,77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
	7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
	8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
_	9	2.00	3.00	4.00	\bigcirc 5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
	10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
	11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
Jack C McCormac, 1978	14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
Design of Reinforced Concrete,	18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 7 of 22

Rectangular Beam Design

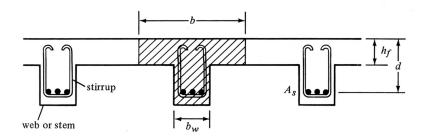
 Choose bars for A_s and determine spacing and cover, recheck h and weight

Make final check of M_n using final d, and check that $M_u \le \phi M_n$

- d = 33.436'' $d = \frac{As fy}{.85f_c b} = \frac{5(60)}{.85(3)15} = 7.843''$ $H_n = As fy \left(d \frac{d}{2}\right) = 5(60)(33.436 \frac{7.843}{2})$ $H_n = 8854 \text{ K-}'' = 737.8 \text{ K-}1$ $\phi H_n = 0.9(737.8) = 664 \text{ K-}1$ $M_0 = 653.3 < 664 \text{ Vol}$
- 8. Check that $\epsilon_t \geq$ 0.005 (if not, increase h and reduce $A_s)$
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$C = \frac{d}{\beta_1} = \frac{7.843''}{0.85''} = 9.227''$$

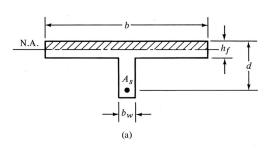
$$E_{t} = \frac{d-c}{c} (0.003)$$

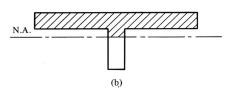

$$E_{t} = \frac{33.43(6-9.227)}{9.227} (0.003)$$

$$E_{t} = 0.00787 > 0.005 \text{ Vak}$$

T Beams

Dimensional limits


Nomenclature



Possible N.A. locations:

Within flange - rectangular

Within stem – non-rectangular

University of Michigan, TCAUP

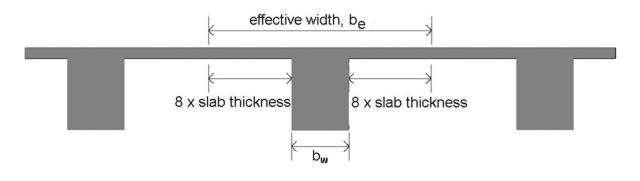
Structures II

Slide 9 of 22

T Beams - Effective Flange Width, b_e

Slab on one side:

b_e least of either (total width) or (overhang + stem)


- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam

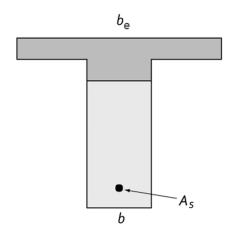
6 x slab depth or 1/2 clear span

Slab on both sides:

b_e least of either (total width) or (2 x overhang + stem)

- Total width: ¼ of the beam span
- Overhang: 8 x slab thickness
- Overhang: ½ the clear distance to next beam (i.e. the web on center spacing)

University of Michigan, TCAUP Structures II Slide 10 of 22


Non-Rectangular Beam Analysis

Data:

- Section dimensions b, b_e, h, (span)
- Steel area A_s
- Material properties f'_c, f_v

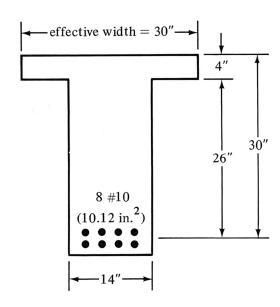
Required:

- Required Moment M_u (or load, or span)
- 1. Find $T = A_s f_y$ and $C = 0.85 f_c A_c$
- 2. Set T = C and solve for $A_c = T/(0.85 \text{ f'c})$
- 3. Draw and label diagrams for section and stress
 - 1. Determine b effective (for T-beams)
 - 2. Locate T and C (or C₁ and C₂)
- 4. Determine the location of a Working from the top down, add up area to make A_c
- 5. Find the moment arms (z) for each block of area
- 6. Find $M_n = \sum C_i z_i$
- 7. Find $M_u = \phi M_n$
- 8. Check $A_{s,min} < A_s < A_{s,max}$
- 9. Check that $\varepsilon_t \ge 0.005$

University of Michigan, TCAUP

Structures II

Slide 11 of 22

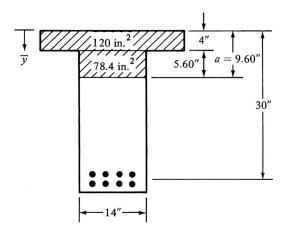

T Beam Analysis

Given: $f_c = 3000 \text{ psi}$

 $f_v = 50 \text{ ksi}$

dimensions. Use b_{eff} = 30"

Reg'd: Moment capacity, Mu



- 1. Find T = $A_s f_v$ and C = $0.85 f_c A_c$
- 2. Set T = C and solve for $A_c = T/(0.85 \text{ f/c})$

$$T = A_5 f_y = 10.12 \text{ in}^2 50^{\text{KSI}} = 506^{\text{K}}$$

$$A_c = \frac{T}{0.85 f_c'} = \frac{506^{\text{K}}}{0.85 \text{ 3 KSI}} = 198.4 \text{ in}^2$$

T Beam Analysis (cont.)

- 3. Draw and label diagrams for section & stress
 - 1. Determine b effective (for T-beams)
 - 2. Locate T and C (or C₁ and C₂)
- 4. Determine the location of a Working from the top down, add up area to make $A_{\rm c}$
- 5. Find the moment arms (z) for each block of area
- 6. Find $M_n = \sum C_i z_i$
- 7. Find $M_{II} = \phi M_{n}$

FLANCE = 30"×4" = 120 < 198.4 : NA IN WEB 198.4-120 = 78.4 in² = 14"×5.60" a = 4" + 5.60" = 9.60" BY PARTS (FOR EACH AREA)

$$Z_1 = 30'' - \frac{4''}{2} = 28''$$

 $Z_2 = 30'' - 4'' - 5.6/z'' = 23.2''$

$$C_1 = A_{c1} \circ .85 f'_{c} = 120(0.85)(3) = 306^{K}$$

 $C_2 = A_{c2} \circ .85 f'_{c} = 78.4(0.85)(3) = 199.9^{K}$

$$M_{N} = \sum (iZ_{i} = 306(28) + 199.9(23.2) = 8568 + 4638 = 13206^{K-1N}$$

University of Michigan, TCAUP

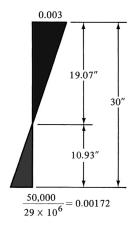
Structures II

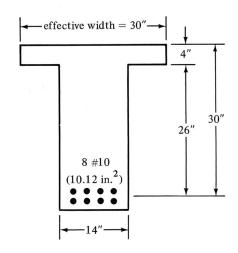
Slide 13 of 22

T Beam Analysis (cont.)

$$\rho_{\rm max}$$
 = 0.75 $\rho_{\rm bal}$

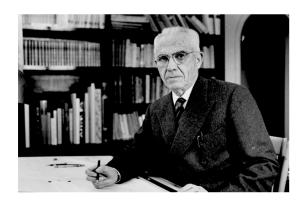
$$a_{bal}$$
 = beta c_{bal} = 0.85 (19.07") = 16.21"

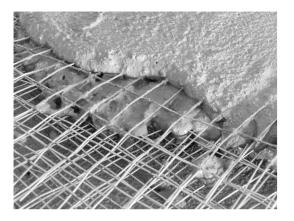

$$Ac = (4") (30") + (12.21") (14") = 291 in^2$$


$$C_{bal} = (0.85)(3)(291) = 742^{k}$$

$$T_{\text{max}} = 0.75 C_{\text{bal}} = (0.75) (742) = 556^{\text{k}}$$

$$T_{used} = A_s f_y = (10.12) (50) = 506^k < 556^k \text{ ok}$$

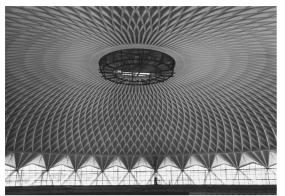




Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking

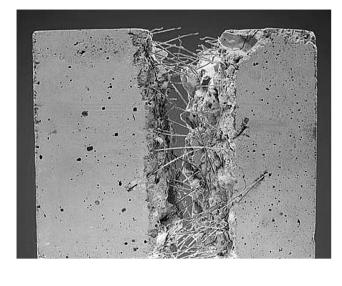
University of Michigan, TCAUP Structures II Slide 15 of 22

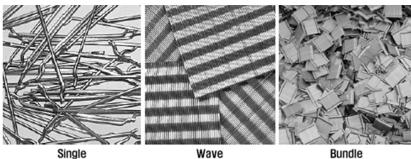

Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- · Well suited for thin shells
- Less cracking
- Low-tech applications

Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata

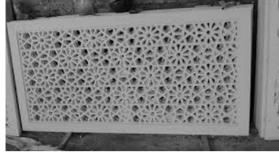
Palazetto dello Sport, Rome, 1957. P.L. Nervi


Fiber Reinforced Concrete


Several different fiber types:

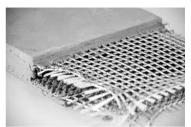
- Steel (SFRC)
- Glass (GFRC)
- Plastic e.g. polypropylene
- Carbon
- Organic e.g. bamboo

Better crack control Secondary reinforcement


University of Michigan, TCAUP Structures II Slide 17 of 22

Glass Fiber Reinforced Concrete - GFRC

Carbon Fiber


Bamboo

University of Michigan, TCAUP Structures II Slide 19 of 22

Textile Reinforced Concrete (TRC)

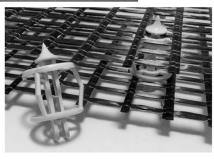
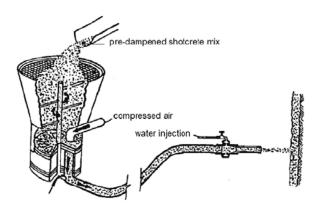


Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]


Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- · Reinforced with bars
- Soil stabilization, tunnels

University of Michigan, TCAUP Structures II Slide 21 of 22

3D-Print Evolution

Gold Partner

THEPOWEROFTEN

https://www.youtube.com/watch?v=awpmJriWcEw