
Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART III

- Rectangular Beam Design Method 2
- Non-Rectangular Beam Analysis
- Reinforced Concrete Examples
- 3D-Print Evolution (Video)

University of Michigan, TCAUP

Structures II

Slide 1 of 20

Rectangular Beam Design

Two approaches:

Method 1:

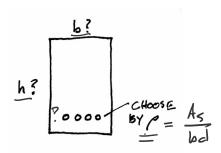
Data:

- Load and Span
- Material properties $-f'_c$, f_y
- All section dimensions: h and b

Required:

Steel area – A_s

h As?


Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_y
- Choose ρ

Required:

- Steel area A_s
- Beam dimensions b and h

Rectangular Beam Design – **Method 2**

Data:

- Load and Span
- Some section dimensions b or h –
- Material properties f'_c , f_v

Required:

- Steel area A_s
- Beam dimensions b and h

$$M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$$

- 1. Estimate the dead load (estimate h and b) $(L/21 \le h \le L/8, h \approx L/12 \text{ and b:h} \approx 1:2 \text{ to 2:3}),$ find M.
- 2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$)
- 3. Calculate bd²

- 8. Check that $\varepsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$\rho = \frac{\beta_1 f_c'}{4 f_c}$$

4. Choose b and solve for d (or d and solve b)

5. Revise
$$h$$
, weight, M_u , and bd^2

6. Find $A_s = \rho bd$

7. Choose bars for A_s , determine spacing and cover, and revise d

Assume $A_s = \rho bd$

Cover, and revise d

Cover, $A_s = \rho bd$

$$a = \frac{\rho f_y \, d}{0.85 f_c'}$$

University of Michigan, TCAUP

Structures II

126

Slide 3 of 20

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'_c , f_v

Required:

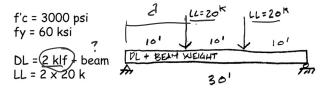

- Steel area As
- Beam dimensions b and d
- Estimate the dead load (self-weight), and find M_{ij} (h \approx L/12 and b:h \approx 1:2 to 2:3)

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum h ^[1]				
Simply supported	<i>ℓ</i> /16				
One end continuous	€/18.5				
Both ends continuous	€/21				
Cantilever	ℓ/8				

[1]Expressions applicable for normalweight concrete and $f_y = 60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3,

2. Choose ρ (equation assumes ε_t = 0.0075)

ASSUME
$$h \approx \frac{L}{12} = \frac{360''}{12} = \frac{30''}{30''}$$

ASSUME $\frac{L}{12} = \frac{360''}{12} = \frac{30''}{12} = \frac{30''}{30''}$

BEAM DL = $\frac{150}{1544} = \frac{15\times30}{144} = \frac{469}{0}$

ESTIMATE MU

 $M_U = \frac{P_{cd}}{8} + \frac{W}{8}^2$
 $= \frac{1.6(20)(10')}{8} + \frac{1.2(2.469 \text{ Kuf})(30')^2}{8}$
 $= \frac{320}{333.3} = \frac{653.3 \text{ K}}{333.3} = \frac{653.3 \text{ K}}{333.3}$

CHOOSE
$$\rho$$

 $\rho = \frac{\beta_1 f_0^2}{4 f_0^2} = \frac{0.85(3)}{4(40)} = \frac{0.010}{4}$

Rectangular Beam Design cont.

3. Calculate bd²

- 4. Choose b and solve for d
 (or d and solve for b)
 b is based on form size matches column size
 h ≈ L/12, b:h ≈ 1:2 to 2:3
- 5. Revise h, weight, M_u, and bd²

$$bd^{2} = \frac{M_{0}}{4\rho f_{g} (1-0.59 \rho (f_{3/f_{e}}))}$$

$$bd^{2} = \frac{653.3 (12)}{0.01(0.9)60 [1-0.59(0.01)(\frac{60}{385})]}$$

$$bd^{2} = \frac{7840}{0.573(0.882)} = \frac{15492 \text{ m}^{3}}{15492 \text{ m}^{3}}$$

University of Michigan, TCAUP

Structures II

Slide 5 of 20

Rectangular Beam Design cont.

5. Revise h, weight, M_u , and bd^2

USE
$$15 \times 36$$

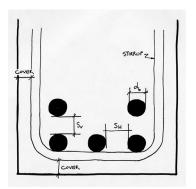
REVISE PL = $150 \frac{540}{144} = \frac{563}{144}$

CHECK MU

MU = $320 + \frac{1.2(2,563)}{8} \cdot 30^2 = \frac{666}{12}$

REVISE bel

bel $2 = \frac{666(12)}{0.505} = 15814$ in 3


FOR $6 = 15''$ $d = 32.5''$

6. Find
$$A_s = \rho bd$$

$$A_5 = \rho \, bd = (0.01)(15)(32.5)$$

 $A_5 = 4.87 \, \text{m}^2$

Rectangular Beam Design

7. Choose bars for A_s, determine spacing and cover, and revise d

d, 1.1282/,122

TRY 5 x *9 BARS As= 5,0 m2 > 4.872

CHOOSE BLAS (SEE THELE 4.4)

If bars do not fit in one layer, d is measured to the centroid of the pattern.

$\overline{x} =$	$\frac{\sum \mathbf{A} \times d_x}{\sum \mathbf{A}}$

		Number of Bars											
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
_8	1.57	2.35	3.14	3.93	4.71	4.21	6.28	7.07	7.85	8.64	9.43	10.21	11.00
→ 9	2.00	3.00	4.00	(5.00)	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Jack C McCormac, 1978 Design of Reinforced Concrete,

Structures II

Slide 7 of 20

Rectangular Beam Design

7. Choose bars for A_s and determine spacing and cover, recheck h and weight

Make final check of M_n using final d, and check that $M_u \le \phi M_n$

- $d = \frac{33.436''}{45 \text{ fy}} = \frac{33.436''}{5(60)} = 7.343''$ $d = \frac{45 \text{ fy}}{85 \text{ fc}} = \frac{5(60)}{85(3)15} = 7.343''$ $H_n = A_s f_y \left(d - \frac{2}{2} \right) = 5(60)(33.436 - \frac{7.843}{2})$ Mn = 8854 K-11 = 737.8 K-1 pMn = 0,9 (737,8) = 664 K-1 Mu = 653,3 < 664 VOK
- 8. Check that $\varepsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$C = \frac{d}{\beta_1} = \frac{7.843''}{0.87} = 9.227''$$

$$E_{\pm} = \frac{d}{C} (0.003)$$

$$E_{\pm} = \frac{33.436 - 9.227}{9.227} (0.003)$$

$$E_{\pm} = 0.00787 > 0.005 \text{ Vak}$$

Non-Rectangular Beam Analysis

Data:

- Section dimensions b, b_e, h, (span)
- Steel area As
- Material properties f'_c, f_y

Required:

- Required Moment M, (or load, or span)
- 1. Find $\underline{T} = A_s f_v$ and $C = 0.85 f_c A_c$
- 2. Set T = C and solve for A_c
- 3. Draw and label diagrams for section and stress
 - 1. Determine b effective (for T-beams)
 - 2. Locate T and C (or C₁ and C₂)
- 4. Determine the location of a Working from the top down, add up area to make A_c
- 5. Find moment arms (z) for each block of area
- 6. Find $M_n = \sum C_i z_i$
- 7. Find $M_u = \phi M_n$
- 8. Check $A_{s,min} < A_s < A_{s,max}$
- 9. Check that $\varepsilon_t \ge 0.005$

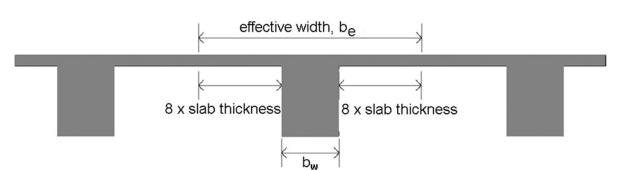
University of Michigan, TCAUP

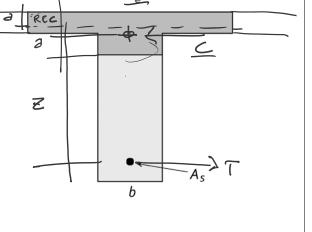
Structures II

Slide 9 of 20

Effective Flange Width, be

Slab on one side:


b_e least of either (total width) or (overhang + stem)


- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam

Slab on both sides:

b_e least of either (total width) or (2 x overhang + stem)

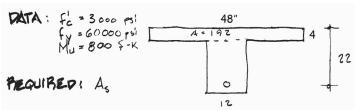
- Total width: 1/4 of the beam span
- Overhang: 8 x slab thickness
- Overhang: ½ the clear distance to next beam (i.e. the web on center spacing)

1/12 of span

6 x slab depth

1/2 clear span

T-beam Design - Method 1


Given: $f'_c = 3000 \text{ psi}$

 $f_y = 60 \text{ ksi}$

Ápplied load, M_u

Req'd: Reinforcement, As

- 1. Find b_{eff} for flange
- 2. Find d (estimate bar size)
- 3. Estimate moment arm, z 0.9 d
- 4. Estimate As Check d (iterate)
- 4. Calculate Ac (total)

CHOOSE 3

$$.9 d = .9 \times 22 = 19.8$$

TRIAL AS

$$A_5 = \frac{Mu}{4fy(3)} = \frac{800 \times 12}{.9(60)(20)} = 8.89 \text{ in}^2$$

COMPUTE AC

$$A_c = \frac{A_s f_y}{.85 f_c} = \frac{8.89 (60)}{.85 (3)} = 209.1$$

University of Michigan, TCAUP

Structures II

Slide 11 of 20

Non-Rectangular Section Analysis (cont.)

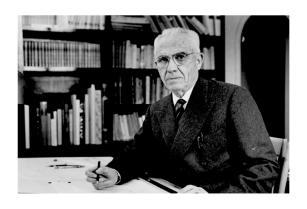
- Check if A_c is within flange
 If yes:
 same as rectangular beam
 If no:
 find area below flange
- 7. Find a
- 8. Find centroid of compression Area, y-bar
- 9. Calculate z
- 10. Calculate As
 Check within 2%
 If not find new a
- Choose bars Check spacing

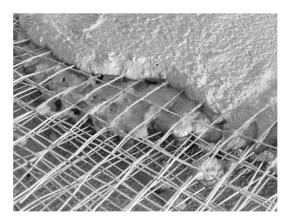
FIND 2

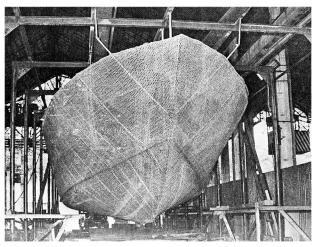
① IS AC WITHIN FLANCE?
$$A_{c}=209.2$$
 $A_{f}=192$.. NO
② WHAT IS ∂ ?
$$209.2-192=17.2$$

$$17.2+12=1.43$$

FIND
$$\bar{\gamma} = \frac{\sum AJ}{\sum A} = \frac{(192 \times 2) + (17.2 \times 4.7)}{209} = 2.22''$$


CALCULATE 3 = $d - \bar{\gamma} = 22 - 2.2 = 19.78$ "


CALCULATE AS
$$A_{S} = \frac{Mu}{4f_{Y}g} = \frac{800 \times 12}{.9(60)(19.78)} = 8.99 \text{ In }^{2}$$


$$USE 9 \times *9 \text{ or } 6 \times *11$$

Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- · Well suited for thin shells
- · Less cracking

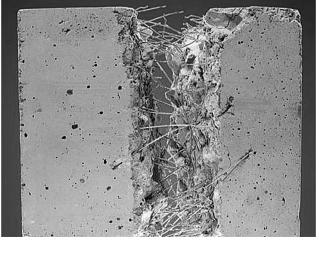
University of Michigan, TCAUP Structures II Slide 13 of 20

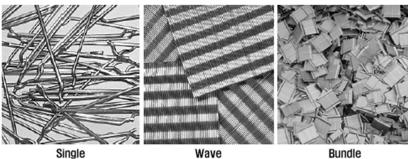
Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- Less cracking
- Low-tech applications

Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata

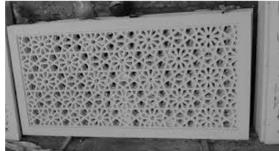
Palazetto dello Sport, Rome, 1957. P.L. Nervi


Fiber Reinforced Concrete


Several different fiber types:

- Steel (SFRC)
- Glass (GFRC)
- Plastic e.g. polypropylene
- Carbon
- Organic e.g. bamboo

Better crack control Secondary reinforcement


University of Michigan, TCAUP Structures II Slide 15 of 20

Glass Fiber Reinforced Concrete - GFRC

Carbon Fiber

Bamboo

University of Michigan, TCAUP Structures II Slide 17 of 20

Textile Reinforced Concrete (TRC)

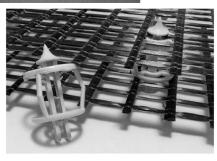
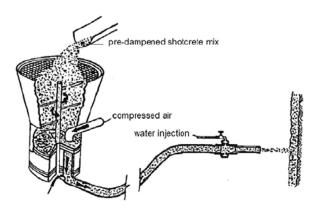


Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]


Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- · Reinforced with bars
- · Soil stabilization, tunnels

University of Michigan, TCAUP Structures II Slide 19 of 20

3D-Print Evolution

THEPOWEROFTEN

https://www.youtube.com/watch?v=awpmJriWcEw