
Architecture 324 Structures II

Wood Beam Analysis

- · ASD approach
- · NDS criteria
- · Wood Beam Analysis

University of Michigan, TCAUP Structures II Slide 1 of 27

Allowable Stresses

From the NDS Supplement

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

25

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F _v	F _{o⊥}	F _c	E	E _{min}	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000	l	
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000	l .	
Utility	1000 0000000000000000000000000000000000	250	150	150	405	850	1,100,000	400,000		

Allowable Stress Design by NDS **Flexure**

 F_b

 \geq

 \mathbf{f}_{b}

Allowable Flexure Stress F_b'

F_b from NDS Supplement tables determined by species and grade

 \mathbf{F}_{b} ' = \mathbf{F}_{b} (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_I Beam Stability Factor

C_F Size Factor

C_{fu} Flat Use

C_i Incising Factor

C_r Repetitive Member Factor

Actual Flexure Stress fb

 $f_b = Mc/I = M/S$

 $S = 1/c = bd^2/6$

University of Michigan, TCAUP Wood Structures Slide 3 of 27

Allowable Stress Design by NDS Shear

>

 f_{v}

Allowable Shear Stress Fv'

 $\boldsymbol{F}_{\boldsymbol{v}}$ from tables determined by species and grade

 $\mathbf{F_v}' = \mathbf{F_v}$ (usage factors)

usage factors for shear:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_i Incising Factor

Actu

Actual Shear Stress fv

 $f_v = VQ / | b = 1.5 V/A$

Can use V at d from support as maximum

Shear at Supports

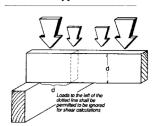
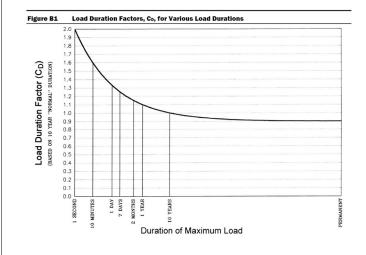


Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only				AS	SD an	d LRI	FD					LRFI only)
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	C _D	См	C_{t}	C_L	$C_{\mathbf{F}}$	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_t = F_t$	x	CD	См	Ct	-	$C_{\mathbf{F}}$	-	Ci	-	-	-	-	K _F	ϕ_{t}	λ
$\mathbf{F_v}' = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ
$F_{c\perp} = F_{c\perp}$	x	-	См	Ct	-	-	-	Ci	-	-	-	C _b	K _F	фс	λ
$F_c = F_c$	x	CD	C _M	Ct	-	$C_{\mathbf{F}}$	-	Ci	-	C _P	-	-	K _F	фе	λ
E' = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	C _T	-	K _F	ф	-

University of Michigan, TCAUP Structures II Slide 5 of 27


Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure: $\mathbf{C}_{\mathbf{D}}$ Load Duration Factor

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

(1) Actual stress due to (DL) \leq (0.9) (Design value) (2) Actual stress due to (DL+LL) \leq (1.0) (Design value) (3) Actual stress due to (DL+WL) \leq (1.6) (Design value) (4) Actual stress due to (DL+LL+SL) \leq (1.15) (Design value) (5) Actual stress due to (DL+LL+WL) \leq (1.6) (Design value) (6) Actual stress due to (DL+SL+WL) \leq (1.6) (Design value) (7) Actual stress due to (DL+LL+SL+WL) \leq (1.6) (Design value)

University of Michigan, TCAUP Structures II Slide 6 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $\mathbf{F}_{\mathrm{b}}{}^{\prime} = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \; \mathbf{C}_{\mathrm{M}} \; \mathbf{C}_{\mathrm{t}} \; \mathbf{C}_{\mathrm{L}} \; \mathbf{C}_{\mathrm{F}} \; \mathbf{C}_{\mathrm{fu}} \; \mathbf{C}_{\mathrm{i}} \; \mathbf{C}_{\mathrm{r}} \right)$

Usage factors for flexure:

C_t Temperature Factor

Table 2.3.3 Temperature Factor, Ct											
Reference Design Values	In-Service Moisture	C _t									
varues	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>							
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9							
E E E and E	Dry	1.0	0.8	0.7							
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5							

Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

University of Michigan, TCAUP

Structures II

Slide 7 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \; \mathbf{C}_{\mathrm{M}} \; \mathbf{C}_{\mathrm{t}} \; \mathbf{C}_{\mathrm{L}} \; \mathbf{C}_{\mathrm{F}} \; \mathbf{C}_{\mathrm{fu}} \; \mathbf{C}_{\mathrm{i}} \; \mathbf{C}_{\mathrm{r}} \right)$

Usage factors for flexure:

C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

_	F _b	F _t	F_{v}	$F_{c\perp}$	F _c	E and E _{min}
_	0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

Size Factors, C_F

		F	ь	F_t	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP Structures II Slide 8 of 27

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

 C_{fu} Flat Use

C_r Repetitive Member Factor

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C_{fu}

Width	Thickness (breadth)
(depth)	2" & 3"	4"
2" & 3"	1.0	_
4"	1.1	1.0
5"	1.1	1.05
6"	1.15	1.05
8"	1.15	1.05
10" & wider	1.2	1.1

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Structures II

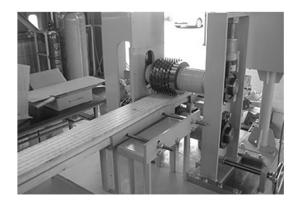
Slide 9 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$


Usage factors for flexure:

C_i Incising Factor

Table 4.3.8 Incising Factors, C,

Design Value	$\mathbf{C_{i}}$	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \; \mathbf{C}_{\mathrm{M}} \; \mathbf{C}_{\mathrm{t}} \; \mathbf{C}_{\mathrm{L}} \; \mathbf{C}_{\mathrm{F}} \; \mathbf{C}_{\mathrm{fu}} \; \mathbf{C}_{\mathrm{i}} \; \mathbf{C}_{\mathrm{r}} \right)$

Usage factors for flexure: **C**_L Beam Stability Factor

3.3.3 Beam Stability Factor, C.

- 3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.
- 3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.
- 3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

4.4.1 Stability of Bending Members

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) 2 < d/b ≤ 4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.</p>
- 2x12 (d) 5 < d/b ≤ 6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

University of Michigan, TCAUP

Structures II

Slide 11 of 27

C_L

C_L = 1.0 when bracing meets 4.4.1 for the depth/width ratio

Otherwise

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	-
^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	EIND BLOCKING JOIST OF BRAM
^{5 to 1} 2x10	Hold compression edge in line (continuously)	NAILING OF BEAM
6 to 1 2x12	Diagonal bridging should be used	SHEATHING/ DBOKING JOIST BRADGING
^{7 to 1} 2x14	Both edges of the beam should be held in line	BR-IP GING MAILED SHEATHING OF DECKING TOP & BETTOM

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6

The maximum allowable slenderness, $R_{\textrm{B}}$ is 50

Cantilever ¹	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u	\$400 ×	$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3 {\rm d}$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$	- 1	$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$	i janta	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	ℓ _e =1.80 ℓ _u	1 "h-	$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	7 · c.
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	3 A
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points	1 2	$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application	8	$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	Pilon L
Equal end moments		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	6. 1. Ye

^{1.} For single span or cantilever bending members with loading conditions not specified in Table 3.3.3:

3.3.3.6 The slenderness ratio, R_{B} , for bending members shall be calculated as follows:

$$R_{B} = \sqrt{\frac{\ell_{e}d}{b^{2}}}$$
 (3.3-5)

3.3.3.7 The slenderness ratio for bending members, R_{B} , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9} - \sqrt{\left[\frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

where:

F_b* = reference bending design value multiplied by all applicable adjustment factors except C_{fu}, C_V (when C_V ≤ 1.0), and C_L (see 2.3), psi

$$F_{bE} = \frac{1.20 E_{min}}{R_B^2}$$

University of Michigan, TCAUP

Structures II

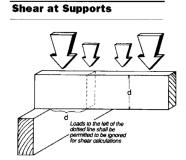
Slide 13 of 27

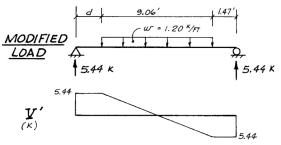
Adjustment Factors for Shear

Allowable Flexure Stress F_v'

 $\boldsymbol{F}_{\boldsymbol{\nu}}$ from tables determined by species and grade

 $F_v' = F_v$ (usage factors)


Usage factors for shear:


C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_i Incising Factor

Modified shear V^\prime used to compute reduced shear f^\prime_v

 $[\]ell_e = 2.06 \ \ell_u$ when $\ell_v/d < 7$ $\ell_v = 1.63 \ \ell_v + 3d$ when $7 < \ell_v/d < 14$

 $[\]ell_e = 1.63 \ \ell_u + 3d$ when $7 \le \ell_u/d \le 14.3$ $\ell_e = 1.84 \ \ell_u$ when $\ell_v/d > 14.3$

^{2.} Multiple span applications shall be based on table values or engineering analysis

Analysis Procedure

Given: loading, member size, material and span.

Req'd: Safe or Unsafe (Pass/Fail)

- 1. Find Max Shear & Moment
 - Simple case equations
 - Complex case diagrams
- 2. Determine actual stresses
 - f_b = M/S
 - $f_v = 1.5 \text{ V/A}$
- 3. Determine allowable stresses
 - F_b and F_v (from NDS)
 - F_b' = F_b (usage factors)
 - F_v' = F_v (usage factors)
- 4. Check that actual ≤ factored allowable
 - $f_b \leq F'_b$
 - $f_v \leq F'_v$
- 5. Check deflection < building code max. $\frac{7.17}{4 \times 16}$
- 6. Check bearing (F_{c⊥} ≥ Reaction/A_{bearing})

from NDS 2012

Standard

Dressed

Size (S4S)

b x d

in. x in.

3/4 x 2-1/2

3/4 x 3-1/2

3/4 x 5-1/2

3/4 x 7-1/4

3/4 x 9-1/4

3/4 x 11-1/4

1-1/2 x 2-1/2

1-1/2 x 3-1/2

1-1/2 x 4-1/2

1-1/2 x 5-1/2

1-1/2 x 7-1/4

1-1/2 x 9-1/4

1-1/2 x 11-1/4

1-1/2 x 13-1/4

2-1/2 x 3-1/2

2-1/2 x 4-1/2

2-1/2 x 5-1/2

2-1/2 x 7-1/4

2-1/2 x 9-1/4

2-1/2 x 11-1/4

2-1/2 x 13-1/4

2-1/2 x 15-1/4

3-1/2 x 3-1/2

3-1/2 x 4-1/2

3-1/2 x 5-1/2

3-1/2 x 7-1/4

3-1/2 x 9-1/4

3-1/2 x 11-1/4

3-1/2 x 13-1/4

3-1/2 x 15-1/4

Nominal

Size

b x d

Boards¹

1 x 3

1 x 4

1 x 6

1 x 8

1 x 10

1 x 12

2 x 3

2 x 4

2 x 5

2 x 6

2 x 8

2 x 10

2 x 12

2 x 14

3 x 4

3 x 5

3 x 6

3 x 8

3 x 10

3 x 12

3 x 14

3 x 16

4 x 4

4 x 5

4 x 6

4 x 8

4 x 10

4 x 12

4 x 14

Area

Section

in.²

1.875

4.125

5.438

6.938

8.438

3.750

5.250

6.750

8.250

10.88

13.88

16.88

19.88

8.75

11.25

13.75

18.13

23.13

28.13

33 13

38.13

12.25

15.75

19.25

25.38

32.38

39.38

46.38

53.38

Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)

University of Michigan, TCAUP

Structures II

Slide 15 of 27

X-X AXIS

Inertia

I_{xx}

in.4

0.977

2.680

10.40

23.82

49.47

88.99

5.359

11.39

20.80

47.63

98.93

178 0

290.8

8.932

18.98

34.66

79.39

164.9

296.6

484 6

738.9

12.51

26.58

48.53

111.1

230.8

415.3

678.5

1034

Section

Modulus

S_{xx} in.³

3.781

6.570

10.70

15.82

3.06

5.06

7.56

13.14

21.39

31 64

43.89

5.10

8.44

12.60

21.90

35.65

52.73

73 15

96.90

7.15

11.81

17.65

30.66

49.91

73.83

102 41

135.66

Y-Y AXIS

Inertia

I_{yy} in.⁴

0.088

0.193

0.255

0.325

0.396

0.984

1.266

1.547

2.039

2.602

3 164

3.727

4 557

5.859

7.161

9.440

12.04

14.65

17 25

19.86

12.51

16.08

19.65

25.90

33.05

40.20

47 34

54.49

Section

Modulus

S_{yy} in.³

0.516

0.680

0.867

1.055

0.938

1.313

1.688

2.063

2.719

3.469

4 219

4.969

3.646

4.688

5.729

7.552

9.635

11.72

13 80

15.89

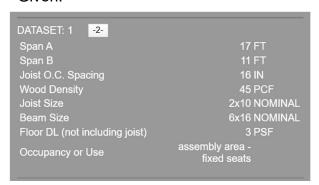
7.146

9.188

11.23

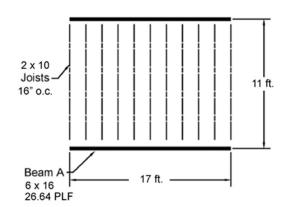
14.80

18.89

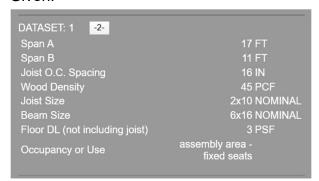

22.97

27.05

31.14


Analysis Example (pass/fail)

Given:


Req'd: pass or fail for floor joist

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

Given:

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

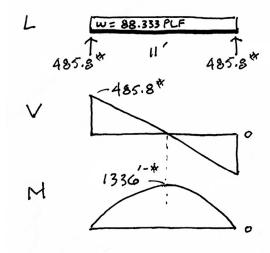
Table 1B Section Properties of Standard Dressed (\$4\$) Sawn Lumber

			X-X	CAXIS	Y-1	AXIS							
	Standard	Area		Moment	C	Moment	Approximate weight in pounds per linear foot (lbs					t (lbs/ft)	
Nominal	Dressed	of	Section	of	Section	of		of pied	ce when d	ensity of	wood equ	als:	
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia	×						
bxd	b x d	Α	S _{xx}	I _{xx}	Syy	lyy	25 lbs/ft3	30 lbs/ft3	35 lbs/ft ³	40 lbs/ft3	45 lbs/ft3	50 lbs/ft3	
	in. x in.	in.2	in.3	in.4	in.3	in.4							
Dimension	imension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302	
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823	
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344	
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865	
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776	
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818	
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859	
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901	

University of Michigan, TCAUP Structures II Slide 17 of 27

Analysis Example (pass/fail)

1. Find Max Shear & Moment on Joist


By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336(11)}{2} = 485.848 \text{ lbs}$$

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08 \text{ ft-lbs}$$

- 2. Determine actual stresses in joists
 - $f_b = M/S$
 - $f_v = 1.5 \text{ V/A}$

$$f_b = \frac{M}{s_x} = \frac{1336' - (12)}{21.39 \text{ is}^3} = 749.5 \text{ PSI}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{4}}{13.88 in^{2}} = 52.5 PSI$$

Table 1B Section Properties of Standard Dressed (\$4\$) Sawn Lumber

			X->	(AXIS	Y-1	AXIS							
	Standard	Area		Moment	10	Moment	Appro	ximate w	eight in po	ounds per	linear foo	t (lbs/ft)	
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of v	wood equ	als:	
Size	Size (S4S)	Section	Modulus	Inertia	Modulus								
b x d	b x d	Α	S _{xx}	I _{xx}	Syy	lyy	25 lbs/ft3	30 lbs/ft3	35 lbs/ft ³	40 lbs/ft3	45 lbs/ft3	50 lbs/ft	
	in. x in.	in.2	in.3	in.4	in.3	in.4							
Dimensior	imension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302	
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823	
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344	
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865	
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776	
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818	
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859	
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901	

University of Michigan, TCAUP Structures II Slide 19 of 27

Analysis Example (pass/fail)

- 3. Determine allowable stresses NDS Supplement
 - $F_b = 875 \text{ psi}$
 - $F_v = 135 \text{ psi}$

Species and Grade

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus of Elasticity		Specific Gravity ⁴	Grading Rules Agency
		F₀	Ft	F _v	F₀⊥	F _o	E	Emin	G	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		l
No. 3	- 20100000000000000000000000000000000000	500	250	135	425	650	1,200,000	440,000		l
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction		1,000	500	135	425	1,400	1,300,000	470,000	i nerang	Digital scale
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		l
Utility		275	125	135	425	750	1,100,000	400,000		l

University of Michigan, TCAUP Structures II Slide 20 of 27

- 3. Determine allowable stresses NDS Supplement
 - Adjustment Factors

Determine factors:

CD = ? CM = 1 Ct = 1 CL = ? CF = ? Cfu = 1 Ci = 1

Cr = ?

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	х	C_D	См	C_{t}	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_{\mathbf{v}}' = F_{\mathbf{v}}$	х	C_D	См	C_{t}	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

University of Michigan, TCAUP Structures II Slide 21 of 27

Analysis Example (pass/fail)

 C_D Load duration factor Occupancy LL (10 years) = 1.0

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

2 x 10 use 1.1

		Size Factors,	C_{F}		
		F	, b	F _t	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1 1.05 1.0
No.1 & Btr,	8"	1.2	1.3	1.2	
No.1, No.2,	10"	1.1	1.2	1.1	
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP Structures II Slide 22 of 27

C_r Repetitive Member Factor

16" o.c. : $C_r = 1.15$

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP Structures II Slide 23 of 27

Analysis Example (pass/fail)

 C_L Beam Stability Factor 2x10 w/ flooring: $C_L = 1.0$

 $C_L = 1.0$ if depth/width ratio meets criteria in 4.4.1 $C_L = 1.0$

Otherwise:

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example			
2 to 1	None				
3 to 1 2x6 2x8	The ends of the beam should be held in position	BIND BLOOKING			
^{5 to 1} 2x10	Hold compression edge in line (continuously)	JOIGT OF BEAM			
6to 1 2x12	Diagonal bridging should be used	SHEATHING/DEOFING JOIST BRIDGING			
7to 1 2x14	Both edges of the beam should be held in line	PR-PATING NALISTO SHEATHING OR PROPING TOP & BETTOM			

- Determine factored allowable stresses

 - $F_b' = F_b (C_D)(C_L)(C_F)(C_r)$ $F_b' = 875 (1.0) (1.0) (1.1) (1.0) (1.15) = 1107 psi$

 - F_v' = F_v (C_D)
 F_v' = 135 (1.0) = 135 psi
- Check that actual ≤ factored allowable
 - f_b < F'_b
 - $f_v < F_v$

$$f_b = \frac{M}{s_x} = \frac{1336' - (12)}{21.39 \, \text{m}^3} = 749.5 \, \text{PSI}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{\frac{4}{3}}}{13.86 i z^{2}} = 52.5 PSI$$

- 5. Check deflection
- 6. Check bearing $(F_{cp} = R/A_b)$

University of Michigan, TCAUP

Structures II

Slide 25 of 27

Analysis Example (pass/fail)

- 5. Check deflection < Code limits
 - NDS 3.5
 - Δ_{IT} Long term
 - Δ_{ST} Short term
 - K_{cr} creep factor

$$\Delta_T = K_{cr} \Delta_{LT} + \Delta_{ST}$$
 (NDS 3.5-1)

 K_{cr}

- · 1.5 dry, seasoned lumber
- · 2.0 wet service conditions
- 2.0 wood panels
- 2.0 CLT (dry)

TABLE 1604.3 DEFLECTION LIMITSa, b, c, h, i

CONSTRUCTION	L	S or Wf	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	_	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes		//360 //240 //120	
	//360 //240 //120		=
Farm buildings	-	-	//180
Greenhouses	-	-	//120

$$\Delta_{L} = \frac{5 \text{ W L}^{4}}{384 \text{ ET}} = \frac{5 (80 \text{ PLF})(11 \text{ FT})^{4} (1728)}{384 (1400000 \text{ PSI})(98.93 \text{ In}^{4})}$$

$$\frac{g}{360} = \frac{11 \, \text{FT} (12)}{360} = 0.367''$$

$$\Delta LT$$

$$\Delta_D = \frac{5 \text{wL}^4}{3.94 \text{ F.T}} = \frac{5(8.34 \text{ PLF})(11 \text{ FT})^4(1728)}{3.54(1400000 \text{ PS}1)(98.93 \text{ IN}^4)}$$

$$\Delta_T = K_{cr} \Delta_{LT} + \Delta_{ST}$$

= 1.5(0.02) + 0.19 = 0.22"

$$\frac{1}{240} = \frac{11 \, \text{FT}(12)}{240} = 0.55''$$

University of Michigan, TCAUP

Structures II

Slide 26 of 27

6. Check bearing : $F_{c\perp}$ < P/A_b

$$F_{cl} = 425 \text{ psi}$$

$$P = R = 485.8 \text{ lbs}$$

 $A_b = 1.5" (1") = 1.5 \text{ in}^2$

$$f_b = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$$

3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain, $F_{c\perp}$, apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain, $F_{c\perp}$, shall be permitted to be multiplied by the following bearing area factor, C_b :

$$C_{b} = \frac{\ell_{b} + 0.375}{\ell_{b}} \tag{3.10-2}$$

where:

 ℓ_{b} = bearing length measured parallel to grain, in.

Equation 3.10-2 gives the following bearing area factors, C_b , for the indicated bearing length on such small areas as plates and washers:

Table 3.10.4			Bearing Area Factors, C _b							
$\overline{\ell_{\mathrm{b}}}$	0.5"	1"	1.5"	2"	3"	4"	6" or more			
C_b	1.75	1.38	1.25	1.19	1.13	1.10	1.00			

For round bearing areas such as washers, the bearing length, $\ell_{\rm b}$, shall be equal to the diameter.

University of Michigan, TCAUP Structures II Slide 27 of 27