Architecture 324
Structures II

Wood Beam Analysis

- ASD approach
- NDS criteria
- Wood Beam Analysis

Allowable Stresses

From the NDS Supplement

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

Allowable Stress Design by NDS

Flexure

Actual Flexure Stress \mathbf{f}_{b}

$$
\begin{aligned}
& f_{b}=M c / I=M / S \\
& S=I / C=b d^{2} / 6
\end{aligned}
$$

by species and grade

Allowable Stress Design by NDS Shear

Allowable Shear Stress Fv’

F_{v} from tables determined by species and grade
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$ (usage factors)
usage factors for shear:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{i} Incising Factor

Actual Shear Stress fv

$\underline{f_{v}}=\mathrm{VQ} / \mathrm{Ib}=1.5 \mathrm{~V} / \mathrm{A}$
Can use V at d from support as maximum

Shear at Supports

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i}\right)$

Usage factors for flexure: C_{D} Load Duration Factor

COMR

Load Duration	$\mathrm{C}_{\text {D }}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Sēenen days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ${ }^{2}$.	U2.0)	Impact Load

(1) Actual stress due to (DL) to (DL+LL)
(3) Actual stress due to (DL-WD)
(4) Actual stress due to (DL+LL (SE)
(5) Actual stress due
to (DL +LL $-W D$
(6) Actual stress due to (DL+SL-WL
(7) Actual stress due to (DL+LL+SL+WL) $\leq(1.6)$ (Design value)

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{t} Temperature Factor
care

Table 2.3.3 Temperature Factor, \mathbf{C}_{t}

Reference Design Values	In-Service Moisture Conditions ${ }^{1}$	$\mathrm{C}_{\text {t }}$		
		$\mathrm{T} \leq \underline{100^{\circ} \mathrm{F}}$	$100^{\circ} \mathrm{F}<\mathrm{T} \leq 125^{\circ} \mathrm{F}$	$125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}, \mathrm{E}_{\text {min }}$	Wet or Dry	1.0	0.9	0.9
(F_{b}, $\mathrm{F}_{\mathrm{v}}, \mathrm{F}_{\mathrm{c}}$, and $\mathrm{F}_{\mathrm{c} \perp}$	- Dry $/$	1.0	0.8	0.7
	Wet -	1.0	0.7	0.5

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$
F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, C_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
-0.85®	1.0	0.97	0.67	0.8**	0.9

Grades	Width (depth)	F_{b}		$\underline{F_{1}}$	F
		Thickness (breadth)			
		2" \& 3"	4"		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.5	1.5	1.5	1.15
	$5{ }^{\prime \prime}$	1.4	1.4	1.4	1.1
	6 "	1.3	1.3	1.3	1.1
	8"	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12")	${ }^{1} 1.0$	1.1	1.0	1.0
	14" \& wider	0.9 -	1.0	0.9	0.9
— Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" \& 3"	0.4	-	0.4	0.6

Adjustment Factors Sup.
Allowable Flexure Stress $F_{b}{ }^{\prime}$
F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{fu} Flat Use
Cr $_{r}$ Repetitive Member Factor

Sup.

Repetitive Member Factor, \mathbf{C}_{r}

Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$. when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Flat Use Factor, $\mathrm{C}_{\text {fin }}$
Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{b}, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C_{fu}		
Width	Thickness (breadth)	
(depth)	$2^{\prime \prime} \& 3^{\prime \prime}$	$4 "$
$2 " \& 3^{\prime \prime}$	1.0	-
$4^{\prime \prime}$	1.1	1.0
$5^{\prime \prime}$	1.1	1.05
$6^{\prime \prime}$	1.15	1.05
$8^{\prime \prime}$	1.15	1.05
$10^{\prime \prime} \&$ wider	1.2	1.1.

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure: C_{i} Incising Factor

Table 4.3.8 Incising Factors, \mathbf{C}_{1}

Design Value	$\mathbf{C}_{\mathbf{i}}$
$\mathrm{E}, \mathrm{E}_{\min }$	0.95
$\mathrm{~F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{t}}, \mathrm{F}_{\mathrm{c}}, \mathrm{F}_{\mathrm{v}}$	$\underline{0.80}$
$\overline{\mathrm{~F}_{\mathrm{c} 1}}$	$\underline{1.00}$

Adjustment Factors

Allowable Flexure Stress F_{b} '
F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{L} Beam Stability Factor

3.3.3 Beam Stability Factor, $\mathbf{C}_{\mathbf{L}}$

3.3.3.1 When the depth of a bending member does not exceed its breadth, $\mathrm{d} \leq \mathrm{b}$, no lateral support is required and $\mathrm{C}_{\mathrm{L}}=1.0$
3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $\mathrm{C}_{\mathrm{L}}=1.0$.
$C_{L}=1.0$

4.4.1 Stability of Bending Members

2×4. (a) $\mathrm{d} / \mathrm{b} \leq 2$; no lateral support shall be required.
$2 \times 6-8$ (b) $2<\mathrm{d} / \mathrm{b} \leq 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
2×10 (c) $4<\mathrm{d} / \mathrm{b} \leq 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×12 (d) $5<\mathrm{d} / \mathrm{b} \leq 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×14
(e) $6<\mathrm{d} / \mathrm{b} \leq 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
C_{L}
$C_{L}=1.0$
when bracing meets 4.4.1 for the depth/width ratio

Otherwise
$C_{L}<1.0$
calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
$\begin{aligned} & 3 \text { to } 1 \\ & 2 \times 6 \\ & 2 \times 8 \end{aligned}$	The ends of the beam should be held in position	
$\begin{aligned} & 5 \text { to } 1 \\ & 2 \times 10 \\ & \hline \end{aligned}$	Hold compression edge in line (continuously)	
$\begin{aligned} & \text { 6 to } 1 \\ & 2 \times 12 \\ & \hline \end{aligned}$	Diagonal bridging should be used $0^{\circ} 0<$.	
$\begin{aligned} & 7 \text { to } 1 \\ & 2 \times 14 \end{aligned}$	Both edges of the beam should be held in line	

C Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met,
C_{L} is calculated using equation 3.3-6
The maximum allowable slenderness, R_{B} is $\mathbf{5 0}$

Adjustment Factors for Shear

Allowable Flexure Stress $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$

F_{v} from tables determined by species and grade
$F_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$ (usage factors)

Usage factors for shear:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{i} Incising Factor

Analysis Procedure

Gịven: loading, member size, material and span.
Req'd: Safe or Unsafe (Pass/Fail)

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Determine actual stresses

- $f_{b}=A$
- $\tilde{f}_{\alpha}=1.5$ (V)A RICTANCME

3. Determine allowable stresses

- F_{b} and F_{k} (from NDS)
- $F_{b}^{\prime}=F_{b}$ (usage factors)
- $F^{\prime}{ }^{\prime}=F_{V}$ (usage factors)

4. Check that actual \leq factored allowable

- $f_{b} \leq F_{b}^{\prime}$
- $f_{v} \leq F_{v}^{\prime}$

5. Check deflection < building code max.

$\begin{gathered} \text { Nominal } \\ \text { Size } \\ \text { b x d } \end{gathered}$	Standard Dressed Size (S4S) $\begin{gathered} \text { b x d } \\ \text { in. } \times \text { in. } \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }^{2} \\ \hline \end{gathered}$	X-X AXIS		Y-Y AXIS	
			Section Modulus $\begin{aligned} & S_{\mathrm{xx}} \\ & \text { in. }{ }^{3} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ I_{x x} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	Section Modulus $S_{y y}$ in. ${ }^{3}$	$\begin{array}{\|c} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{yy}} \\ \text { in. }{ }^{4} \\ \hline \end{array}$
Boards ${ }^{1}$						
1×3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $2 \times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	$1-1 / 2 \times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 2 13-1/4	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 $\times 5-1 / 2$	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3×10	$2-1 / 2 \times 9-1 / 4$	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 \times 3-1/2	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 \times 4-1/2	15.75	11.81	26.58	9.188	16.08
4×6	$3-1 / 2 \times 5-1 / 2$	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	$3-1 / 2 \times 9-1 / 4$	32.38	49.91	230.8	18.89	33.05
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

6. Check bearing ($\mathrm{F}_{\mathrm{c} \perp} \geq$ Reaction $/ \mathrm{A}_{\text {bearing }}$)

Analysis Example (pass/fail)

Given:

ASCE-7 Table 4.3-1: Live Load $=60$ PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

$8.336 \mathrm{PLF}+80 \mathrm{PLF}=88.336 \mathrm{PLF}$

Analysis Example (pass/fail)
Given:

DATASET: 1 -2-	
Span A	17 FT
Span B	11 FT
Joist O.C. Spacing	16 IN
Wood Density	45 PCF
Joist Size	2×10 NOMINAL
Beam Size	6x16 NOMINAL
Floor DL (not including joist)	3 PSF
Occupancy or Use	assembly area fixed seats

ASCE-7 Table 4.3-1: Live Load $=60$ PSF ASCE-7 2.4.1 ASD load case: D + L 2×10 Joist + floor load:

Table 1B Section Properties of Standard Dressed(S4S) Sawn Lumber

Nominal Size b x d	Standard Dressed Size (S4S) bxd $\text { in. } x \text { in. }$	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS		Appro ximate we					
			$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathbf{S}_{\mathrm{xx}} \\ \text { in. }^{3} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{xx}}{ }^{4} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Section } \\ \text { Modulus } \\ \mathbf{S}_{y y} \\ \mathrm{in}^{3} .^{3} \\ \hline \end{array}$	Moment of Inertia $I_{y y}$ in. ${ }^{4}$			Approximate weight in pounds per inear foot (ibs/ft)of piece when density of wood equals:			
							$25 \mathrm{lbs} / \mathrm{ft}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}$	$5 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$15 \mathrm{lbs} / \mathrm{ft}$	$50 \mathrm{lbs} / \mathrm{ft}^{3}$
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2×3	$1-1 / 2 \times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2×5	$1-1 / 2 \times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.252	2.578	2.865
2×8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021 \}	3.398	3.776
2×10	1-1/2 $\times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2×14	1-1/2 $\times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

Analysis Example (pass/fail)

1. Find Max Shear \& Moment on Joist

By equations:
Shear:

$$
\frac{w l}{2}=\frac{88.336(11)}{2}=485.848 \mathrm{lbs}
$$

Moment:

$$
\frac{w l^{2}}{8}=\frac{88.336\left(11^{2}\right)}{8}=1336.08 \mathrm{ft}-\mathrm{lbs}
$$

L

2. Determine actual stresses in joists

$$
\text { - } f_{b}=M / S
$$

- $\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} / \mathrm{A}$

$$
\begin{aligned}
& \text { ACTUAL } \\
& f_{b}=\frac{M}{S_{x}}=\frac{1336^{\prime}-*(12)}{21.39 \mathrm{~m}^{3}}=879.5 \mathrm{PS1} \\
& f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5(485.8)^{*}}{13.88 \mathrm{~m}^{2}}=52.5 \mathrm{ps} 1
\end{aligned}
$$

Table 1B Section Properties of Standard Dressed (S4S) Saw Lumber

Analysis Example (pass/fail)

3. Determine allowable stresses - NDS Supplement

- $\mathrm{F}_{\mathrm{b}}=875 \mathrm{psi}$
- $F_{\mathrm{v}}=135 \mathrm{psi}$

Species and Grade

Sup
Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine -see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

Analysis Example（pass／fail）

3．Determine allowable stresses－NDS Supplement
－Adjustment Factors

Determine factors：

Table 4．3．1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
						$\begin{aligned} & \text { 亮 } \\ & \text { 岕 } \\ & \text { 的 } \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{1}	C_{L}	C ${ }_{\text {F }}$	$\mathrm{Cfu}_{\text {fu }}$	C_{i}	C_{r}	－	－	－	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	－	－	－	Ci	－	－	－	－	K_{F}	ϕ_{v}	λ

Analysis Example (pass/fail)

C_{r} Repetitive Member Factor

16" о.с. : $C_{r}=1.15$

Repetitive Member Factor, \mathbf{C}_{r}

Bending design values, F_{b}, for dimension lumber 2" to $4 "$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Analysis Example (pass/fail)

C_{L} Beam Stability Factor $2 \times 10 \mathrm{w} /$ flooring: $\mathrm{C}_{\mathrm{L}}=1.0$	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
	2 to 1	None	
	$\begin{aligned} & \text { 3to } 1 \\ & 2 \times 6 \\ & 2 \times 8 \end{aligned}$	The ends of the beam should be held in position	
$C_{L}=1.0$ if depth/width ratio meets criteria $\text { in 4.4.1 } \mathrm{C}_{\mathrm{L}}=1.0$	5 to 1 2×10	Hold compression edge in line (continuously)	
$\begin{aligned} & \mathrm{C}_{\mathrm{L}}<1.0 \\ & \quad \text { calculate factor using section 3.3.3 } \end{aligned}$	2×12	Diagonal bridging should be used	
	7 to 1 2×14	Both edges of the beam should be held in line	

Analysis Example (pass/fail)

3. Determine factored allowable stresses

ALlow

- $\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{r}}\right)$
- $F_{b}^{\prime}=875(1.0)(1.0)(1.1)(1.0)(1.15)=1107 \mathrm{psi}$
- $F_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)$
- $F_{v}{ }^{\prime}=135(1.0)=135 \mathrm{psi}$

4. Check that actual \leq factored allowable

- $f_{b}<F_{b}^{\prime} \sim$
- $f_{v}<F_{v}$

$$
\begin{aligned}
& f_{b}=\frac{M}{S_{x}}=\frac{1336 .-4(12)}{21.39 \mathrm{~m}^{3}}=749.5 \mathrm{ps1} \\
& f_{v}=\frac{3}{3} \frac{V}{A}=\frac{1.5(485.8)^{*}}{13.88 \mathrm{~m}^{2}}=52.5 \mathrm{ps1}
\end{aligned}
$$

5. Check deflection
6. Check bearing $\left(F_{c p}=R / A_{b}\right)$

Analysis Example (pass/fail)

5. Check deflection < Code limits

- ND 3.5
- $\Delta_{L T}$ - Long term
- $\Delta_{S T}$-Short term
- K_{or} - creep factor
$\Delta_{\mathrm{T}}=\mathrm{K}_{\mathrm{cr}} \Delta_{\mathrm{LT}}+\Delta_{\mathrm{ST}} \quad$ (NDS 3.5-1)
K_{cr}
- 1.5 dry , seasoned lumber
- 2.0 wet service conditions
- 2.0 wood panels
- 2.0 CLT (dry)

TABLE 1604.3 DEFLECTION LIMITS ${ }^{\text {a, }}$ b, $\mathrm{c}, \mathrm{h}, \mathrm{i}$

CONSTRUCTION	L	S or W^{f}	$D+L^{\text {d, g }}$
Roof members:			
Supporting plaster or stucco ceiling	$/ / 360$	$/ / 360$	$/ / 240$
Supporting nonplaster ceiling	$/ / 240$	$/ / 240$	$/ / 180$
Not supporting ceiling	$/ / 180$	$/ / 180$	$/ / 120$
Floor members	$/ / 360$	-	$/ / 240$
Exterior walls:			
With plaster or stucco finishes	-	$/ / 360$	-
With other brittle finishes	-	$/ / 240$	-
With flexible finishes	-	$/ / 120$	-
Interior partitions $:$ b			
With plaster or stucco finishes	$/ / 360$	-	-
With other brittle finishes	$/ / 240$	-	-
With flexible finishes	$/ / 120$	-	-
Farm buildings	-	-	$/ / 180$
Greenhouses	-	-	$/ / 120$

$\Delta_{S T}$
$\Delta_{L}=\frac{S_{W L} L^{4}}{384 E I}=\frac{5(80 P L F)(11 F T)^{4}(1728)}{384(1400000 \text { PSI } 1)\left(98.931 N^{4}\right)}$
$\Delta_{L}=0.19^{\prime \prime}$
$\frac{8}{360}=\frac{11 F T(12)}{360}=0.367^{\prime \prime}$
$\Delta_{L T}$
$\Delta_{D}=\frac{5_{W L}}{384 E I}=\frac{5(8.34 \mathrm{PLF})(11 \mathrm{FT})^{4}(1728)}{384(1400000 \mathrm{PSI})\left(98.931 \mathrm{~N}^{4}\right)}$
$\Delta_{D}=0.02^{\prime \prime}$
$K_{c r}=1.5$

$$
\begin{aligned}
\Delta_{T} & =K_{C r} \Delta_{L T}+\Delta_{S T} \\
& =1.5(0.02)+0.19=0.22^{\prime \prime} \\
\frac{l}{240} & =\frac{11 \mathrm{FT}(12)}{240}=0.55^{\prime \prime}
\end{aligned}
$$

Analysis Example (pass/fail)

6. Check bearing : $F_{c \perp}<P / A_{b}$
$\mathrm{F}_{\mathrm{c} \perp}=425 \mathrm{psi}$
$\mathrm{P}=\mathrm{R}=485.8 \mathrm{lbs}$
$A_{b}=1.5^{\prime \prime}\left(1^{\prime \prime}\right)=1.5 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{b}}=\frac{485.8}{1.5}=323.8 \mathrm{psi}<425 \mathrm{psi}$ ok

3.10.4 Bearing Area Factor, \mathbf{C}_{b}

Reference compression design values perpendicular to grain, $\mathrm{F}_{\mathrm{c} \perp}$, apply to bearings of any length at the ends of a member, and to all bearings $6^{\prime \prime}$ or more in length at any other location. For bearings less than $6^{\prime \prime}$ in length and not nearer than $3^{\prime \prime}$ to the end of a member, the reference compression design value perpendicular to grain, $\mathrm{F}_{\mathrm{c} \mathrm{\perp}}$, shall be permitted to be multiplied by the following bearing arca factor, C_{b} :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{b}}=\frac{\ell_{\mathrm{b}}+0.375}{\ell_{\mathrm{b}}} \tag{3.10-2}
\end{equation*}
$$

where:
$\ell_{0}=$ bearing length measured parallel to grain, in.
Equation 3.10-2 gives the following bearing area factors, C_{b}, for the indicated bearing length on such small areas as plates and washers:

Table 3.10.4 Bearing Area Factors, C_{b}

$\boldsymbol{\ell}_{\mathrm{b}}$	$0.5^{\prime \prime}$	$1^{\prime \prime}$	$1.5^{\prime \prime}$	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$ or more
C_{b}	1.75	1.38	1.25	1.19	1.13	1.10	1.00

For round bearing areas such as washers, the bearing length, ℓ_{b}, shall be equal to the diameter.

