

Adjustment Factors

NDS

CODE

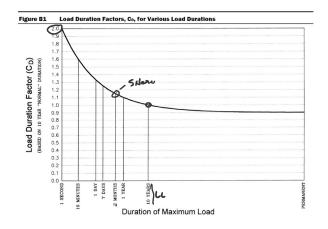
Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

			ASD only				AS	SD an	d LRI	FD				j	LRFI only)
			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
\rightarrow	$F_b = F_b$	x	CD	См	Ct	C_L	$C_{\rm F}$	C_{fu}	C_i	Cr	-	-	-	K _F	фь	λ
	$F_t = F_t$	x	CD	См	C_t	<i>[</i> ,	$C_{\rm F}$	1	C_i	/	-	-	-	K _F	φ _t	λ
	$\mathbf{F_v} = \mathbf{F_v}$	x	CD	См	C_t	~	~	٣	C_i	-	-	-	-	$K_{\rm F}$	$\boldsymbol{\varphi}_v$	λ
	$F_{c\perp} = F_{c\perp}$	x	-	См	C_t	-	-	-	C_i	-	-	-	Cb	K _F	φ _c	λ
\rightarrow	$F_c = F_c$	x	CD	См	C_t	-	$C_{\rm F}$	-	C_i	- (Cp	-	-	$K_{\rm F}$	φe	λ
	E = E	x	-	См	C_t	-	-	-	C_i	-	-	-	-	-	-	-
	$E_{min} = E_{min}$	x	-	C_{M}	Ct	-	-	-	C_i	-	-	C_{T}	-	$K_{\rm F}$	$\varphi_{\!s}$	-

University of Michigan, TCAUP

Structures II

Slide 5 of 27


Adjustment Factors

Allowable Flexure Stress F_b'

 $\rm F_{\rm b}$ from tables determined by species and grade

 $\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \ \mathbf{C}_{\mathbf{M}} \ \mathbf{C}_{\mathbf{t}} \ \mathbf{C}_{\mathbf{L}} \ \mathbf{C}_{\mathbf{F}} \ \mathbf{C}_{\mathbf{fu}} \ \mathbf{C}_{\mathbf{i}} \ \mathbf{C}_{\mathbf{r}} \right)$

Usage factors for flexure: $\mathbf{C}_{\mathbf{D}}$ Load Duration Factor

CO17E

Table 2.3.2 Frequently Used LoadDuration Factors, C_p^1

Load Duration	C _D	Typical Design Loads
Permanent	r 0.9	Dead Load
Ten years	11.0 €	- Occupancy Live Load
Two months	\$1.15	Snow Load
Seven days	(1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ² .	U2.D	Impact Load

(1) Actual stress due	
to (DL)	\leq (0.9) (Design value)
(2) Actual stress due	
to $(\underline{DL+LL})$	\leq (1.0) (Design value)
(3) Actual stress due	
to (<u>DL</u> -WD)	\leq (1.6) (Design value)
(4) Actual stress due	
to (DL+LL (SE)	\leq (1.15) (Design value)
(5) Actual stress due	
to (DL+LL-WD)	\leq (1.6) (Design value)
(6) Actual stress due	
to (DL+SL-WL)	\leq (1.6) (Design value)
(7) Actual stress due	
to (DL+LL+SL+WL)	\leq (1.6) (Design value)

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \ \mathbf{C}_{M} \ \mathbf{C}_{t} \ \mathbf{C}_{L} \ \mathbf{C}_{F} \ \mathbf{C}_{fu} \ \mathbf{C}_{i} \ \mathbf{C}_{r} \right)$

Usage factors for flexure: \mathbf{C}_{t} Temperature Factor

CAR

Table 2.3.3 To	emperature Fac	c tor, C t		
Reference Design Values	In-Service Moisture –		Ct	
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9
	· Dry	1.0	0.8	0.7
F_b, F_v, F_c , and $F_{c\perp}$	Wet -	1.0	0.7	0.5 /

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

University of Michigan, TCAUP

Structures II

Slide 7 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

 $F_{b}' = F_{b} (C_{D} C_{M} C_{t} C_{L} C_{F} C_{fu} C_{i} C_{r})$

 $\mathbf{C}_{\mathbf{M}}$ Moisture Factor

F_b from NDS tables

Usage factors for flexure:

SUPPLEMENT

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	См	
F _b	\mathbf{F}_{t}	$\mathbf{F}_{\mathbf{v}}$	$F_{c\perp}$	F_{c}	$E \mbox{ and } E_{\mbox{\scriptsize min}}$
- 0.85®	1.0	0.97	0.67	0.8**	0.9
At when (E)	(0) < 1.15	0 0	0		

* when $(F_b)(C_F) \le 1.150$ psi, $C_M = 1.0$

** when $(F_c)(C_F) \le \underline{750}$ psi, $C_M = \underline{1.0}$

C_F Size Factor Size Factor

(10)(01) =		Por,
Size Factors	C	

		Size Factors,	C _F		
		F	ь	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	<u>2</u> " & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
- Stud	5" & 6"	1.0	1.0	1.0	1.0
•	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

Adjustment Factors Sur.

Allowable Flexure Stress F_b'

F_b from NDS tables

$\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \ \mathbf{C}_{\mathrm{M}} \ \mathbf{C}_{\mathrm{t}} \ \mathbf{C}_{\mathrm{L}} \ \mathbf{C}_{\mathrm{F}} \ \mathbf{C}_{\mathrm{fu}} \ \mathbf{C}_{\mathrm{i}} \ \mathbf{C}_{\mathrm{r}} \right)$

Usage factors for flexure:

C_{fu} Flat Use

 $\boldsymbol{C}_{\boldsymbol{r}}$ Repetitive Member Factor

Flat Use Factor, Cfm

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

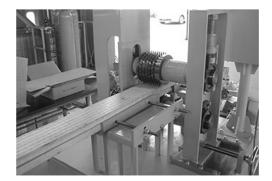
Flat Use Factors, C _{fu}				
Width	Thickness (breadth)		
(depth)	2" & 3"	4"		
2" & 3"	1.0	_		
4"	1.1	1.0		
5"	1.1	1.05		
6"	1.15	1.05		
8"	1.15	1.05		
10" & wider	1.2	1.1		

Repetitive Member Factor, $\underline{C_r}$

Bending design values, F_b , for dimension lumber <u>2</u>" to <u>4</u>" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or <u>spaced not more than 24</u>" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP	Structures II	Slide 9 of 27

Adjustment Factors


F_b from tables determined by species and grade

 ${\sf F}_{\sf b}{\,}' = {\sf F}_{\sf b}\,({\sf C}_{\sf D}\,{\sf C}_{\sf M}\,{\sf C}_{\sf t}\,{\sf C}_{\sf L}\,{\sf C}_{\sf F}\,{\sf C}_{\sf fu}\,{\sf C}_{\sf i}\,{\sf C}_{\sf r}\,)$

Usage factors for flexure: \mathbf{C}_{i} Incising Factor

Table 4.3.8	Incising Factors, C		
Design Value	Ci		
E, E _{min}	0.95		
F_b, F_t, F_c, F_v	0.80		
$\overline{F}_{c_{\perp}}$	1.00		

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \, \mathbf{C}_{L} \, \mathbf{C}_{F} \, \mathbf{C}_{fu} \, \mathbf{C}_{i} \, \mathbf{C}_{r} \right)$$

Usage factors for flexure: \mathbf{C}_{L} Beam Stability Factor

3.3.3 Beam Stability Factor, C_L

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, <u>no lateral support is required and $C_L = 1.0$.</u>

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, C_L = 1.0.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

University of Michigan, TCAUP

```
C_L = 1.0
```

4.4.1 Stability of Bending Members

- 2x4. (a) $d/b \le 2$; no lateral support shall be required.
- **2x6-8** (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- **2x10** (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) $6 < d/b \le 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Structures II

Slide 11 of 27

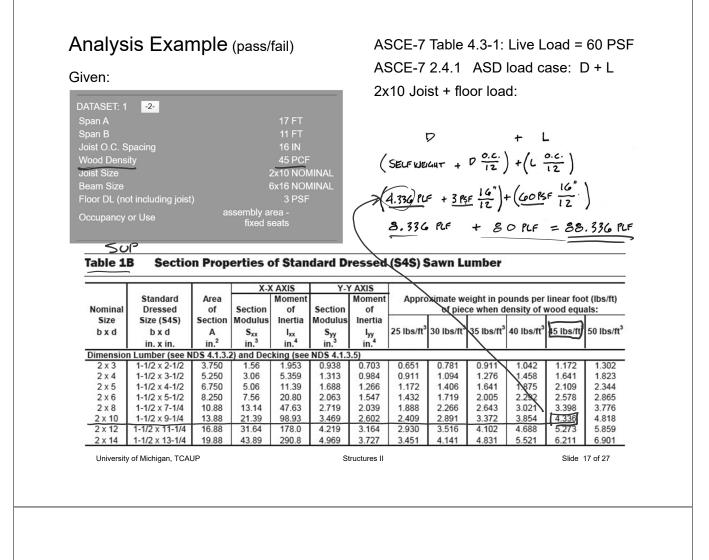
CL

 $C_L = 1.0$ when bracing meets 4.4.1 for the depth/width ratio

Otherwise

 $C_L < 1.0$ calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	SIND BLOOKING
^{5 to 1}	Hold compression edge in line (continuously)	NAILIN'T SHEATHING/DEEKING Jelot or BEAM
^{6 to 1}	Diagonal bridging should be used	SHBATHING/ DBOKING
^{7 to 1} 2x14	Both edges of the beam should be held in line	MILED SHEATHING OR DECEMBER OF \$ BOTTOM


\mathbf{C}_{L} Beam Stability Factor

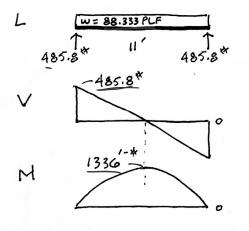
In the case bracing provisions of 4.4.1 cannot be met, $\rm C_L$ is calculated using equation 3.3-6

The maximum allowable slenderness, $\rm R_{\rm B}$ is 50

	\langle		3.3.3.6 The slenderness ratio, R _B , for bending mem bers shall be calculated as follows:
le 3.3.3 Effective Length, e	,) for Bending Members		- Vera
ntilever	when $\ell_{\nu}/d < 7$	when $\ell_u/d \ge 7$	$R_{B} = \sqrt{\frac{\ell_{B}}{b^2}} \tag{3.3-5}$
formly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$	$\ell_{e}=0.90 \ \ell_{u}+3d$	- 16
centrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$	$\ell_e=1.44 \ \ell_u+3d$	 3.3.3.7 The slenderness ratio for bending members
gle Span Beam ^{1,2}	when $\ell_{\rm u}/{\rm d} \leq 7$	when $\ell_v/d \ge 7$	R _B , shall not exceed 50.
formly distributed load	ℓ _e =2.06 ℓ _u ←	$\underbrace{\ell_c}=1.63 \ \ell_u + 3d$	- 3.3.3.8 The beam stability factor shall be calculated
centrated load at center with no inter-	ℓ _e =1.80 ℓ _u	$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d	- as follows:
liate lateral support acentrated load at center with lateral	ℓ _e =1.1	1 ℓ _u	$= 1 + (E_{-}/E') \left[1 + (E_{-}/E')^{2} + E_{-}/E' \right]^{2}$
port at center o equal concentrated loads at 1/3 points	- ℓ _c =1.6	58 <i>ℓ</i> _u	$-\underbrace{C_{L}}_{2} = \frac{1 + (\underbrace{F_{bE}}_{2} / F_{b})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE} / F_{b})}{1.9}\right]^{2}} - \frac{F_{bE} / F_{b}}{0.95} $ (3.3-6)
a lateral support at 1/3 points ee equal concentrated loads at 1/4 points	- ℓ _e =1.5		
a lateral support at 1/4 points			
r equal concentrated loads at 1/5 points a lateral support at 1/5 points	ℓ _c =1.6		where:
e equal concentrated loads at 1/6 points n lateral support at 1/6 points	ℓ _e =1.7	$^{\prime 3} \ell_{u}$	$ F_{b}^{*}$ = reference bending design value multiplied by
equal concentrated loads at 1/7 points a lateral support at 1/7 points	ℓ _e =1.7	78 ℓ _u	all applicable adjustment factors except C _{fu} ,
en or more equal concentrated loads,	ℓ _e =1.8	44 ℓ _u	
nly spaced, with lateral support at points bad application			C_v (when $C_v \le 1.0$), and C_L (see 2.3), psi
al end moments	ℓ _e =1.8	34 ℓ _u	1 20 5 '
r single span or cantilever bending members with loading $e = 2.06 \ell_u$ when $\ell_u/d < 7$	g conditions not specified in Table 3.3.3:		$-\frac{1.20 \text{ E}_{\text{min}}}{\text{ E}_{\text{b}^2}} = \frac{1.20 \text{ E}_{\text{min}}}{\text{ R}_{\text{c}}^2}$
$e = 1.63 \ell_u + 3d$ when $7 \le \ell_u/d \le 14.3$ $e = 1.84 \ell_u$ when $\ell_u/d > 14.3$ ultiple span applications shall be based on table values of	renginearing analysis		- K _B -
University of Michigan, TCA	UP	Structures	II Slide 13 of 27
A diverter e et	Contoro for	Cheer	
Adjustment	Factors for	Shear	Shear at Supports
-		Shear	Shear at Supports
Adjustment Allowable Flexu Fv from tables deterr	re Stress F _v '		Shear at Supports
Allowable Flexu	re Stress F _v ' mined by species an		Shear at Supports
Allowable Flexu F_v from tables determ	re Stress F _v ' mined by species an		3003
Allowable Flexu F_v from tables detern F_v ' = F_v (usage factor)	re Stress F _v ' ^{mined} by species an ors)		Code to the left of the
Allowable Flexu F_v from tables detern F_v ' = F_v (usage factors Usage factors for sho	re Stress F _v ' mined by species an ors) ear:		Loads to be left of the
Allowable Flexu F_v from tables detern F_v ' = F_v (usage factors Usage factors for shi $\int_0^r C_D$ Load Du	re Stress F _v ' mined by species an ors) ear: iration Factor		Code to the left of the
Allowable Flexu F_v from tables detern F_v ' = F_v (usage factors Usage factors for shi C_D Load Du C_M Moisture	re Stress F _v ' mined by species an ors) ear: ration Factor Factor		Code to the left of the
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor		Code to the left of the
Allowable Flexu F_v from tables detern F_v ' = F_v (usage factors Usage factors for shi C_D Load Du C_M Moisture	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor		Code to the left of the
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor		Code to the left of the
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor		Code to the left of the
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor		Loads to the left of the dotted line shall be restricted accountions
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade	Loads in the left of the domention is being of the domention is being of the for shoar adeculations
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u><i>MC</i></u>	d $3.06'$ $(.47')$
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u><i>MC</i></u>	DIFFIED $\frac{3}{206'}$
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u><i>MC</i></u>	DOIFFIED
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u><i>MC</i></u>	DOIFFIED
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DOIFFIED $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$ $5.44 \times$
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED U_{K}'
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED U_{K}' W'_{K}
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED U_{K}'
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED U_{K}' W'_{K}
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shown $\begin{pmatrix} C_D & Load Du \\ C_M & Moisture \\ C_t & Temperation$	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED U_{K}' W'_{K}
Allowable Flexu F_v from tables detern $F_v' = F_v$ (usage factors Usage factors for shi C_D Load Du C_M Moisture C_t Tempera	re Stress F _v ' mined by species an ors) ear: eration Factor ∋ Factor ature Factor	d grade <u>Mo</u>	DIFIED $1 + 20^{K/r}$ $1 + 20^{K/r}$ $1 + 20^{K/r}$ $1 + 20^{K/r}$ $1 + 20^{K/r}$ $5 + 44 \times$ $5 + 44 \times$

		Standard	Area	X-)	AXIS Moment	Y-1	AXIS Moment
0	Nominal	Dressed	of	Section	of	Section	of
Given: loading, <u>member size</u> , material and span.	Size b x d	Size (S4S) b x d	Section A	Modulus S _{xx}	Inertia I _{xx}	Modulus S _{yy}	Inertia I _{yy}
Req'd: Safe or Unsafe (Pass/Fail)		in. x in.	in. ²	in. ³	in.4	in. ³	in.⁴
	Boards ¹ 1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1. Find Max She <u>ar & Momen</u> t 🧹	1 x 4 1 x 6	3/4 x 3-1/2 3/4 x 5-1/2	2.625 4.125	1.531 3.781	2.680 10.40	0.328 0.516	0.123 0.193
Simple case – equations	1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
Complex case - diagrams	1 x 10 1 x 12	3/4 x 9-1/4 3/4 x 11-1/4	6.938 8.438	10.70 15.82	49.47 88.99	0.867	0.325 0.396
Complex base - diagrams	Dimensio	n Lumber (see N	DS 4.1.3.	2) and Dec	king (see	NDS 4.1.3	3.5)
2. Determine actual stresses	2 x 3 2 x 4	1-1/2 x 2-1/2 1-1/2 x 3-1/2	3.750 5.250	1.56 3.06	1.953 5.359	0.938 1.313	0.703 0.984
	2 x 5 2 x 6	1-1/2 x 4-1/2 1-1/2 x 5-1/2	6.750 8.250	5.06 7.56	11.39 20.80	1.688 2.063	1.266
• f = 0 S • f = 1.5 ДА КЕСТАНСКЕ	2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	1.547 2.039
• $I_{\rm w} = 1.5 \text{ (MA}$	2 x 10 2 x 12	1-1/2 x 9-1/4 1-1/2 x 11-1/4	13.88 16.88	21.39 31.64	98.93 178.0	3.469 4.219	2.602 3.164
3. Determine allowable stresses	2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
	3 x 4 3 x 5	2-1/2 x 3-1/2 2-1/2 x 4-1/2	8.75 11.25	5.10 8.44	8.932 18.98	3.646 4.688	4.557 5.859
• (from NDS)	3 x 6 3 x 8	2-1/2 x 5-1/2 2-1/2 x 7-1/4	13.75 18.13	12.60 21.90	34.66 79.39	5.729 7.552	7.161 9.440
• $F_b' = F_b (usage factors)$	3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
• $F_{v}' = F_{v}$ (usage factors)	3 x 12 3 x 14	2-1/2 x 11-1/4 2-1/2 x 13-1/4	28.13	52.73 73.15	296.6 484.6	11.72 13.80	14.65 17.25
	3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4. Check that <u>actual ≤ factored</u> allowat	le 4×4 4×5	3-1/2 x 3-1/2 3-1/2 x 4-1/2	12.25 15.75	7.15 11.81	12.51 26.58	7.146 9.188	12.51 16.08
• $f_b \leq F'_b$	4 x 6 4 x 8	3-1/2 x 5-1/2 3-1/2 x 7-1/4	19.25 25.38	17.65 30.66	48.53 111.1	11.23 14.80	19.65 25.90
• $f_v \leq F'_v$	4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
	4 x 12 4 x 14	3-1/2 x 11-1/4 3-1/2 x 13-1/4	39.38 46.38	73.83 102.41	415.3 678.5	22.97 27.05	40.20 47.34
5. Check deflection < building code ma	X . 4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49
6. Check bearing ($F_{c\perp} \ge \text{Reaction}/A_{\text{bearing}}$)	from N	DS 2012					
University of Michigan, TCAUP	tructures II				Slid	e 15 of 27	
Analysis Example (pass/fail)							
•							
Given:	2 × 1						
Given:	<u>2 x 1</u> Joist						
Given: DATASET: 1 -2- Span A 17 FT		s-/		LL ,CØ		(11 ft.)
Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN	Joist	s-/		LL C B		(11 ft.)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF	Joist	s-/		LL CB 3		(11 ft.)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL	Joist	s-/		LL PL 3		(11 ft.)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF	Joist 16" o. Bea	s		LL CØ 3		(11 ft.)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF	Joist 16" o. Bea 6 x	s - c. m A	17	LL CØ 7 3 ft)
Given: DATASET: 1 2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occurancy of Lise	Joist 16" o. Bea 6 x	s	17	LL CØ 3 ft. ——)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. Bea 6 x 26.6	s c. m A 16 4 PLF)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. 6 x 26.6 ASCE-	m A 16 14 PLF 7 Table 4.3	3-1: Li	ve Loa	_)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. 6 x 26.6 ASCE-	s c. m A 16 4 PLF	3-1: Li	ve Loa	_)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. 6 x 26.6 ASCE- ASCE-	m A 16 4 PLF 7 Table 4.3 7 2.4.1 A	<u>3-1: Li</u> SD lo	ve Loa	_)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3PSF Occupancy or Use assembly area - ASCE-	Joist 16" o. 6 x 26.6 ASCE- ASCE-	m A 16 14 PLF 7 Table 4.3	<u>3-1: Li</u> SD lo	ve Loa	_)
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. 6 x 26.6 ASCE- ASCE- 2x10 Jo	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	<u>3-1: Li</u> SD lo load:	ve Loa ad cas + L	se: D	<u>60 PSF</u> + L	
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occurancy or Lise	Joist 16" o. 6 x 26.6 ASCE- ASCE- 2x10 Jo	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	<u>3-1: Li</u> SD lo load:	ve Loa ad cas + L	se: D	<u>60 PSF</u> + L	
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3PSF Occupancy or Use assembly area - ASCE-	Joist 16" o. 6 x 26.6 ASCE- ASCE- 2x10 Jo	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	<u>3-1: Li</u> SD lo load:	ve Loa ad cas + L	se: D	<u>60 PSF</u> + L	
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3PSF Occupancy or Use assembly area - ASCE-	Joist 16" o. 6 x 26.6 ASCE- ASCE- 2x10 Jo	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	<u>3-1: Li</u> SD lo load:	ve Loa ad cas + L	se: D	<u>60 PSF</u> + L	
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3PSF Occupancy or Use assembly area - ASCE-	Joist 16" o. 6 x 26.6 ASCE- ASCE- 2x10 Jo	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	<u>3-1: Li</u> SD lo load:	ve Loa ad cas + L	se: D	<u>60 PSF</u> + L	
Given: DATASET: 1 -2- Span A 17 FT Span B 11 FT Joist O.C. Spacing 16 IN Wood Density 45 PCF Joist Size 2x10 NOMINAL Beam Size 6x16 NOMINAL Floor DL (not including joist) 3 PSF Occupancy or Use assembly area - fixed seats	Joist 16" o. Bea 6×26.6 ASCE- ASCE- 2x10 Jo (<u>seu</u> (4.330)	m A 16 14 PLF 7 Table 4.: 7 2.4.1 A pist + floor	$\frac{3-1: \text{Li}}{\text{SD loc}}$	$\frac{\text{ve Los}}{\text{ad cas}}$ $+ L$ $+(L - \frac{1}{60})$	se: D $\frac{0.c}{12}$	50 PSF + L = ru)	F

1. Find Max Shear & Moment on Joist


By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336(11)}{2} = 485.848$$
 lbs

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08 \text{ ft-lbs}$$

2. Determine actual stresses in joists

• $f_b = M/S$

• f_v = 1.5 V/A

$$f_{b} = \frac{M}{s_{x}} = \frac{1336' \cdot (12)}{21.39 \text{ m}^{3}} = \frac{749.5}{749.5} \text{ psi}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5(485.8)^{4}}{13.88 \text{ m}^{2}} = 52.5 \text{ psi}$$

NLGA

			X-)	(AXIS	Y-1	AXIS						
Nominal	Standard Dressed	Area of	Section	Moment of	Section	Moment of	Approximate weight in pounds per linear foot (I of piece when density of wood equals					
Size b x d	Size (S4S) b x d	Section A	Modulus S _{xx}	Inertia I _{xx}	Modulus Syy	lyy	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft
Jimonoio	in. x in. n Lumber (see N	in.	in."	in.⁴	in."	in.4						
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1,172	1.302
2 x 3 2 x 4	1-1/2 x 2-1/2	5.250	3.06	5.359	1.313	0.984	0.051	1.094	1.276	1.458	1.641	1.823
2 x 4 2 x 5	1-1/2 x 3-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.456	2.109	2.344
2 x 5 2 x 6	1-1/2 x 4-1/2 1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.200	1.432	1.400	2.005	2.292	2.109	2.344
	1-1/2 x 5-1/2 1-1/2 x 7-1/4	10.88	13.14	20.80	2.003	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 8												
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

University of Michigan, TCAUP

Structures II

Slide 19 of 27

Analysis Example (pass/fail)

- 3. Determine allowable stresses NDS Supplement
 - F_b = 875 psi
 - F_v = 135 psi

Species and Grade

SUP

Table 4A
(Cont.)Reference Design Values for Visually Graded Dimension Lumber
(2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

	2	USE	MITHIA	DLE 4A A	DJUSTWENT	FACTORS				2.
				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		Fb	Ft	Fy	F₀⊥	F。	E	Emin	G	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/No. 2	2" & wider	875	450	135 135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction		1,000	500	135	425	1,400	1,300,000	470,000		1000000000
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000		

USE WITH TABLE 4A ADJUSTMENT FACTORS

3. Determine allowable stresses - NDS Supplement Adjustment Factors •

Determine factors:

	ASD only					_	AS	SD an	d LR	FD		_			LRFE only)
			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
\rightarrow	$F_b' = F_b$	x	CD	См	Ct	C_L	$C_{\rm F}$	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
	$F_v = F_v$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	ϕ_{v}	2

University of Michigan, TCAUP

```
Structures II
```

Slide 21 of 27

Analysis Example (pass/fail)

C_D Load duration factor

Occupancy LL (10 years) = 1.0

Table 2.3.2Frequently Used LoadDuration Factors, C_p^1

Load Duration	CD	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

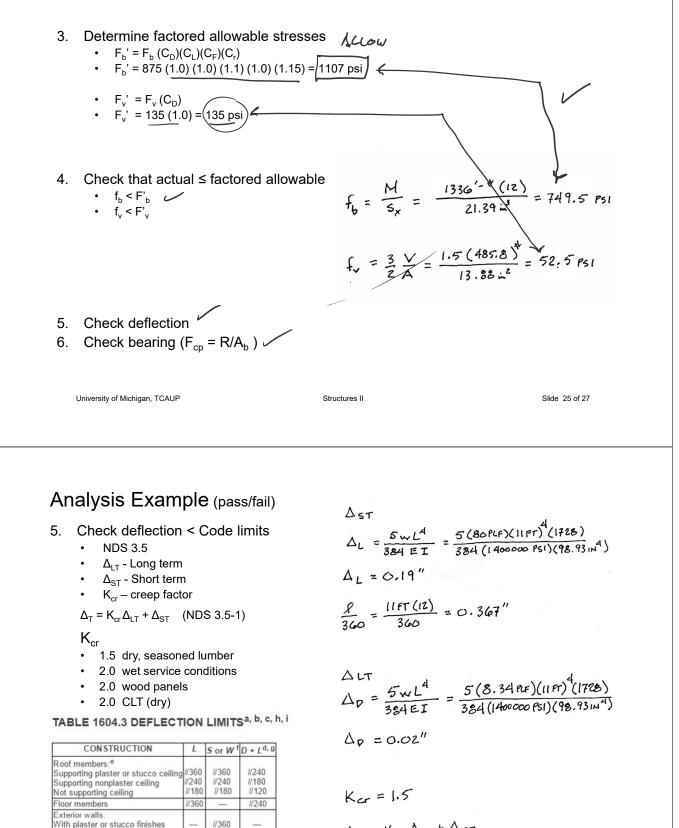
CF	Ci 70	factor
	SIZE	lacioi

Size factor		Size Factors, C _F									
			F	b	Ft	F _c					
2 x 10			Thickness	(breadth)							
use 1.1	Grades	Width (depth)	2" & 3"	4"							
		2", 3", & 4"	1.5	1.5	1.5	1.15					
	Select	5"	1.4	1.4	1.4	1.1					
	Structural,	6"	1.3	1.3	1.3	1.1					
	No.1 & Btr,	8"	1.2	1.3	1.2	1.05					
	No.1, No.2,	10"	1.1	1.2	1.1	1.0					
	No.3	12"	1.0	1.1	1.0	1.0					
		14" & wider	0.9	1.0	0.9	0.9					
		2", 3", & 4"	1.1	1.1	1.1	1.05					
	Stud	5" & 6"	1.0	1.0	1.0	1.0					
		8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs					
	Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0					
	Standard										
	Utility	4"	1.0	1.0	1.0	1.0					
		2" & 3"	0.4	—	0.4	0.6					

C_r Repetitive Member Factor

Repetitive Member Factor, Cr

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.


University of Michigan, TCAUP

Structures II

Slide 23 of 27

Analysis Example (pass/fail)

	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
C ₁ Beam Stability Factor	2 to 1	None	
$2x10 \text{ w/ flooring: } C_L = 1.0$	^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	BIP DLAPFING
$C_{L} = 1.0$ if depth/width ratio meets criteria in 4.4.1 $C_{L} = 1.0$	5w1 2x10	Hold compression edge in line (continuously)	NALUNY SHEATHING/MEXHING
Otherwise: C _L < 1.0 calculate factor using section 3.3.3	^{6 to 1} 2x12	Diagonal bridging should be used	SHEATHING/ DBOP ING- SPIST
	^{7 to 1} 2x14	Both edges of the beam should be held in line	MILED SHERTHING OF BEPHNG TH PAGE

$$\Delta_{T} = K_{cr} \Delta_{LT} + \Delta_{ST}$$

= 1.5(0.02) + 0.19 = 0.22"
$$\frac{1}{240} = \frac{11 \text{ Fr}(12)}{240} = 0.55"$$

University of Michigan, TCAUP

//240

//120

_

_

_

_

_

//180

//120

_

/360

/240 //120

With other brittle finishes

With other brittle finishes

With flexible finishes

With flexible finishes Farm buildings

Greenhouses

Interior partitions:^b With plaster or stucco finishes

Structures II

Slide 26 of 27

6. Check bearing : $F_{c\perp} < P/A_b$

 $F_{c\perp}$ = 425 psi

P = R = 485.8 lbs A_b = 1.5" (1") = 1.5 in²

$$f_{b} = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$$

3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain, $F_{c.l.}$, apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain, $F_{c.l.}$, shall be permitted to be multiplied by the following bearing area factor, C_b :

$$C_{b} = \frac{\ell_{b} + 0.375}{\ell_{b}}$$
(3.10-2)

where:

 ℓ_{b} = bearing length measured parallel to grain, in.

Equation 3.10-2 gives the following bearing area factors, C_b , for the indicated bearing length on such small areas as plates and washers:

Tab	Table 3.10.4			earing	Area	Facto	rs, C _b
$\overline{\ell_{\mathrm{b}}}$	0.5"	1"	1.5"	2"	3"	4"	6" or more
$\tilde{C_b}$	1.75	1.38	1.25	1.19	1.13	1.10	1.00

For round bearing areas such as washers, the bearing length, $\ell_{\rm b},$ shall be equal to the diameter.

University of Michigan, TCAUP

Structures II

Slide 27 of 27