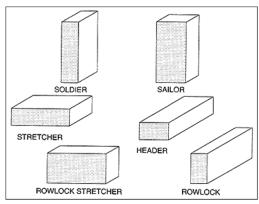
Structures II Introduction to Masonry Clay Masonry Concrete Masonry • Autoclaved Aerated Concrete (AAC) Höchst Entrance Hall, Frankfurt Arch: Peter Behrens, 1920-24 Photo: Eva Kröcher

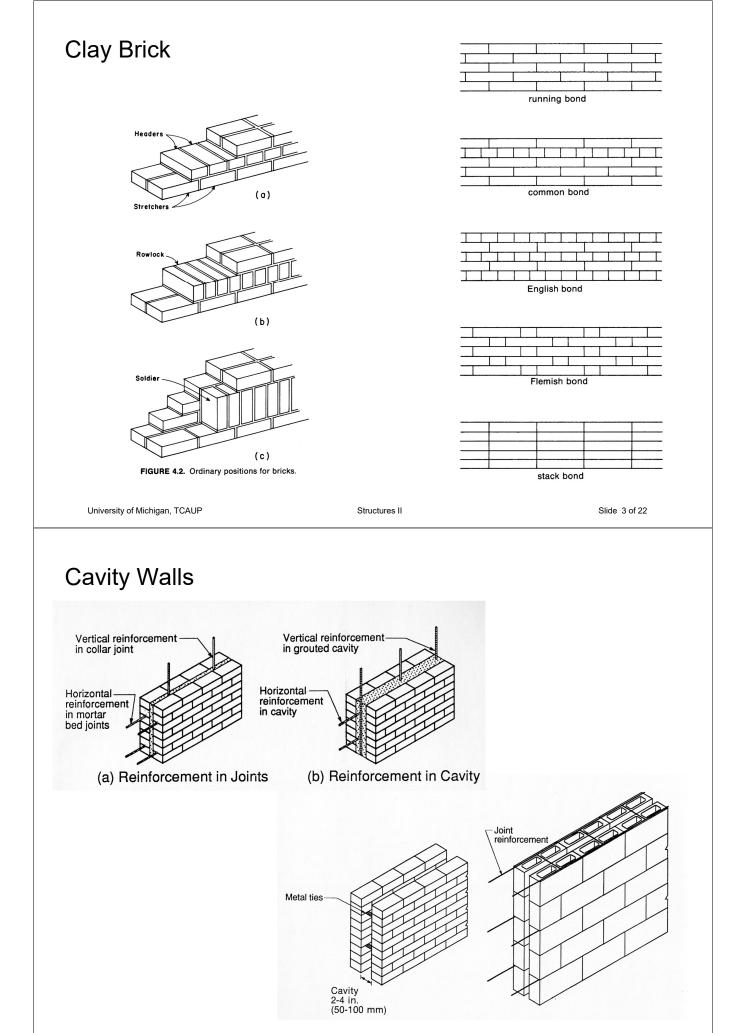

University of Michigan, TCAUP

Structures II

Slide 1 of 22

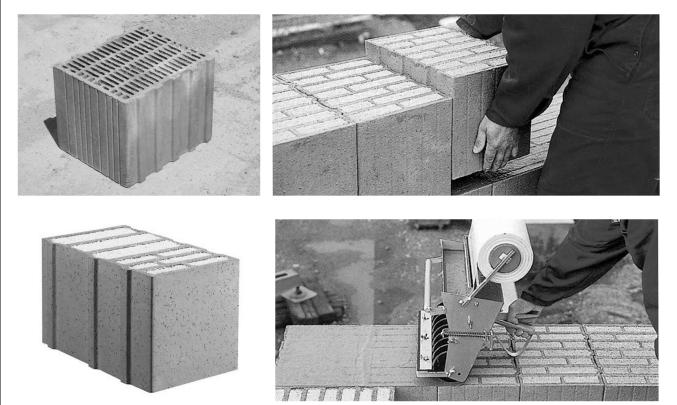
Clay Brick

- Molded .
 - or
- Extruded
- Cored adds stability, strength • cored < 25% > hollow
- Fired (2000° F) ٠
- Sizes use 3/8" mortar bed ٠
- Six ways to position in wall:

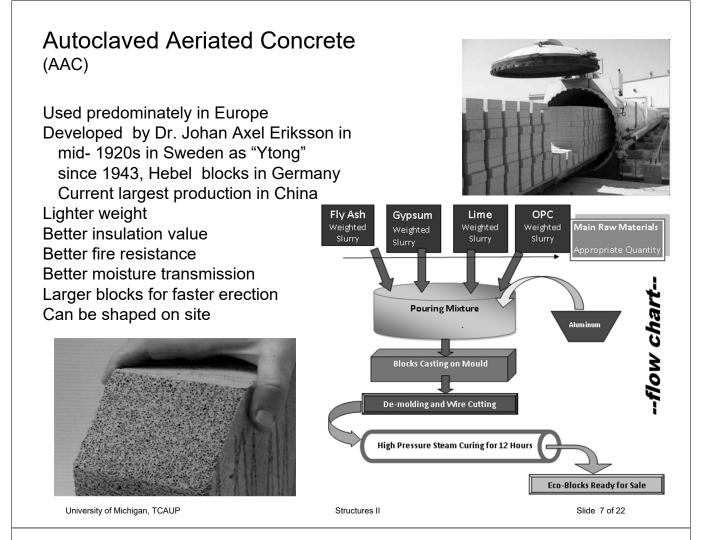


3/8" Mortar Joint Between Bricks (Most Common)

BRICK TYPE	SPECIFIED SIZE D X H X L (INCHES)	NOMINAL SIZE D X H X L	VERTICAL COURSE
Standard	3 5/8 × 2 1/4 × 8	Not modular	3 courses = 8"
Modular	3 5/8 × 2 1/4 × 7 5/8	4 × 2 2/3 × 8	3 courses = 8"
Norman	3 5/8 × 2 1/4 × 11 5/8	4 × 2 2/3 × 12	3 courses = 8"
Roman	3 5/8 × 1 5/8 × 11 5/8	$4 \times 2 \times 12$	1 course = 2"
Jumbo	3 5/8 × 2 3/4 × 8	4×3×8	1 course = 3"
Economy	3 5/8 × 3 5/8 × 7 5/8	$4 \times 4 \times 8$	1 course = 4"
Engineer	3 5/8 × 2 13/16 × 7 5/8	$4 \times 3 1/5 \times 8$	5 courses = 16"
King	2 3/4 × 2 5/8 × 9 5/8	Not modular	5 courses = 16"
Queen	2 3/4 × 2 3/4 × 7 5/8	Not modular	5 courses = 16"
Utility	3 5/8 × 3 5/8 × 11 5/8	$4 \times 4 \times 12$	1 course = 4"


University of Michigan, TCAUP

Slide 2 of 22



Insulated Clay Tile

Ziegelindustrie International https://www.zi-online.info/en/index.html

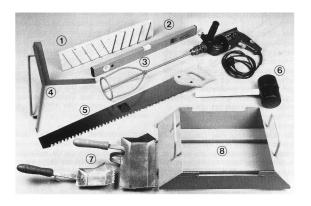
Autoclaved Aeriated Concrete (AAC)

Density – 20 to 50 PCF (floats)

Compressive strength - 300 to 900 PSI

Allowable Shear Stress - 8 to 22 PSI

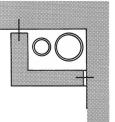
Thermal Resistance - 0.8 to 1.25 R/ IN



Autoclaved Aeriated Concrete (AAC)

Easily shaped on site

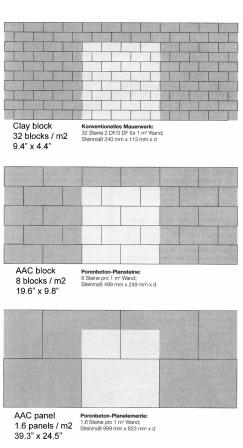
Thin mortar bed - 1/8" (1mm to 3mm)


Tools for placement (below)

University of Michigan, TCAUP

Structures II

Slide 9 of 22


Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup – e.g. 8"x8"x24"

Panel layup with onsite crane

University of Michigan, TCAUP

Autoclaved Aeriated Concrete (AAC)

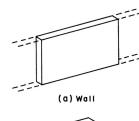
Finish with stucco

Abb. 2.4.4-1 Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-3 Auftrag der Deckschicht

Abb. 2.4.4-2 Auftrag des Grundputzes von Hand

Abb. 2.4.4-4 Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe


Slide 11 of 22

University of Michigan, TCAUP

Structures II

Member Types

Compression members based on proportions.

(b) Pier 3T < L≦6T

(c) Column H/D ≧ 3

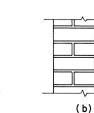
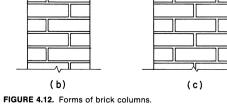

(d) Pedestal H/D < 3

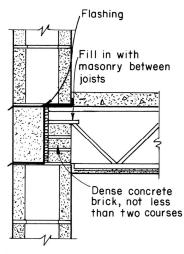
FIGURE 4.6. Classification of vertical compression members.



٧. Þ

• . . . •

Concrete Masonry Units (CMU) wall construction

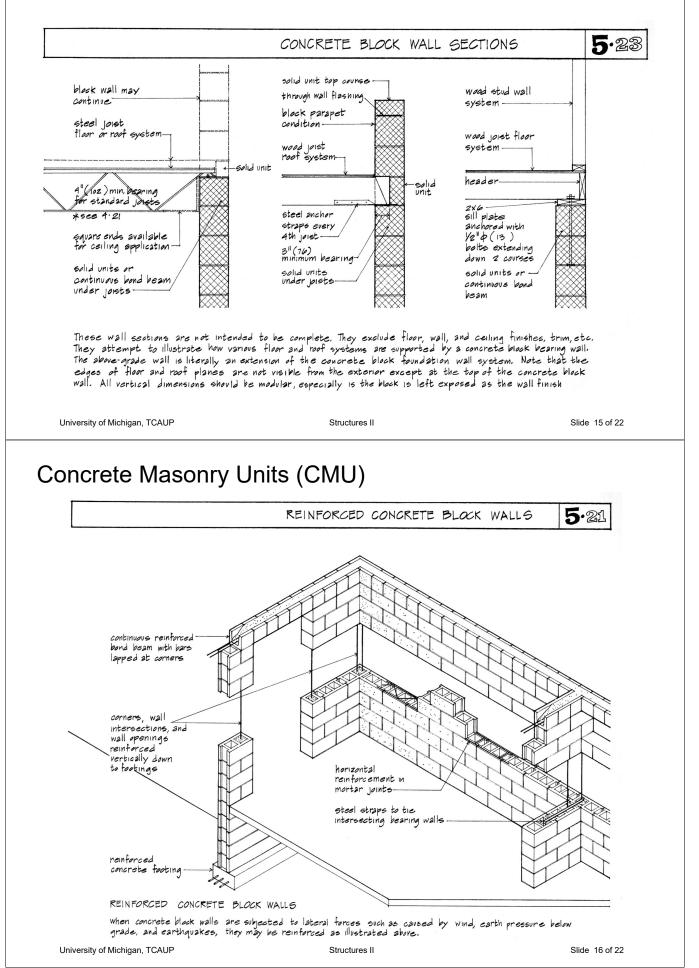

University of Michigan, TCAUP

Structures II

Slide 13 of 22

Member Details

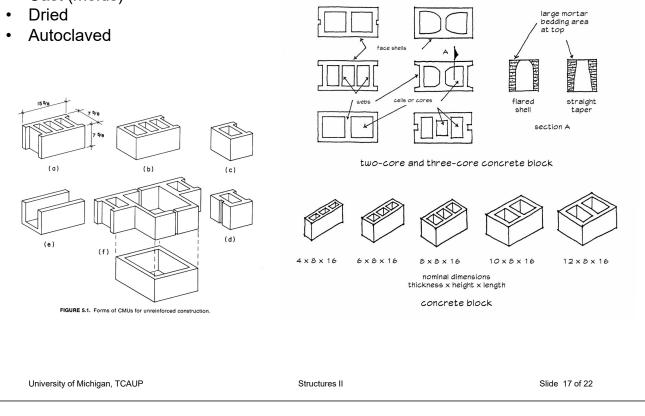
Floor / Column details.


(a) Bar joist floor

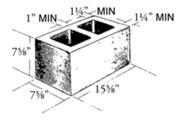
Alternate flashing /I" waterproofed rigid insulation A Cores filled with grout in course under floor slab Metal lath

(b) Soffit block joist floor

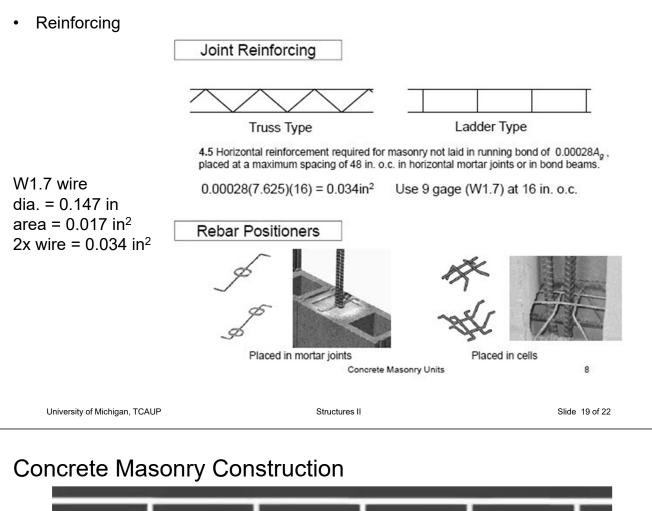
Concrete Masonry Units (CMU)


wall sections

Concrete Masonry Units (CMU)


• Cast (molds)

1.9.1 Standard Concrete Masonry Unit (CMU) Stretchers and Unit Coring


Concrete Masonry Units (CMU)

- Geometric Properties
- NCMA TEK 14-1B
- Radius of gyration, $r = \sqrt{\frac{I}{A}}$

Horizontal Section Properties (Masonry Spanning Vertically)						
Grout		Mortar	Net cross-sectional properties ^A			
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)	
Hollow	No grout	Face shell	30.0	308.7	81.0	
Hollow	Hollow No grout		41.5	334.0	87.6	
100% sol	100% solid/solidly grouted		91.5	443.3	116.3	
Hollow	16	Face shell	62.0	378.6	99.3	
Hollow	24	Face shell	51.3	355.3	93.2	
Hollow	32	Face shell	46.0	343.7	90.1	
Hollow	40	Face shell	42.8	336.7	88.3	
Hollow	48	Face shell	40.7	332.0	87.1	
Hollow	72	Face shell	37.1	324.3	85.0	
Hollow	96	Face shell	35.3	320.4	84.0	
Hollow	120	Face shell	34.3	318.0	83.4	

Concrete Masonry Units (CMU)

University of Michigan, TCAUP

Structures II

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

Μ	а	S	0	Ν	w	0	r	K
stronge	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type		
Location	Building segment	Recommended	Alternative	
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S	
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	Sţ	M or N†	
Interior	Load-bearing walls Non-load-bearing partitions	N	S or M N	

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

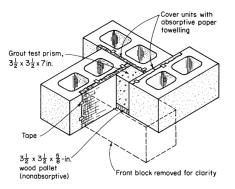
and the second

Relative Parts by Volume

mortar type	Portland cement	lime	sand
М	1	¹ 4	3 ¹ 2
s	1	¹ 2	3 ¹ 2 4 ¹ 2
N	1	1	6
0	1	2	9
		9	

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

```
University of Michigan, TCAUP
```


Structures II

Slide 21 of 22

Mortar Types

Type M, S, N, O

Slump is higher than cast concrete based on workability

Mold with four 8x8x16-in. blocks

Fig. 2-29. ASTM C1019 method of using masonry units to form a prism for compression-testing of masonry grout.

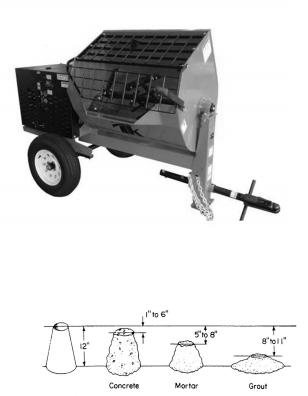


Fig. 2-27. Slump test comparison of concrete, mortar, and masonry grout.