- TMS 402
- Rational Approach
- Empirical Approach

Chilehaus, Hamburg Arch: Fritz Höger, 1924

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

\mathbf{M}	a	\mathbf{S}	o	\mathbf{N}	w	\mathbf{O}	r	\mathbf{K}
strongest							weakest	

Table 2-3. Guide to the Selection of Mortar Type*

Location	Building segment	Mortar type	
		Recommended	Alternative
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N $\mathrm{O}^{* *}$ N	S or M Nors S
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	St	M or $\mathrm{N} \dagger$
Interior	Load-bearing walls Non-load-bearing partitions	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	Sor M N

*Adapted from ASTM C270. This table does not pr
**Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated
or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should
be used in other cases.
\dagger Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering.
Mortar for such masonry should be selected with due caution.
Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

mortar type	Portland cement	lime	sand
M	1	1_{4}	$3^{1}{ }_{2}$
S	1	1_{2}	$4^{1}{ }_{2}$
N	1	1	6
O	1	2	9

sum should equal $1 / 3$ of sand volume (assuming that sand has void ratio of 1 in 3)

Mortar Types

Type M, S, N, O
Slump is higher than cast concrete based on workability

Mold with four $8 \times 8 \times 16$-in. blocks

Fig. 2-29. ASTM C1019 method of using masonry units to form a prism for compression-testing of masonry grout.

Fig. 2-27. Slump test comparison of concrete, mortar, and masonry grout.

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Compressive Strength of Clay Masonry Units (psi) fu		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

| Required Net Area Compressive Strength
 of Concrete Masonry Units (psi) fu | |
| :---: | :---: | :---: | | f'm |
| :---: |
| For Net Area |
| Compressive |
| When Used With
 Type M or S Mortar |
| When Used With
 Type N Mortar |
| Strength of
 Masonry (psi) |
| 1,250 |

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Constructive Properties

Typical Values

Property		Clay Masonry	Concrete Masonry
Unit strength	$8000 p s i$	$2000 p s i$	
	f_{m}^{\prime}	$2440 p s i$	$1750 p s i$
	E_{m}	$1.70 \times 10^{6} p s i$	$1.58 \times 10^{6} p s i$
Type M or S mortar	f_{m}^{\prime}	$2920 p s i$	$2000 p s i$
	E_{m}	$2.05 \times 10^{6} p s i$	$1.80 \times 10^{6} p s i$

Property	Clay Masonry	Concrete Masonry
Modulus of Elasticity, E_{m}	$700 f_{m}^{\prime}$	$900 f_{m}^{\prime}$
Shear Modulus, G	$0.4 E_{m}$	$0.4 E_{m}$
Coefficient of Creep	$\frac{0.7 \times 10^{-7}}{p s i}$	$\frac{2.5 \times 10^{-7}}{p s i}$

Analysis and Design

Empirical approach

based on experience
limits on lateral loading
limits on height
limits on eccentricity
(basically, no flexure)
non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Rational Masonry Analysis

Procedure
Strength Design (LRFD) - non-reinforced

Rational Approach
for axial compression
using TMS 402 (2016)

Given: geometry, material
Find: axial compressive load capacity, Pn

1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type (table)
2. Find the net area, A_{n}, and Moment of Inertia, In (see NCMA TEK 14-1B with HW problem pdf.)
3. Calculate radius of gyration, $r=\sqrt{I} / A$
(Equation 9-11) for $h / r<99$
$P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}$
4. Calculate h / r
5. Choose the axial strength equation, Pn :

If $h / r<99$ use TMS 402 eq.9-11 If $h / r>99$ use TMS 402 eq.9-12
6. Calculate $\varnothing \mathrm{Pn}$ where \varnothing for axial force $=0.90$
(Equation 9-12) for $h / r>99$
$P_{n}=0.80\left[0.80 A_{n} f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2}\right]$
7. Check that $\varnothing \mathrm{Pn}$ is greater than Pu .

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Compressive Strength of Clay Masonry Units (psi)		f'm For Net Area
Compressive		
Strength of		
When Used With Type M or S Mortar	When Used With Type N Mortar	Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Compressive Strength of Concrete Masonry Units (psi) fu		f'm For Net Area
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACl 530.1/ASCE 6/TMS 602-99)

Rational Masonry Analysis
Procedure
Strength Design - non-reinforced

Rational Approach
for axial compression using TMS 402 (2016)

Section Properties of Concrete Masonry Walls NCMA TEK 14 - 1B (attached to problem description, and also on Canvas, and on NCMA website)

Figure 3-Horizontal and Vertical Cross-Sections

Rational Masonry Analysis
Procedure
Strength Design - non-reinforced

Rational Approach

for axial compression using TMS 402 (2016)

Section Properties of Concrete Masonry Walls NCMA TEK 14 - 1B (attached to problem description and also on Canvas and on NCMA website)

Table 3-8-inch ($\mathbf{2 0 3}-\mathrm{mm}$) Single Wythe Walls, $\mathbf{1}^{1 / 4} \mathrm{in}$. ($\mathbf{3 2} \mathbf{~ m m}$) Face Shells (standard)

	Grout	Mortar	Net cros	-sectional	roperties ${ }^{\text {A }}$
Unit	spacing (in.)	bedding	A_{n} (in. ${ }^{2} / \mathrm{ft}$)	$I_{n}\left(\mathrm{in}. .^{4} \mathrm{ft}\right)$	$S_{n}\left(\mathrm{in} .{ }^{3} / \mathrm{ft}\right)$
A Hollow	No grout	Face shell	30.0	308.7	81.0
B Hollow	No grout	Full	41.5	334.0	87.6
D/E100\% so	d/solidly grouted	Full	91.5	443.3	116.3
C Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Rational Masonry Analysis
Example
Strength Design - non-reinforced

Example Problem

Given: geometry: 8" block, grouted 24" o.c. material: $\mathrm{f}^{\prime} \mathrm{m}=3000 \mathrm{psi}$
Find: check pass/fail for the given loading

1. Determine the masonry strength, $\mathrm{f}^{\prime} \mathrm{m}$,
based on unit strength, fu, and mortar
2. Determine the masonry strength, $\mathrm{f}^{\prime} m$,
based on unit strength, fu, and mortar type. (given f'm = 3000 psi)

Faceshell bedding, partial grout

Rational Approach
for axial compression using TMS 402 (2016)

Rational Masonry Analysis

Example
Strength Design - non-reinforced

Rational Approach
for axial compression using TMS 402 (2016)
2. Find the net area, A_{n}, and Moment of Inertia, I_{n} (see NCMA TEK 14-1B)

Table 3-8-inch (203-mm) Single Wythe Walls, $1^{1 / 4} \mathrm{in}$. (32 mm) Face Shells (standard)

3a: Horizontal Section Properties (Masonry Spanning Vertically)					
Unit	Grout spacing (in.)	Mortar bedding	Net cross-sectional properties ${ }^{\text {A }}$		
			$A_{n}\left(\mathrm{in} .^{2} / \mathrm{ft}\right)$	$I_{n}\left(\mathrm{in} . .^{4} \mathrm{ft}\right)$	$S_{n}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
100\% sol	d/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Rational Masonry Analysis
Example
Strength Design - non-reinforced

Rational Approach
for axial compression using TMS 402 (2016)
3. Calculate $r=\sqrt{I} / A$

$$
\begin{aligned}
& \text { TER } 14-1 B \quad 8^{\prime \prime} \text { SINGLE WITHE } \\
& \text { HOWOW BLOCK - GROUT } 24^{\prime \prime} 0 . C . \text {-FACE SHEUMORTSR } \\
& A_{n}=51.3 \mathrm{~m}^{2} \quad I_{n}=355.3 \mathrm{~m}^{4} \quad \text { (NET) }
\end{aligned}
$$

4. Calculate h / r

$$
\begin{aligned}
& r=\sqrt{\frac{I}{A}}=\sqrt{\frac{355.3}{51.3}}=1.952 \mathrm{~m} \\
& h / r=\frac{12^{\prime}(12)}{1.952}=73.75<99 \quad \therefore \text { ECO } 9.11
\end{aligned}
$$

5. Choose the axial strength equation, Pn :
(Equation 9-11) for $h / r<99$ If $h / r<99$ use TMS 402 eq.9-11 If $h / r>99$ use TMS 402 eq. $9-12$

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}
$$

Rational Masonry Analysis

Example
Strength Design - non-reinforced
Given: geometry: 8 " block, grouted 24 " oc. material: fem = 3000 psi Area $\mathrm{An}=51.3 \mathrm{in}^{2} / \mathrm{ft}$ height $\mathrm{h}=12 \mathrm{ft}$ $r=1.952$ in

$$
P_{n}=0.8\left[0.8 A_{n} f_{m}^{\prime}\left(1-\left(\frac{n}{140 r}\right)^{2}\right)\right]
$$

6. Calculate $ø \mathrm{Pn}$
where \varnothing for axial force $=0.90$

$$
\begin{aligned}
& P_{n}=0.8\left[0.8(51.3)(3)\left(1-\left(\frac{1444^{\prime \prime}}{140\left(1.952^{\prime}\right)}\right)^{2}\right)\right] \\
& P_{n}=0.8[123.12-0.7223]=71.4 \mathrm{k} / \mathrm{FT} \\
& \phi P_{n}=0.9(71.4)=64 \mathrm{k} / \mathrm{fr}
\end{aligned}
$$

7. Check that $\varnothing \mathrm{Pn}$ is greater than $\mathrm{Pu} . \quad p_{v}=1.2(25)+1.6(20)=62 \mathrm{k} / \mathrm{FT}$

$$
P_{u}=62 \mathrm{k} / \mathrm{kr}<64 \mathrm{k} / \mathrm{kr}=\phi \mathrm{ln} \therefore \text { ok }
$$

Rational Approach

for axial compression using TMS 402 (2016)
(Equation 9-11) for $h / r<99$

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}
$$

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab

Empirical Approach

TMS 402-16 Tab. CC A.1.1 Checklist for use of empirical design

foundation:

TMS 402-2016
Table CC-A.1.1 - Checklist for use of Appendix A - Empirical Design of Masonry

1.	Risk Category IV structures, or portions thereof, are not permitted to be designed using Appendix A.		
2.	Partitions are not permitted to be designed using Appendix A.		
3.	Use of empirical design is limited based on Seismic Design Category, as described in the following table.		
	Seismic Design Category	Participating Walls	Non-Participating Walls, except partition walls
	A	Allowed by Appendix A	Allowed by Appendix A
	B	Not Allowed	Allowed by Appendix A
	C		With prescriptive reinforcement per 7.4.3.1 ${ }^{1}$
	D, E, and F	Not Allowed	Not Allowed
	${ }^{1}$ Lap splices are required to be designed and detailed in accordance with the requirements of Chapters 8 or 9 .		
4.	Use of empirical design is limited based on wind speed at the project site, as described in Code A.1.2.3 and Code Table A.1.1.		
5.	If wind uplift on roofs result in net tension, empirical design is not permitted (A.8.3.1).		
6.	Loads used in the design of masonry must be listed on the design drawings (1.2.1b).		
7.	Details of anchorage to structural frames must be included in the design drawings (1.2.1e).		
8.	The design is required to include provisions for volume change (1.2.1h). The design drawings are required to include the locations and sizing of expansion, control, and isolation joints.		
9.	If walls are connected to structural frames, the connections and walls are required to be designed to resist the interconnecting forces and to accommodate deflections (4.4).	frames, the connections and mmodate deflections (4.4). ad and uplift analysis for ext ame or roofing system.	walls are required to be designed to resist the ior walls that receive wind load and are
10.	Masonry not laid in running bond (for example, stack bond masonry) is required to have horizontal reinforcement (4.5).		
11.	A project quality assurance plan is required (3.1) with minimum requirements given in TMS 602 Tables 3 and 4 for Quality Assurance Level 1.		
12.	The resultant of gravity loads must be determined and assured to be located within certain limitations for walls and piers (A.1.2.1).		
13.	Ensure compliance of the design with prescriptive floor, roof, and wall-to-structural framing anchorage requirements, as well as other anchorage requirements (A.8.3 and A.8.4).		
14.	Type N mortar is not permitted for foundation walls (A.6.3.1(g)).		
15.	Design shear wall lengths, spacings, and orientations to meet the requirements of Code A.3.1.		

Empirical Approach

Risk Catagories:
ASCE - 7
category IV is "not permitted"
with empirical approach

Use or Occupancy of Buildings and Structures	Risk Category
Buildings and other structures that represent low risk to human life in the event of failure	I
All buildings and other structures except those listed in Risk Categories I, III, and IV	II
Buildings and other structures, the failure of which could pose a substantial risk to human life	III
Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure	
Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or explosive substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ${ }^{2}$	
Buildings and other structures designated as essential facilities	IV
Buildings and other structures, the failure of which could pose a substantial hazard to the community	
Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ${ }^{\text {a }}$	
Buildings and other structures required to maintain the functionality of other Risk Category IV structures	

Empirical Approach

Wind limitations:

Basic wind speed $\leq 115 \mathrm{mph}$
(see TMS 402-16 Tab. A.1.1)

ASCE 7-2016 basic wind speeds for risk cat. II

Seismic limitations:

Can generally be used for Seismic Design Category (SDC) A, B, or C , or only A if part of the seismic lateral force resisting system.

Seismic zones A-E

Empirical Design of Masonry
 TMS 402-16

Height limits by wind speed and application

Table A.1.1 Limitations based on building height and basic wind speed

Element Description	Building Height, ft (m)	Basic Wind Speed, mph (mps) ${ }^{1}$			
		Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less	Permitted			Not Permitted
Interior masonry loadbearing elements that are not part of the lateral-force-resisting system in buildings other than enclosed as defined by ASCE 7	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to 180 (55)	Permitted	Not Permitted		
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
	35 (11) and less	Permitted			Not Permitted
Exterior masonry elements that are not part of the lateral-force-resisting system	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to $180(55)$	Permitted 			
	Over 35 (11) and less than or equal to 60 (18)		itted	Not Permitted	
Exterior masonry elements	35 (11) and less	Permitted			Not Permitted

Basic wind speed as given in ASCE 7

Empirical Design of Masonry TEK 14-8B (also TMS 402 - Tab. A.5.1) International Building Code (IBC) Limitations:

1. Lateral support requirements

2. Location of gravity load (in middle $1 / 3$ of wall)

3. Maximum unreinforced spans

Table 2-Wall Lateral Support Requirements (ref. 1)
Maximum wall length-to Chickness or height-to thickness ratio
Construction (unreinforced)

Table 3-Maximum Unreinforced Wall Spans, ft (m) ${ }^{\text {A }}$				
Wall thickness, in. (mm) 6 (152)		(203)	10	5)
Bearing walls				
Solid or solid grouted	$10(3.0)^{\text {B }}$	13.3 (4.1)	16.6	20 (6.1)
All other	$9(2.7)^{\text {B }}$	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls				
Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Interior	18 (5.5)	24 (7.3)	30 (9.	36 (11)
Cantilever Walls ${ }^{\text {C }}$				
Solid	3 (0.9)	4 (1.2)	5 (1	6 (1.8)
Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Parapets ${ }^{\text {c }}$	1.5 (0.5)	2 (0.6)	2.5	3 (0.9)
A Note that Ref. 6 includes modified requirements for walls with openings.				
${ }^{\text {B }}$ Unreinforced 6-in. (152-mm) thick bearing walls are limited to one story in height.				
${ }^{\text {c }}$ For these cases, spans are maximum wall heights.				

Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area of Clay Mas	pressive Strength Units (psi) fu	f'm For Net Area Compressive Strength of Masonry (psi)
When Used With Type M or S Mortar	When Used With Type N Mortar	
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900	--	3,500
11,500	--	4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Compressive Strength of Concrete Masonry Units (psi) fu	f'm For Net Area Compressive Strength of Masonry (psi)	
When Used With Type M or S Mortar	When Used With Type N Mortar	1,300
1,000		
1,250	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Empirical Design of Masonry TEK 14-8B (also TMS 402 - Tab. A.4.2) Allowable compressive stress of concrete masonry:

Solid or solidly grouted walls

Allowable compressive stresses based on gross cross-sectional area, $\mathrm{psi}(\mathrm{MPa})^{\mathrm{A}}$		
Gross area compressive strength of unit, psi (MPa)	Type M or S mortar	Type N mortar
Solid and Solidly Grouted Masonry (refs. 1, 6): Solid concrete brick:		
$8,000(55)$ or greater	350 (2.41)	300 (2.07)
4,500 (31)	225 (1.55)	200 (1.38)
2,500 (17)	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)
Grouted concrete masonry:		
4,500 (31) or greater	225 (1.55)	200 (1.38)
2,500 (17)	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)
Solid concrete masonry units:		
3,000 (21) or greater	225 (1.55)	200 (1.38)
2,000 (14)	160 (1.10)	140 (0.97)
1,200 (8.3)	115 (0.79)	100 (0.69)
Hollow walls (noncomposite masonry bonded ${ }^{\text {B }}$):		
Solid units:		
2,500 (17) or greater	160 (1.10)	140 (0.97)
1,500 (10)	115 (0.79)	100 (0.69)

Hollow unit walls

$\left.\begin{array}{|lcc} & \begin{array}{c}\text { Allowable compressive stresses } \\ \text { based on gross cross-sectional } \\ \text { area, psi } \\ (\mathrm{MPa})^{\mathrm{A}}\end{array} \\ \text { Gross area compressive } & \begin{array}{c}\text { Type M or S }\end{array} & \begin{array}{c}\text { Type } \mathrm{N} \\ \text { mortar }\end{array} \\ \text { mortar }\end{array}\right]$

Hollow loadbearing CMU, 8 in. $<t<12$ in. (203 to 305 mm$)^{\text {D }}$:

$2,000(14)$ or greater	$125(0.86)$	$110(0.76)$
$1,500(10)$	$105(0.72)$	$90(0.62)$
$1,000(6.9)$	$65(0.49)$	$60(0.41)$
$700(4.8)$	$55(0.38)$	$50(0.35)$

Hollow loadbearing CMU, $t \geq 12$ in $(305 \mathrm{~mm})^{\mathrm{D}}$:

$2,000(14)$ or greater	$115(0.79)$	$100(0.69)$
$1,500(10)$	$95(0.66)$	$85(0.59)$
$1,000(6.9)$	$60(0.41)$	$55(0.38)$
$700(4.8)$	$50(0.35)$	$45(0.31)$

Hollow walls (noncomposite masonry bonded ${ }^{\mathrm{B}}$):

$t \leq 8 \mathrm{in} .(203 \mathrm{~mm})^{\mathrm{D}}$	$75(0.52)$	$70(0.48)$
$8<t<12$ in $(203 \text { to } 305 \mathrm{~mm})^{\mathrm{D}}$	$70(0.48)$	$65(0.45)$
$t \geq 12$ in $(305 \mathrm{~m} . \mathrm{m})^{\mathrm{D}}$	$60(0.41)$	$55(0.38)$

Empirical Concrete Masonry

Procedure using TMS 402-2016
Given: location, geometry, material Find: strength (load capacity)

1. Check axial loading - must be within middle $1 / 3$
2. Check seismic category to be A, B, or C , or only A if part of the seismic
 lateral force resisting system.
3. Check wind speed (ASCE-7 2016) compare with Tab. A.1.1
4. Check minimum thickness.

1 story $=6$ " min. 2 story $=8 " \mathrm{~min}$.
5. Check lateral support (vertical or horizontal) tables 2 and 3 TEX 14-8B or TMS 402 - Tab. A.5.1
6. Determine allowable compressive stress from table 4 TEX 14-8B or TMS 402 - Tab. A.4.2
7. Allowable load = (stress) (gross area) (not LRFD so no γ factors)

Empirical Design Example

Given:

8" hollow non-reinforced CMU wall interior wall, Ann Arbor, Mich.
LL $=150 \mathrm{psf}$
Find:
LL capacity
Checks:
Axially loaded :
loaded within middle 1/3 (kern)
Seismic Category:
A, B, or C , or only A if part of the seismic lateral force resisting system

Wind:
less that 115 mph (ASCE 7-2016)

Axis Losing
For AnN ARBOR:
$S D C \rightarrow A$
WIND LOAD 107 merit <115

Wind and Seismic Limits

Wind for Ann Arbor - 107 mph SCD for Ann Arbor - Zones A

Empirical Design Example
 MAX HEMGHT \checkmark Checks:
 Maximum height - Table A.1.1
 - wind speed $=107 \mathrm{mph}$
 - interior, loadbearing
 H / t (TABLE 2)
 $\frac{120^{\prime \prime}}{8}{ }^{\prime \prime}=15<18$
 MAx. UNREINF. HEIGItT
 TABLE $3 \rightarrow 10^{\prime}<12^{\prime}$
 $\Delta_{g}=7.625 \times 12=91.5 \frac{\mathrm{~m}^{2}}{\mathrm{~m}}$

- $\mathrm{h}<35 \mathrm{ft}$

Table A.1.1 Limitations based on building height and basic wind speed

Element Description	Building Height, ft (m)	Basic Wind Speed, mph (mps) ${ }^{1}$			
		Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of the lateral-force-resisting system	35 (11) and less	Permitted			Not Permitted
Interior masonry loadbearing elements that are not part of the lateral-force-resisting system in buildings other than enclosed as defined by ASCE 7	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal to 180 (55)	Permitted	Not Permitted		
	Over 35 (11) and less than or equal to 60 (18)	Permitted		Not Permitted	
	35 (11) and less		Permitted		Not Permitted
Exterior masonry elements that are not part of the lateral-force-resisting system	Over 180 (55)	Not Permitted			
	Over 60 (18) and less than or equal $\text { to } 180(55)$	Permitted		Not Permitted	
	Over 35 (11) and less than or equal $\text { to } 60(18)$		itted	Not Permitted	
Exterior masonry elements	35 (11) and less	Permitted			Not Permitted

Empirical Design Example

Find allowable stress - table 4
Find load
$P=F A g$
Calculate per foot using gross Area

psi (Mpa)	psi (Mpa)	
Hollow Unit Masonry (Units Complying With ASTM		
C 90-06 or Later) (ref. 6) ${ }^{\text {c }}$:	Type M or S	Type N
Hollow loadbearing CMU, $t \leq 8$ in mortar		
2,000 (14) or greater	140 (0.97)	120 (0.83)
1,500 (10)	115 (0.79)	100 (0.69)
1,000 (6.9)	75 (0.52)	70 (0.48)
700 (4.8)	60 (0.41)	55 (0.38)
Hollow loadbearing CMU, 8 in. $<t<12 \mathrm{in}$. (203 to 305 mm$)^{\text {D }}$		
2,000 (14) or greater	125 (0.86)	110 (0.76)
1,500 (10)	105 (0.72)	90 (0.62)
1,000 (6.9)	65 (0.49)	60 (0.41)
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU, $t \geq 12$ in $(305 \mathrm{~mm})^{\text {D }}$:		
2,000 (14) or greater	115 (0.79)	100 (0.69)
1,500 (10)	95 (0.66)	85 (0.59)
1,000 (6.9)	60 (0.41)	55 (0.38)
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposite masonry bonded ${ }^{\mathrm{B}}$):		
$t \leq 8 \mathrm{in} .(203 \mathrm{~mm})^{\text {D }}$	75 (0.52)	70 (0.48)
$8<t<12$ in (203 to 305 mm$)^{\text {D }}$	D 70 (0.48)	65 (0.45)
$t \geq 12$ in $(305 \mathrm{~m} . \mathrm{m})^{\mathrm{D}}$	60 (0.41)	55 (0.38)

$$
\text { TABLE } 4 \text { HOLLOW \&" } f_{0}=1000
$$

TYPE $S \rightarrow 75 \mathrm{psi}$

$$
\begin{aligned}
P=F A_{g} & =75(7.625 \times 12) \\
& =6862 \mathrm{k} / 1
\end{aligned}
$$

$$
\text { TRIBUTARY STRIP }=28^{\prime}
$$

$$
P=6862=D C\left(28^{\prime}\right)+L L\left(28^{\prime}\right)
$$

$$
=150(28)+C L(28)
$$

$L L=95$ PSF CAPACITY

