Architecture 324

Wood Beam Design

- Wood Beam Capacity Analysis
- Wood Beam Design

Analysis Procedure (capacity)

Given: member size, material and span.
Req'd: Max. Safe Load (capacity)

1. Determine F_{b} and F_{b}^{\prime}
2. Assume $f_{b}=F_{b}^{\prime}$

- Maximum actual = allowable stress

3. Solve stress equations for force

- $M=f_{b} S$
- $V=0.66 \mathrm{f}_{\mathrm{v}} \mathrm{A}$

4. Use maximum moment to find loads

- Back calculate a load from moment
- Assumes moment controls

5. Check Shear

- Use load found is step 4 to check shear stress.
- If it fails ($f_{v}>F_{v}^{\prime}$), then find load based on shear.

Table 4A Reference Design Values for Visual (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see duration and dry service conditions. See NDS adjustment factors.)

from NDS 2012
6. Check deflection
7. Check bearing

Analysis Example (capacity)
Given: member size, material and span. Req'd: Max. Safe Load (capacity)

using SPF No. 2 and 10 min load

1. Determine F_{b} and F_{b}^{\prime}
2. Assume $f_{b}=F_{b}^{\prime}$

- Maximum actual = allowable stress

3. Solve stress equations for force

- $M=f_{b} S$ (ie. moment capacity)

GIVEN: SPAN = 6' Pet

$$
\text { SPAN }=6
$$

NDS Table 4A $F_{b}=875$ psi $\quad F_{v}=135$ psi
REQ'D: MAXIMUM LOAD P

$$
\begin{aligned}
f_{b}=F_{b}^{\prime} & =875(1.6)(1.5) \\
F_{b}^{\prime} & =2100 \mathrm{ps} 1
\end{aligned}
$$

NDS Sup. Table 1B

$$
S_{x}=3.063 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
M_{\phi} & =F_{b}^{\prime} S_{x}=2100(3.063) \\
& =6432.3^{\prime \prime}-x \\
& =5366^{1-*}
\end{aligned}
$$

Analysis Example (capacity)
3. Use maximum forces to find loads

- Back calculate a maximum load from moment capacity

4. Check shear

- Check shear for load capacity from step 3.
- Use P from moment to find $V \max$
- Check that $f_{v}<F_{v}$,

4. Check deflection (serviceability)
5. Check bearing (serviceability)

$$
\begin{aligned}
& H_{t}=P L / 4 \\
& P=M_{t} 4 / L \\
& P=536(4) / 6 \\
& P=357
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {max }}=p / 2=357 / 2=178.5^{*} \\
& f_{v}=\frac{3}{2} \frac{V}{A}=1.5 \frac{178.5}{5.25}=51 \mathrm{psi} \\
& 51 \mathrm{psi}<180 \quad \checkmark \text { ok }
\end{aligned}
$$

Design Procedure

Given: load, wood and grade, span, other usage conditions
Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Determine allowable stresses, \mathbf{F}_{b}

- Apply usage factors to get F_{b}

3. Solve $\mathbf{S}=\mathbf{M} / F_{b}{ }^{\prime}$
4. Choose a section from Table 1B

- Revise DL and $F_{b}{ }^{\prime}$
- Check step 3 and revise.

5. Check shear stress

- First for V max (easier)
- If that fails, try V at d distance from support.
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}$ '

6. Check deflection
7. Check bearing

Design Example

Given: load, wood and grade, span, other usage conditions (F_{b})
Req'd: member size

$$
\begin{aligned}
\text { GIVEN: } & F_{b}^{\prime}=1000 \mathrm{PSI} \\
& F_{V}^{\prime}=100 \mathrm{PS} \\
& \text { SPAN }=12^{\prime} \\
& D C+L L=80 \mathrm{PLF} \\
\text { REDD: } & \text { SECTION SIZE }
\end{aligned}
$$

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

Design Example

2. Determine allowable stresses
(given in this example)
$\mathrm{F}_{\mathrm{b}}=1000 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}^{\prime}=100 \mathrm{psi}$

$$
\begin{aligned}
& F_{b}=M / S_{x} \quad S_{x}=M / F_{b}^{\prime} \\
& S_{x}=\frac{1440(12)}{1000}=17.28 i^{3}
\end{aligned}
$$

3. Solve $S=M / F_{b}$,
4. Choose a section from S table

- Revise DL and $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$

5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance (remove load d from support)
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}$ '

$$
\begin{aligned}
2 \times 10 \quad & S_{x}=21.39>17.28 \\
A & =13.88 \mathrm{~m}^{2}
\end{aligned}
$$

$f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5\left(480^{\circ}\right)}{13.88 .2^{2}}=51.87$

$$
51.877_{\text {ss }}<100 \text { pix } \quad \text { U.0K }
$$

6. Check deflection
7. Check bearing

Timber Beam Design

Given: load, wood and grade, span, other usage conditions (F_{b})
Req'd: member size (in this example both b and d)

Timber Beam Design

Find applied load and force

GIVEN:
COAST SITKA SPRUCE ${ }^{\circ} 2 \quad 15 \%$ M.C. $G=0.43$ DENSITY $\approx 30 \mathrm{PCF}$

Trial 1:

$$
\begin{aligned}
& \text { ESTIMATE SIZE (RULE OF THUMB) } \\
& d^{\prime \prime} \approx L^{\prime} / 15 \approx 19 / 15=1.3^{\prime}=15.6^{\prime \prime} \approx 16^{\prime \prime} \\
& b: d=1: 2 \quad b=0^{\prime \prime} \\
& \therefore \text { ESTIMATE } 8 \times 16 \\
& D L=19 P S F \quad L L=55 \text { PSF }
\end{aligned}
$$

$$
P_{D+L}=(19+55) \text { (TRIBUTARY IREA) }
$$

$$
=74(152)=11248 \mathrm{LBS}
$$

$$
\omega=24.22 \mathrm{PLF}(T \lambda B / B)
$$

$$
H_{p}=\frac{p \lambda}{4}=\frac{11248(19)}{4}=53428^{2}-x
$$

$$
M_{w}=\frac{w f^{2}}{8}=\frac{24.22(19)^{2}}{8}=\frac{1093^{1}-\psi}{54521^{\prime}-x}
$$

Timber Beam Design

Find allowable stress

$$
\begin{aligned}
& F_{b}=625 \mathrm{psl} \\
& F_{V}=115 \mathrm{ps1} \\
& E=1200000 \mathrm{ps1} \\
& E_{\text {min }}=440000 \mathrm{psl}
\end{aligned}
$$

The following formula shall be used to determine the density in lbs/ft ${ }^{3}$ of wood:
density $=62.4\left[\frac{\mathrm{G}}{1+\mathrm{G}(0.009)(\text { m.c. })}\right]\left[1+\frac{\text { m.c. }}{100}\right]$
where:

$$
\mathrm{G}=\text { specific gravity of wood }
$$

m.c. = moisture content of wood, \%

$$
\begin{aligned}
& \text { m.c }=15 \% \quad G=0.43 \\
& \text { density }=31 \text { pcf use } 30
\end{aligned}
$$

Table 4D Reference Design Values for Visually Graded Timbers (5" \mathbf{x} 5" and larger) ${ }^{1,3}$
(Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4D ADJUSTMENT FACTORS										
Species and commercial Grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		BendingF_{b}	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}	Compression perpendicular to grain$F_{c \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$E_{\text {min }}$		
COAST SITKA SPRUCE $\quad \square$										
Select Structural	Beams and Stringers	$\begin{gathered} \hline 1,150 \\ 950 \\ 625 \\ \hline \hline \end{gathered}$	675	115	455	775	1,500,000	550,000	0.43	NLGA
No. 1			475	115	455	650	1,500,000	550,000		
No. 2			325	115	455	425	1.200 .000	440,000		
Select Structural	Posts and Timbers	1,100	725	115	455	825	1,500,000,	550,000		
No. 1		875	575	115	455	725	1,500,000	550,000		
No. 2		525	350	115	455	500	1,200,000	440,000		

Timber Beam Design

Trial 1:
choose S_{x} and size
$S_{x}=M / F_{b}^{\prime}$

TRY 1

$$
\begin{aligned}
& F_{b}^{\prime} \approx F_{b}=625 P S 1 \\
& S_{x}=1 / F_{b}^{\prime}=\frac{54521-x^{*}(12)}{625 \mathrm{~N}^{*} / \mathrm{N}^{2}} \\
& S_{x}=10471 \mathrm{~N}^{3}(\text { REQUIRED }) \\
& \therefore 8 \times 16 S_{x}=300.3 \mathrm{~m}^{3} \frac{\text { FAICS }}{3} \\
& \text { TRY } 12 \times 24 S_{x}=1058 \mathrm{~m}^{3}
\end{aligned}
$$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)

$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { b x d } \end{aligned}$	Standard Dressed Size (S4S) bxd in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS		Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:					
			Section Modulus $S_{x x}$ in. ${ }^{3}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ I_{x x} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \delta_{\mathrm{yy}} \\ \text { in. }{ }^{3} \\ \hline \end{array}$	Moment of Inertia l_{yy} in. ${ }^{4}$						
							$25 \mathrm{lbs} / \mathrm{ft}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}^{3}$	$35 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$45 \mathrm{lbs} / \mathrm{ft}^{3}$	$50 \mathrm{lbs} / \mathrm{ft}^{3}$
Beams \& Stringers (see NDS 4.1.3.3 and NDS 4.1.5.3)												
10×14	9-1/2 $\times 13-1 / 2$	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10×16	9-1/2 $\times 15-1 / 2$	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10×18	$9-1 / 2 \times 17-1 / 2$	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10×20	9-1/2 $\times 19-1 / 2$	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10×22	$9-1 / 2 \times 21-1 / 2$	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10×24	$9-1 / 2 \times 23-1 / 2$	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12×16	11-1/2 $\times 15-1 / 2$	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12×18	11-1/2 $\times 17-1 / 2$	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12×20	11-1/2 $\times 19-1 / 2$	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12×22	$11-1 / 2 \times 21-1 / 2$	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
12×24	$11-1 / 2 \times 23-1 / 2$	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
14×18	13-1/2 $\times 17-1 / 2$	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14×20	13-1/2 $\times 19-1 / 2$	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
14×22	13-1/2 $\times 21-1 / 2$	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
14×24	$13-1 / 2 \times 23-1 / 2$	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2

Timber Beam Design

Trial 2: 12×24 LL + DL m.c. $<19 \%$ not flat use

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										$\begin{aligned} & \text { LRFD } \\ & \text { only } \end{aligned}$		
							$\begin{aligned} & \frac{5}{2} \\ & \frac{2}{2} \\ & 0 \\ & \frac{0}{2} \\ & \frac{5}{4} \end{aligned}$								
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{t}	CL	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C_{1}	Cr_{5}	-	-	-	2.54	0.85	λ

Timber Beam Design

Trial 2: 12×24 LL + DL m.c. $<19 \%$ not flat use

Table 4D Adjustment Factors

Size Factor, C_{F}

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size Factors, $\mathbf{C}_{\mathbf{F}}$			
Depth	F_{b}	F_{t}	F_{c}
$\mathrm{d}>12^{\prime \prime}$	$(12 / \mathrm{d})^{1 / 9}$	1.0	1.0
$\mathrm{~d} \leq 12^{\prime \prime}$	1.0	1.0	1.0

Flat Use Factor, $\mathbf{C}_{f u}$
When members classified as Beams and Stringers* in Table 4D are subjected to loads applied to the wide face, tabulated design values shall be multiplied by the following flat use factors:

Flat Use Factor, C_{fu}			
Grade	F_{b}	${\mathrm{E} \text { and } \mathrm{E}_{\min }}$ Other Properties	
Select Structural	0.86	1.00	1.00
No.1	0.74	0.90	1.00
No.2	1.00	1.00	1.00

*"Beams and Stringers" are defined in NDS 4.1 .3 (also see Table 1B).

Wet Service Factor, C_{M}

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Service Factors, C_{M}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
1.00	1.00	1.00	0.67	0.91	1.00

$$
C_{F}=(12 / 23.5)^{1 / 9}=0.928
$$

Timber Beam Design Trial 2: 12×24

C_{L}
Table 3.3.3
"Concentrated load at center with lateral support at center"
$\ell_{\mathrm{e}}=1.11 \ell_{\mathrm{u}}$
C_{L} :
$\begin{aligned} l_{L} & =9.5^{-1} \\ & =114^{\prime \prime}\end{aligned}$
$l_{e}=1.11\left(l_{v}\right)$

$$
=1.11(114)=126.5
$$

$R_{B}=\sqrt{\frac{l_{e} d}{b^{2}}}=4.74$
$F_{b E}=\frac{1.2 E_{\text {min }}}{R_{B}{ }^{2}}=\frac{1.2(440000)}{4.74^{2}}=23482 \mathrm{ps}$
$F_{b}^{*}=F_{b}\left(C_{F}\right)=65(0.928)=580$
$\frac{F_{b a}}{F_{b}^{*}}=40.5$
$C_{L}=0.999$
3.3.3.6 The slenderness ratio, R_{B}, for bending members shall be calculated as follows:
$R_{B}=\sqrt{\frac{\ell_{\mathrm{e}} \mathrm{d}}{\mathrm{b}^{2}}}$
3.3.3.7 The slenderness ratio for bending members, R_{B}, shall not exceed 50 .
3.3.3.8 The beam stability factor shall be calculated as follows:

$$
\begin{equation*}
C_{L}=\frac{1+\left(F_{b E} / F_{b}^{*}\right)}{1.9}-\sqrt{\left[\frac{1+\left(F_{b E} / F_{b}^{*}\right)}{1.9}\right]^{2}-\frac{F_{b E} / F_{b}^{*}}{0.95}} \tag{3.3-6}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}^{*}= & \text { reference bending design value multiplied } \\
& \text { by all applicable adjustment factors except } \\
& \mathrm{C}_{\mathrm{t}} \mathrm{C}_{v}, \text { and } \mathrm{C}_{\mathrm{L}} \text { (see } 2.3 \text {) } \\
\mathrm{F}_{\mathrm{bE}}= & \frac{1.20 \mathrm{E}_{\text {min }}^{\prime}}{\mathrm{R}_{\mathrm{B}}^{2}}
\end{aligned}
$$

Timber Beam Design

Trial 2: $12 \times 24 S_{x}=1058 \mathrm{in}^{3} \quad A=270 \mathrm{in}^{2}$

TRY 2 cont.

$$
\begin{aligned}
& 12 \times 24 \quad C_{F}=0.928 \quad C_{L}=0.999 \quad C_{D}=1.0 \\
& F_{b}^{\prime}=F_{b}\left(C_{D} C_{F} C_{L}\right)=625(1 \quad 0.928 \quad 0.999)=579.3 \mathrm{pS1} \\
& W_{\text {SELF }}=D \frac{\text { AREA }}{144}=30 \frac{270 \mathrm{i}^{2}}{144}=56.25 \text { PLF } \\
& M_{W}=\frac{W l^{2}}{8}=\frac{56.25(19)^{2}}{8}=2538 \mathrm{FT}-L B \\
& M_{\text {TOTAL }}=M_{P}+M_{W}=53428+2538=55969 \mathrm{FT}-L B \\
& S_{\text {REQ }}^{\prime}=M / F=\frac{55969(12)}{579.3}=1159.4 \mathrm{~m}^{3}
\end{aligned}
$$

$1159.4>1058$ so 12×24 is too small

Timber Beam Design

Trial 3: S_{x} req'd $=1159 \mathrm{in}^{3}$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)

try $14 \times 24 S_{x}=1243 \mathrm{in}^{3}$

Timber Beam Design

Trial 3: $14 \times 24(131 / 2 \times 231 / 2) \quad S_{x}=1243 \mathrm{in}^{3}$
revise adjustment factors:

$$
\begin{aligned}
C_{F}=(12 / 23.5)^{1 / 9}=0.928 \quad C_{L} \quad l_{e} & =126.5^{\prime \prime} \\
R_{B} & =\sqrt{\frac{l_{e} d}{b^{2}}}=\sqrt{\frac{126.5(23.5)}{13.5^{2}}}=4.039 \\
F_{b E} & =\frac{1.2(440000)}{4.039^{2}}=32359.0 \mathrm{psc} \\
F^{*} & =625(0.928)=580.0 \mathrm{ps1} \\
F_{D E} / F^{*} & =\frac{32359.8}{580}=55.79
\end{aligned}
$$

$$
C_{L}=0.999
$$

Timber Beam Design

Trial 3: $14 \times 24 \quad A=317.3 \mathrm{in}^{2} \quad S_{x}=1243 \mathrm{in}^{3} \quad \mathrm{w}_{\mathrm{DL}}=66.1 \mathrm{PLF}$
check stresses:
TRY 3

$$
\begin{aligned}
& 14 \times 24 \quad A=317.3 \mathrm{~m}^{2} \quad S_{x}=1242.6 \mathrm{im}^{3} \\
& F_{b}^{\prime}=625(1.00 .9280 .999)=579.5 \mathrm{psi} \\
& \text { CHECK } F_{b}=M / S_{x}=\frac{56410}{1242.6}=544.8 \mathrm{ps1}<579.5=F_{b}^{\prime} \\
& \text { CHECK SHEAR: } V_{\text {MAX }}=\frac{\omega l}{2}+\frac{P}{2}=\frac{66.1(19)}{2}+\frac{11248}{2}=6251.9 \mathrm{ls} \\
& f_{V}=\frac{3}{2} \frac{V}{A}=\frac{3}{2} \frac{6251.9}{317.3}=29.56 \mathrm{psi}<115=F_{V}^{\prime}
\end{aligned}
$$

$$
\therefore \text { USE } 14 \times 24
$$

Timber Beam Design

Trial 3: $14 \times 24 \mathrm{I}_{\mathrm{x}}=14600 \mathrm{in}^{4}$
check deflection: assume 30% of $L L$ is sustained
see NDS 3.5 $\mathrm{K}_{\mathrm{cr}}=1.5$ "seasoned lumber"

3.5 Bending Members - Deflection

3.5.1 Deflection Calculations

If deflection is a factor in design, it shall be calculated by standard methods of engineering mechanics considering bending deflections and, when applicable, shear deflections. Consideration for shear deflection is required when the reference modulus of elasticity has not been adjusted to include the effects of shear deflecdion (see Appendix F).

3.5.2 Long-Term Loading

Where total deflection under long-term loading must be limited, increasing member size is one way to
provide extra stiffness to allow for this time dependent deformation (see Appendix F). Total deflection, Δ_{T}, shall be calculated as follows:

$$
\begin{equation*}
\Delta_{T}=K_{C r} \Delta_{L T}+\Delta_{S T} \tag{3.5-1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\text { Kor }= & \text { time dependent deformation (creep) factor } \\
= & 1.5 \text { for seasoned lumber, structural glued } \\
& \text { laminated timber, prefabricated wood I-joists, } \\
& \text { or structural composite lumber used in dry } \\
& \text { service conditions as defined in 4.1.4, 5.1.4. } \\
& \text { 7.1.4, and 8.1.4, respectively. }
\end{aligned}
$$

Timber Beam Design

Trial 3: $14 \times 24 \mathrm{I}_{\mathrm{x}}=14600 \mathrm{in}^{4}$
DEFLECTION
check deflection:
assume 30% of LL is sustained
see NDS 3.5
$\mathrm{K}_{\mathrm{cr}}=1.5$ "seasoned lumber"

TABLE 1604.3 DEFLECTION LIMITS ${ }^{\text {a, }} \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{i}$

$$
\begin{array}{r}
\text { LONG-TERM: }{ }^{\omega_{D}} P_{D} 30 \% P_{L} \\
\Delta_{\omega_{D}}=\frac{5 \omega_{D} l^{4}}{384 E I}=\frac{5(66.1)(19)^{4}(1728)}{384(1200000)(14600)}=0.011^{\prime \prime} \\
\Delta_{P_{D}}=\frac{P_{D} l^{3}}{48 E I}=\frac{2888(19)^{3}(1728)}{48(1200000)(14600)}=0.0407^{\prime \prime} \\
\Delta_{L B 0 \%}=\frac{0.3\left(P_{L}\right) l^{3}}{48 E I}=\frac{0.3(8360)(19)^{3}(1728)}{48(1200000)(14600)}=+\frac{0.035^{\prime \prime}}{\Delta_{L T}}=0.0867^{\prime \prime}
\end{array}
$$

CONSTRUCTION	L	S or W^{f}	$D+L^{\mathrm{d}, \mathrm{g}}$
Roof members \cdot			
Supporting plaster or stucco ceiling	$/ / 360$	$/ / 360$	$/ / 240$
Supporting nonplaster ceiling	$/ / 240$	$/ / 240$	$/ / 180$
Not supporting ceiling	$/ / 180$	$/ / 180$	$/ / 120$
Floor members	$/ / 360$	-	$/ / 240$
Exterior walls:			
With plaster or stucco finishes	-	$/ / 360$	-
With other brittle finishes	-	$/ / 240$	-
With flexible finishes	-	$/ / 120$	-
Interior partitions:			
With plaster or stucco finishes	$/ / 360$	-	-
With other brittle finishes	$/ / 240$	-	-
With flexible finishes	$/ / 120$	-	-
Farm buildings	-	-	$/ / 180$
Greenhouses	-	-	$/ / 120$

$\mathrm{L} / 240=19(12) / 240=0.95$ "
SHORT-TERM: 70\% P_{L}

$$
\Delta P_{L 70 \%}=\frac{0.7\left(P_{L}\right) l^{3}}{48 E I}=\frac{0.7(8360)(19)^{3}(1728)}{48(1200000)(14600)}=0.0825^{11}
$$

TOTAL DELETION:

$$
\begin{aligned}
\Delta_{T} & =K_{C r} \Delta_{L T}+\Delta_{S T} \\
& =1.5(0.0867)+0.0825=0.213^{\prime \prime}
\end{aligned}
$$

Timber Beam Design Trial 2: $14 \times 24 \quad b=13.5$ "

check support bearing:

$C_{b}=1.0$ (end support)

3.10.4 Bearing Area Factor, C_{b}

Reference compression design values perpendicular to grain, $\mathrm{F}_{\mathrm{c} \perp}$, apply to bearings of any length at the ends of a member, and to all bearings $6^{\prime \prime}$ or more in length at any other location. For bearings less than $6^{\prime \prime}$ in length and not nearer than $3^{\prime \prime}$ to the end of a member, the reference compression design value perpendicular to grain, $\mathrm{F}_{\mathrm{c} \perp}$, shall be permitted to be multiplied by the following bearing area factor, C_{b} :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{b}}=\frac{\ell_{\mathrm{b}}+0.375}{\ell_{\mathrm{b}}} \tag{3.10-2}
\end{equation*}
$$

where:
$\ell_{\mathrm{b}}=$ bearing length measured parallel to grain, in.
Equation 3.10-2 gives the following bearing area factors, C_{b}, for the indicated bearing length on such small areas as plates and washers:

Table 3.10.4 Bearing Area Factors, C_{b}

$\boldsymbol{\ell}_{\mathrm{b}}$	$0.5^{\prime \prime}$	$1^{\prime \prime}$	$1.5^{\prime \prime}$	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$ or more
C_{b}	1.75	1.38	1.25	1.19	1.13	1.10	1.00

For round bearing areas such as washers, the bearing length, $\boldsymbol{\ell}_{\mathrm{b}}$, shall be equal to the diameter.

$$
\begin{aligned}
& \text { Find Minimum } l_{b} \text { : } \\
& F_{C \perp}=455 \mathrm{pSI} \\
& F_{C 1}^{1}=F_{C 1}\left(C_{M} C_{+1} C_{b}\right) \\
& =455\left(\begin{array}{llll}
1.0 & 1.0 & 1.0 & 1.0
\end{array}\right)=455 \mathrm{ps} 1 \\
& R=\text { ENd REaCTION }=\frac{P}{2}+\frac{\omega l}{2}=6251.9 \mathrm{CBS} \\
& F_{C_{1}}^{\prime}=F_{C_{1}}=\frac{R}{A_{b}}=\frac{6251.9}{6 R_{b}}=455 \mathrm{psi} \\
& \rho_{b}=\frac{6251.9 L B}{13.5^{\prime \prime} 455 \mathrm{PSI}}=1.02^{11} \text { (MINIMUm) }
\end{aligned}
$$

