Architecture 324

Structures II

Wood Column Analysis

- Failure Modes
- Euler Equation
- End Conditions and Lateral Bracing
- Analysis of Wood Columns

Failure Modes

FLEXURE

Berdar

Strength

$$
\underline{f_{b}}=\frac{M c}{I} \quad \underline{f}_{v}=\frac{V Q}{I b}
$$

Stability

$$
\mathrm{C}_{\mathrm{L}}=\frac{1+\left(\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}\right)}{1.9}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}\right)}{1.9}\right]^{2}-\frac{\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}}{0.95}}
$$

Serviceability

AXIAL
ColUnNAS

$$
f_{c}=\frac{P}{A}
$$

$$
\underline{\mathrm{C}_{\mathrm{P}}}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{oE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}}
$$

Bearing (crushing limit)

Leonhard Euler (1707-1783)

Euler Buckling (elastic buckling)

$$
\begin{gathered}
r=\sqrt{\frac{I}{A}} \\
I=A r^{2}
\end{gathered}
$$

SLENDERNR SS

$$
\begin{aligned}
&-\mathrm{A}=\text { Cross sectional area (in }{ }^{2} \text {) } \\
&-\mathrm{E}=\text { Modulus of elasticity of the material (} \mathrm{lb} / \mathrm{in}^{2} \text {) } \\
&-\mathrm{K}=\text { Stiffness (curvature mode) factor } \\
&-\mathrm{L}=\text { Column length between pinned ends (in.) } \\
&-\mathrm{r}=\text { radius of gyration (in.) } \\
& \frac{\mathrm{A}}{\mathrm{~A}}=\frac{f_{c r}}{=}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}=F_{C E}=\frac{0.822}{\left(\frac{l e}{d}\right)^{2}} \\
& C=d / \sqrt{12}
\end{aligned}
$$

Failure Mode - Strength

Short Columns - fail by crushing

> Analysis
> \checkmark

- $\quad f_{c}=$ Actual compressive stress
- $\quad \mathrm{A}=$ Cross-sectional area of column (in ${ }^{2}$)
- $P=$ Load on the column
- $\quad \mathrm{F}_{\mathrm{c}}{ }^{\prime}=$ Allowable compressive stress per codes

Failure Modes - Stability

Long Columns - fail by buckling

Traditional Euler

$$
f_{c r}=\frac{\left.\pi^{2}\right) E}{\left(\frac{K L}{r}\right)^{2}}
$$

- $\quad E=$ Modulus of elasticity of the column material (psi)
- $\quad \mathrm{K}=$ Stiffness (curvature mode) factor
- L = Column length between ends (inches)
- $\quad r=$ radius of gyration $=\sqrt{\text { I/A }}$ (inches)

NDS Equation

$$
\begin{aligned}
& F_{c E}=\frac{0.822 E_{\text {min }}^{\prime}}{\left(\frac{l_{e}}{d}\right)^{2}} \\
& -\mathrm{E}^{\prime} \text { min }=\text { reduced E modulus (psi) } \\
& -\quad \mathrm{le}=\mathrm{Ke} \mathrm{I}_{u} \text { (inches) } \\
& -\mathrm{d} \text { (inches) } \\
& -0.822=\pi^{2} / 12
\end{aligned}
$$

Slenderness Ratio le/d

Slenderness Ratios:
The larger ratio will fail first.
Try to balance for efficiency.

Slenderness Limited to < 50

$d=3.5$
$\mathrm{b}=1.5$

End Support Conditions, K_{e}

K_{e} is a constant based on the end conditions
ℓ is the actual length
ℓ_{e} is the effective length (curved part)

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

Actual Flexure Stress f_{b}

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}$ (adjustment factors)

$$
\begin{gathered}
\text { Alcow }>\boldsymbol{F}_{\mathbf{c}} \geq \mathbf{f}_{\mathbf{C}}
\end{gathered}
$$

Table 4A Base Design Values for Visually Graded Dimension Lumber (2"-4" thick) ${ }^{\mathbf{1 , 2}}$
(Cont.) (All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

Adjustment Factors

Table 4.3.1	Applicability of Adjustment Factors for Sawn Lumber														
			ASD and LRFD												
						$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { 免 } \\ & \stackrel{y}{n} \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	$\mathrm{C}_{\text {D }}$	C_{M}	C_{t}	C_{L}	C_{F}	C_{fu}	C_{1}	C_{r}	-	-	-	2.54	0.85	λ
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}$	x	$C_{\text {d }}$	C_{M}	C_{t}	-	C_{F}	-	C_{i}	-	-	-	-	2.70	0.80	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	X	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	$\stackrel{\zeta}{C_{D}}$	$\mathrm{C}_{\mathrm{M}}^{v}$	C_{t}	-	C_{F}^{v}	-	C_{i}^{v}	-	CP	-	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	-	C_{b}	1.67	0.90	-
$\mathrm{E}^{\prime}=\mathrm{E}$	X	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	-	-	-	-
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }}$	x	-	C_{M}	C_{t}	-	-	-	C_{i}	-	-	C_{T}	-	1.76	0.85	-

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$

Adjustment factors for compression:
C_{D} Load Duration Factor
C_{t} Temperature Factor

Table 2.3.3	Temperature Factor, C_{t}

Reference Design Values	In-Service Moisture Conditions ${ }^{1}$	C_{1}		
		$\mathrm{T} \leq 100^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}<\mathrm{T} \leq 125^{\circ} \mathrm{F}$	$125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}, \mathrm{E}_{\text {min }}$	Wet or Dry	1.0	0.9	0.9
$\mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{v}}, \mathrm{F}_{\mathrm{c}}$, and $\mathrm{F}_{\mathrm{c} \perp}$	Dry	1.0	0.8	0.7
	Wet	1.0	0.7 .	0.5
1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.				

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C D}^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ${ }^{2}$	2.0	Impact Load

(1) Actual stress due to (DL) $\leq(0.9)$ (Design value)
(2) Actual stress due to (DL+LL)
(3) Actual stress due to ($\mathrm{DL}+\mathrm{WL}$)
(4) Actual stress due to ($\mathrm{DL}+\mathrm{LL}+\mathrm{SL}$)
(5) Actual stress due
to (DL+LL+WL) $\leq(1.0)$ (Design value) $\leq(1.6)$ (Design value)
(6) Actual stress due to (DL+SL+WL) $\leq(1.6)$ (Design value)
(7) Actual stress due to (DL+LL+SL+WL) $\leq(1.6)$ (Design value)

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$ (For Dimensioned Lumber)

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, C ${ }_{\text {H }}$

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{M}					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85^{*}	1.0	0.97	0.67	$0.8^{* *}$	0.9
* when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150$	psi, $\mathrm{C}_{\mathrm{M}}=1.0$				

$$
{ }^{*} \text { when }\left(F_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{F}} \leq 1,150 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0\right.
$$

$$
\text { ** when }\left(\mathrm{F}_{2}\right)\left(\mathrm{C}_{\mathrm{F}} \leq 750 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0\right.
$$

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$ (For Timbers)

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor
C_{F} Size Factor

Size Factor, C_{F}

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Wet Service Factor, C_{M}

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Service Factors, C_{M}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \mathrm{\perp}}$	$\mathrm{~F}_{\mathrm{c}}$	E and $\mathrm{E}_{\text {min }}$
1.00	1.00	1.00	0.67	0.91	1.00

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$

Adjustment factors for compression :
C_{i} Incising Factor

Table 4.3.8 Incising Factors, C_{1}

Design Value	$\mathbf{C}_{\mathbf{i}}$
$\mathrm{E}, \mathrm{E}_{\min }$	0.95
$\mathrm{~F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{t}}, \mathrm{F}_{\mathrm{c}}, \mathrm{F}_{\mathrm{v}}$	$\underline{0.80}$
$\mathrm{~F}_{\mathrm{c} \perp}$	1.00

Allowable Compression Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

F_{c} from tables determined by species and grade
$F_{c}^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$

3.7 Solid Columns

3.7.1 Column Stability Factor, $\mathbf{C}_{\mathbf{p}}$

3.7.1.1 When a compression member is supported throughout its length to prevent lateral displacement in all directions, $\mathrm{C}_{\mathrm{P}}=1.0$.
3.7.1.2 The effective column length, ℓ_{e}, for a solid column shall be determined in accordance with principles of engineering mechanics. One method for determining effective column length, when end-fixity conditions are known, is to multiply actual column length by the appropriate effective length factor specified in Appendix $\mathrm{G}, \boldsymbol{\ell}_{\mathrm{e}}=\left(\mathrm{K}_{\mathrm{e}}\right)(\boldsymbol{\ell})$.
3.7.1.3 For solid columns with rectangular cross section, the slenderness ratio, $\ell_{\mathrm{c}} / \mathrm{d}$, shall be taken as the larger of the ratios $\boldsymbol{\ell}_{\mathrm{e} 1} / \mathrm{d}_{1}$ or $\boldsymbol{\ell}_{\mathrm{e} 2} / \mathrm{d}_{2}$ (see Figure 3 F) where each ratio has been adjusted by the appropriate buckling length coefficient, K_{e}, from Appendix G.
3.7.1.4 The slenderness ratio for solid columns, $\ell_{\mathrm{d}} / \mathrm{d}$, shall not exceed 50, except that during construction $\ell_{\mathrm{e}} / \mathrm{d}$ shall not exceed 75 .
3.7.1.5 The column stability factor shall be calculated as follows:

This is an estimate - not the exact value

Analysis of Wood Columns

Data:

- Column - size, length
- Support conditions
- Material properties - F_{c}, E
- Load

Required:

- Pass/Fail or margin of safety

1. Calculate slenderness ratio $\mathrm{I}_{e} / \mathrm{d}$ largest ratio governs. Must be < 50

2. Find adjustment factors

$$
C_{D} C_{M} C_{t} C_{F} C_{i} \smile \text { TABLLS }
$$

3. Calculate $\mathrm{C}_{\mathrm{P}} \leftarrow$
4. Determine allowable F'c by multiplying the tabulated Fc by all the above factors
5. Calculate the actual stress: $\mathrm{fc}=P / A^{\prime}$
6. Compare Allowable and Actual stress.
F'c > fc passes

Analysis Example: Pass/Fail

Data: section 4×8 (nominal) Douglas Fir-Larch No1
M.C. 15\% -
$\mathrm{P}=7000$ LBS (Snow Load)
Find: Pass/Fail

From NDS Supplement Table 4A
$\mathrm{Fc}=1500 \mathrm{psi}$

Emin $=620000 \mathrm{ps}$$C_{D}=1.15$ (snow)	Species and commercial grade	Size classification	Compression perpendicular to grain $F_{c \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity	
					E	$E_{\text {min }}$
$C_{M}=1.0$	DOUGLAS FIR-LARCH					
$C_{t}=1.0$	Select Structural No. 1 \& Btr		625	$\begin{aligned} & 1,700 \\ & 1,550 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,900,000 \\ & 1800000 \\ & \hline \end{aligned}$	$690,000$
$C_{F}=1.05$ (4x8)	No. 1	2" \& wider	625	1,500	1,700,000	620,000
$\mathrm{C}_{\mathrm{i}}=1.0$	No. 2		625	1,350	1,600,000	580,000
$\mathrm{C}_{P}=$?	No. 3		625	775	1,400,000	510,000
	Stud	$2^{\prime \prime}$ \& wider	625	850	1,400,000	510,000
	Construction		625	1,650	1,500,000	550,000
	Standard	$2^{\prime \prime}-4^{\prime \prime}$ wide	625	1,400	1,400,000	510,000
	Utility		625	900	1,300,000	470,000

Analysis Example: Pass/Fail

Determine Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$
$\mathrm{Fc}=1500 \mathrm{psi}$
$F_{c}^{\prime}=F_{C}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor = 1.0 (dry)
C_{F} Size Factor $=1.05$

Wet Service Factor, C_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{m}					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85^{*}	1.0	0.97	0.67	0.8^{*}	0.9

Size Factors, C_{F}

Grades	Width (depth)	F_{b}		F_{t}	F_{c}
		Thickness (breadth)			
		$2^{\prime \prime}$ \& $3^{\prime \prime}$	4"		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.5	1.5	1.5	1.15
	5 "	1.4	1.4	1.4	1.1
	$6 "$	1.3	1.3	1.3	1.1
	8')	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12 "	1.0	1.1	1.0	1.0
	14 " \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4{ }^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5{ }^{\prime \prime}$ \& $6^{\prime \prime}$	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size fac			
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	$2^{\prime \prime}$ \& 3"	0.4	-	0.4	0.6

Analysis Example: Pass/Fail

$$
\begin{align*}
& \text { Calculate } C_{P} \\
& \qquad C_{P}=\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}-\sqrt{\left[\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}\right]^{2}-\frac{F_{c E} / F_{c}^{c}}{c}} \tag{3.7-1}
\end{align*}
$$

where:

$\mathrm{F}_{\mathrm{c}}{ }^{*}=$ reference compression design value aralleI to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\text {min }} \cdot 1}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2} ?}$
$c=0.8$ for saw lumber
$c=0.85$ for round timber poles and piles
$c=0.9$ for structural glued laminated timber or structural composite lumber

$4 \times 8 \quad 3.5 " x 7.25$ "

$$
x-x \quad \quad \text { b } y-y
$$

$$
l e_{x}=\frac{25^{\prime}}{=}=\frac{300^{\prime \prime}}{300^{\prime \prime}} \quad l_{e_{y}}=10^{\prime}=120^{\prime \prime}
$$

$$
l_{e x} / d_{1}=\frac{300^{\prime \prime}}{7.25^{\prime \prime}} \quad \text { ley } / d_{2}=\frac{120^{\circ}}{3.5^{\prime \prime}}
$$

 le /d $=411.4<50 \mathrm{l}$

C_{p}

This is an estimate - not the exact value

Analysis Example: Pass/Fail $\quad F_{G E}=\frac{0.822 \text { Émin }}{\left(f_{6} / d\right)^{2}}$
Calculate C_{P}
$=\frac{0.822(620000)}{(41.4)^{2}}$
$=\frac{297.6 \mathrm{psi}}{6}$
where:
$\mathrm{F}_{\mathrm{c}}{ }^{\text {. }}=$ reference compression design value aralleI to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$F_{c E}=\frac{0.822 \mathrm{E}_{\text {min }}{ }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2} \Leftarrow}$
$c=0.8$ for saw lumber
$\mathrm{c}=0.85$ for round timber poles and piles
$\mathrm{c}=0.9$ for structural glued laminated timber or structural composite lumber

Analysis Example: Pass/Fail

Determine Allowable stress

$$
\begin{aligned}
& F_{C}^{\prime}=1500(1.15 \\
&\left.=\underline{C_{D}} \begin{array}{ll}
C_{1} & C_{p} \\
286.9 & \mathrm{ps} 1 \\
0.1584
\end{array}\right) \\
& F_{C}=\frac{P}{A}=\frac{7000}{25.38 \mathrm{~m}^{2}}=275.8 \mathrm{ps} 1 \\
& F_{c}^{\prime}>F_{c} \\
& 286>275
\end{aligned}
$$

Data:

- Column - size, length
- Support conditions
- Material properties - F_{c}, E

Required:

- Maximum Load Capacity, Pmax

1. Calculate slenderness ratio $\mathrm{I}_{2} / \mathrm{d}$ largest ratio governs. Must be < 50
2. Find adjustment factors

$$
\underbrace{C_{D} C_{M} C_{t} C_{F} C_{i}}
$$

3. Calculate C_{P}
4. Determine $\mathrm{F}^{\prime} \mathrm{c}$ by multiplying the tabulated Fc
 by all the above factors
5. Set actual stress = allowable, $\mathrm{fc}=\mathrm{F}, \mathrm{C}$
6. Find the maximum allowable load

$$
\text { Pax }=\text { F'c A }
$$

Analysis Example: Capacity

Data:

- 4×10
- Hem -Fir, No. 2 M.C. $=20 \%>19 \%$
- Wind Load
- $\mathrm{L}_{1}=8^{\prime} \mathrm{L}_{2}=4^{\prime} \mathrm{K}_{\mathrm{e}}=1.0$

Required:

- Maximum Load Capacity, Pax

From NDS Supplement Table 4A
Fec = 1300 psi
Amin $=470000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.6$ (Table 2.3.2.)
$\mathrm{C}_{\mathrm{Mc}}=0.8 \quad \mathrm{C}_{\mathrm{ME}}=0.9$
$\mathrm{C}_{\mathrm{t}}=1.0$
$C_{F}=1.0$ (chart in Supplement)
$\mathrm{C}_{\mathrm{i}}=1.0$
$\mathrm{C}_{\mathrm{P}}=$?

$$
l_{e} / d=13.7<50
$$

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$

4×10 M.C. $=20 \%$
F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor $\quad \mathrm{C}_{\text {Mc }}=0.8 \quad \mathrm{C}_{\mathrm{ME}}=0.9$
C_{F} Size Factor $=1.0$

Wet Service Factor, C_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{M}					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85^{*}	1.0	0.97	0.67	$0.8^{* *}$	0.9
* when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150$	psi, $\mathrm{C}_{\mathrm{M}}=1.0$				

* when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$
** when $\left(\mathrm{F}_{\mathrm{c}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$

Capacity Example

Find C_{P}

$$
\begin{aligned}
F_{C E} & =\frac{0.822 E_{\text {mim }}^{\prime}}{\left(l_{e} / d\right)^{2}} \\
& =\frac{0.822(470000(0.9))}{13.7^{2}} \\
& =1848.7 \mathrm{psi}
\end{aligned}
$$

$$
F_{c}^{*}=1300\left(\begin{array}{ll}
1.6 & 0.8
\end{array}\right)
$$

$$
=1664 .
$$

$$
F_{C E} / \varepsilon_{C}^{*}=\frac{1848,7}{1664}=1,111
$$

$$
C_{p}=0.7261
$$

$$
\begin{equation*}
C_{p}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}}{\mathrm{c}}} \tag{3.7-1}
\end{equation*}
$$

where:
$\mathrm{F}_{\mathrm{c}}{ }^{*}=$ reference compression design value araltel to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\text {mn }}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$c=0.8$ for sewn lumber
c $=0.85$ for round timber poles and piles
c $=0.9$ for structural glued laminated timber or structural composite lumber

Find the maximum load, Pax

$$
\begin{aligned}
F_{C}^{\prime} & =1300(1.6
\end{aligned} \begin{array}{ccc}
C_{D} & C_{M} & C_{p} \\
& =1208 \mathrm{psi} \\
& =\frac{1261}{*} \\
P_{\text {max }} & =F_{C}^{\prime} A=1208(32.38)=39115
\end{array}
$$

