Architecture 324 Structures II

Cross-Laminated Timber CLT

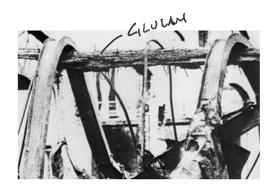
Kreuzlagenholz **KLH**

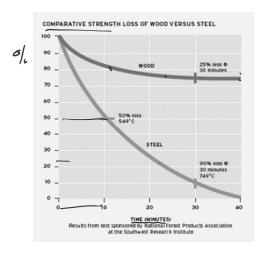
Material Properties Structural Properties Structural Design **Construction Details Examples**

Peter von Buelow

Cross-Laminated Timber Characteristics

- large-scale solid wood panel
- prefabricated
- lightweight, yet very strong
- fast and easy to install
- low environmental impact
- superior acoustic, fire, seismic, and thermal performance


Highly advantageous alternative to conventional materials like concrete, masonry, or steel, especially in multifamily and commercial construction.



Fire Resistance of Timber

- Timber generally chars at 1"/hour
- Flat <u>panels</u> burn slower than edges
- Maintain strength in heat better than steel
- Allowed heights by <u>IBC</u>
 <u>Fully Protected</u> Type IV-A 270'
 Partially Protected Type IV-B 180'
 Exposed Type IV-C 85'

University of Michigan, TCAUP Structures II Slide 3 of 42

Cross-Laminated Timber Composition

- several layers of kiln-dried lumber boards
- stacked in alternating directions
- bonded with structural adhesives
- pressed to form a solid, straight, rectangular panel
- odd number of layers usually 3 to 7
- may be sanded or prefinished

Cross-Laminated Timber Fabrication

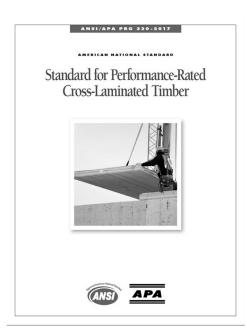
- panels are cut to size
- pre-cut door and window openings
- can be CNC routed
- panels are exceptionally stiff, strong, and stable
- structural load transfer on any side
- panels are typically 2 to 10 feet wide 18 ft. max.
- lengths up to 60 feet (98 ft. max.)
- thickness up to 20 inches

University of Michigan, TCAUP

Structures II

Structures II

Slide 5 of 42


Cross-Laminated Timber Performance Standards

- American National Standard ANSI / APA PRG 320-2019
- APA certification by APA member mills.
- designed to assure manufacture in conformance with APA performance standards

MILL 0000 ANSI/APA PRG 320-2012

APA PRG-320

Cross-Laminated Timber

CHAPTER 1

Introduction to cross-laminated timber

CHAPTER 2

Cross-laminated timber manufacturing

CHAPTER 2

Structural design of cross-laminated timber elements

CHAPTER 4

Lateral design of cross-laminated timber buildings

CHAPTER 5

Connections in cross-laminated timber buildings

CHAPTER 6

Duration of load and creep factors for cross-laminated timber panels

CHAPTER 7

Vibration performance of cross-laminated timber floors

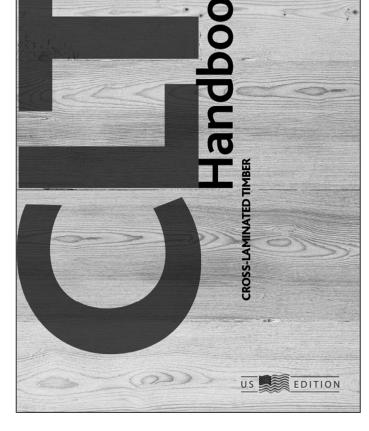
CHAPTER &

F<u>ire performance</u> of cross-laminated timber assemblies

CHAPTER 9

Sound insulation of cross-laminated timber assemblies

CHAPTER 10


Building enclosure design for cross-laminated timber construction

CHAPTER 11

Environmental performance of cross-laminated timber

CHAPTER 12

Lifting and handling of cross-laminated timber elements

Slide 7 of 42

Structures II

University of Michigan, TCAUP

Cross-Laminated Timber Structural Properties

TABLE A1.

ALLOWABLE DESIGN PROPERTIES(a,b,c) FOR PRG 320 CLT (for use in the U.S.)

			Majo	r Streng	gth Direc	tion			Min or Strength Direction							
G	CLT rades	F _{b,0} (psi)	E ₀ (10 ⁶ psi)	F _{t,0} (psi)	F _{c,0} (psi)	F _{v,0} (psi)	F _{s,0} (psi)		,,90 si)	E ₉₀ (10 ⁶ psi)	F _{t,90} (psi)	F _{c,90} (psi)	F _{v,90} (psi)	F _{s,90} (psi)		
1	E1	1,950	1.7	1,375	1,800	135	45	5	00	1.2	250	650	135	45		
	E2	1,650	1.5	1,020	1,700	180	60	5	25	1.4	325	775	180	60		
	E3	1,200	1.2	600	1,400	110	35	3	50	0.9	150	475	110	35		
]	E4	1,950	1.7	1,375	1,800	175	55	5	75	1.4	325	825	175	55		
[V1	900	1.6	575	1,350	180	60	5	25	1.4	325	775	180	60		
	V2	875	1.4	450	1,150	135	45	5	00	1.2	250	650	135	45		
T	V3	975	1.6	550	1,450	175	55	5	75	1.4	325	825	175	55		

For SI: 1 psi = 0.006895 MPa

APA PRG 320

⁽a) See Section 4 for symbols.

⁽b) Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS. The design values shall be used in conjunction with the section properties provided by the CLT manufacturer based on the actual layup used in manufacturing the CLT panel (see Table A2).

⁽c) Custom CLT grades that are not listed in this table shall be permitted in accordance with Section 7.2.1

Cross-Laminated Timber Adjustment Factors

CLT Handbook - Ch.3 Table 1

		ASD only		ASD an	d LRFD			LRFD only	
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Column Stability Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
		<i>V</i>	×	/			K _F	ф	
M	$F_b S_{eff} = F_b S_{eff}$ x	C_D	См	Ct	C_{Γ}	-	2.54	0.85	λ
T	$F_t A_{parallel} = F_t A_{parallel} $ x	C _D	См	Ct	1	1-1	2.70	0.80	λ
V =	$F_v(Ib/Q)_{eff} = F_v(Ib/Q)_{eff} x$	C _D	См	Ct	-		2.88	0.75	λ
C	$F_c A_{parallel} = F_c A_{parallel} $ x	C _D	См	Ct	-	(Cp)	2.40	0.90	λ
B	$F_{c\perp}A = F_{c\perp}A$ x	-	См	Ct	-		1.67	0.90	-
	EI _{app} = EI _{app} x	-	См	Ct	-	-	-	-	-
	EI app-min = EI app-min x	-	См	Ct	1-1	-	1.76	0.85	1-

University of Michigan, TCAUP Structures II Slide 9 of 42

Cross-Laminated Timber - Allowable Bending Capacity

		Lamination Thickness (in.) in CLT Layup							Major S	Strength D	irection	Minor Strength Direction			
CLT Grade	CLT t (in.)	=	1	=	T	=	1	_	F _b S _{eff,0} (lbf-ft/ft)	EI _{eff,0} (10° lbf- in.²/ft)	GA _{eff,0} (106 lbf/ft)	F _b S _{eff,90} (lbf-ft/ft)	EI _{eff,90} (10° lbf- in.²/ft)	GA _{eff,90} (106 lbf/ft)	
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	160	3.1	0.61	
E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	1,370	81	1.2	
	9 5/8	1 9/8	1 3/8	1 3/8	1 3/8	1 3/8	1,3/8	1 3/8	18,375	1,089	1.4	3,125	309	1.8	
	4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	165	3.6	0.56	
E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	1,430	95	1.1	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	3,275	360	1.7	
0.0	4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	110	2.3	0.44	
E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	955	61	0.87	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,180	232	1.3	
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.53	180	3.6	0.63	
E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,425	441	1.1	1,570	95	1.3	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,400	1,090	1.6	3,575	360	1.9	
	4 1/8	1 3/8	1 3/8	1 3/8					2,090	108	0.53	165	3.6	0.59	
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,800	415	1.1	1,430	95	1.2	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,275	360	1.8	
4	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.52	
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	81	1.0	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,275	898	1.4	3,125	309	1.6	
	4 1/8	1 3/8	1 3/8	1 3/8					2,270	108	0.53	180	3.6	0.59	
V3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			5,200	415	1.1	1,570	95	1.2	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9,200	1,027	1.6	3,575	360	1.8	

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448 N

- (a) See Section 4 for symbols.
- (b) This table represents one of many possibilities that the CLT could be manufactured by varying lamination grades, thicknesses, orientations, and layer arrangements in the layup.
- (c) Custom CLT grades that are not listed in this table shall be permitted in accordance with Section 7.2.1.

APA PRG 320

3

Cross-Laminated Timber Adjustment Factors

CLT Handbook - Ch.3

Load Duration Factor, C

The load duration factor is applicable only for ASD design methodology. This factor accounts for wood's greater strength over short durations. The load durations are assumed to be the same for CLT products as they are for other wood products and can be found in Table 2.3.2 of the NDS.

1.3 Wet Service Factor,
$$C_{_{\rm M}}$$
 \times

The wet service factor adjusts the strength properties of the wood in the absence of the assumed dry condition. Dry service conditions are defined for structural glued laminated timber as moisture content less than 16% in service, such as in most covered structures. At the time of manufacturing, PRG 320 requires that the moisture content of the laminations be no more than 15% and further states that the panels are only intended for use in dry service conditions. Contact the manufacturer if a wet service condition is expected.

<u>1.4</u> Temperature Factor, C_t

The temperature factor adjusts the strength properties of the wood if it will see sustained elevated temperatures above 100°F. This adjustment should be considered for applications when frequent and sustained temperatures above 100°F will occur. Roof systems and other assemblies subject to diurnal temperature fluctuations from solar radiation are not applications that normally require adjustment for temperature (NDS Commentary). Section 2.3.3 of the NDS gives the adjustment factors, which depend on the material property being adjusted and whether it is a wet or dry service condition. It is assumed that these considerations are applicable to CLT as well.

University of Michigan, TCAUP Structures II Slide 11 of 42

Cross-Laminated Timber - Flexure

CLT Handbook - Ch.3

2.1.1 Bending Members: Flexure (Out-of-plane)

For out-of-plane loads, the beam stability factor should be 1.0. The volume factor is not applicable to CLT.

The simplified method has been adopted in the product standard PRG 320 and calculates the capacity by using an extreme fiber capacity approach. The effective section modulus is found by dividing the effective bending stiffness, found with Equation [24] of this Chapter, by the modulus of elasticity of the outer layer and half the thickness of the panel. In equation form, it is as follows:

where: $EI_{eff} = Effective bending stiffness$ $E_{1} = Modulus of elasticity of outermost layer$ h = Entire thickness of panel [1]The effective bending stiffness can be obtained using Equation [24]: $EI_{eff} = \sum_{i=1}^{n} (E_{i}) b_{i} \cdot \frac{h_{i}^{3}}{12} + \sum_{i=1}^{n} (E_{i}) A_{i} \cdot z_{i}^{2}$

The effective section modulus is then multiplied by allowable bending stress of the outermost layer and "the calculated moment capacities in the major strength direction are further multiplied by a factor of 0.85 for conservatism" (PRG 320-2011). Manufacturers will have already done this calculation to give the moment capacity of the member. For design, the induced bending moment must be less than the moment capacity. In equation form, it would appear as follows:

F = 14(5)

 $M_b \leq F(S_{eff})$

C_D C_M C_t C_L

[2]

M_b = Applied bending moment due to loads

 F_b 'S_{eff} = Design bending strength of the panel provided by the manufacturer, calculated, or listed in the product standard PRG 320 and then multiplied by the applicable adjustment factors.

An example of the calculation of the bending moment capacity using the simplified method is given in Section 4.

2.1.3 Bending Members: Deflection (Out-of-plane)

One method to account for the shear deformation is to reduce the effective bending stiffness value, EI_{eff} to an apparent EI. The derivation of this is done in the discussion of the shear analogy method presented in Section 3. Equation [5] is the final equation that explains how an apparent bending stiffness, EI_{app} , can be calculated by reducing the effective bending stiffness, EI_{eff} . In Equation [5], K_s is a constant based upon the influence of the shear deformation and is solved for various loading conditions in Table 2.

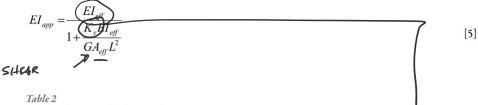


Table 2

K, values for various loading conditions

Loading	End Fixity	K _s		
Uniformly distributed	Pinned	11.5		
officially distributed	Fixed	57.6		
Concentrated at midspan	Pinned	14.4		
Concentrated at midspan	Fixed	57.6		
Concentrated at quarter points	Pinned	10.5		
Constant moment	Pinned	11.8		
Uniformly distributed	Cantilevered	4.8		
Concentrated at free-end	Cantilevered	3.6		


University of Michigan, TCAUP Structures II Slide 13 of 42

Cross-Laminated Timber - Shear

CLT Handbook - Ch.3

2.1.2 Bending Members: Shear (Out-of-plane)

Similar to the flexural strength, a simplified method using the extreme fiber capacity is also available and has been proposed for the PRG 320 product standard. Using the simplified method, an effective (Ib/Q)_{eff} can be calculated as follows:

EI_{eff} = Effective bending stiffness

E = Modulus of elasticity of an individual layer

h, = Thickness of an individual layer, except the middle layer, which is half its thickness

z_i = Distance from the centroid of the layer to the neutral axis, except for the middle layer, where it is to the centroid of the top half of that layer.

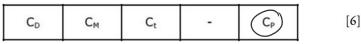
Manufacturers will likely have already done this calculation to give the shear capacity of the member. In equation form, design would appear as follows:

$$V_{planar} \le F_{v}(\underline{lb/Q})_{eff}$$
 C_{D} C_{M} C_{t} [4] where:

V_{slover} = induced shear due to loads

 $F_v^{'}$ (Ib/Q)_{eff} = shear strength of the panel provided by the manufacture or calculated per the simplified method multiplied by the applicable adjustment factors.

Cross-Laminated Timber - Compression


CLT Handbook - Ch.3

2.2 Compression Members

2.2.1 Solid Columns and Walls

The column stability factor deserves additional discussion due to its complexity and reliance on other design values. For column and wall design, the load must be less than the adjusted compression strength multiplied by the area of the laminations where the grain is running parallel to the load, or in equation form as follows:

$$P_{\textit{parallel}} \leq F_c' A_{\textit{parallel}}$$

where:

 $P_{parallel}$ = Load applied parallel to the direction of the fibers

F = Adjusted compression strength

A_{parallel} = Area of layers with fibers running parallel to the direction of the load

University of Michigan, TCAUP

Structures II

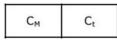
Slide 15 of 42

Cross-Laminated Timber - Compression Adjustment Factors

CLT Handbook - Ch.3

2.2.2 Column Stability Factor, C

The column stability factor accounts for tendency of a column to buckle. Since CLT is a plate element, buckling only needs to be checked in the out-of-plane direction. Derived from the NDS, the formula for the column stability factor for CLT it is as follows:


$$C_{p} = \frac{1 + \left(P_{cE} / P_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(P_{cE} / P_{c}^{*}\right)^{2}}{2c}\right]^{2} - \frac{P_{cE} / P_{c}^{*}}{c}}{c}}$$
[7]

where:

 P_c = Composite compression design capacity (F_c^*A) where F_c^* is multiplied by all applicable adjustment factors except C_p

$$c = 0.9 \text{ for CLT}$$

$$P_{cE} = \frac{\pi^2 E I'_{app-min}}{I_a^2} \text{ (see Section 2.2.3)}.$$

2.2.3 Minimum Apparent Bending Stiffness, El app-min

The apparent bending stiffness, EI_{app} , should be determined using Equation [5]. The following equation can be used to adjust the average EI_{app} to a minimum value, $EI_{app-min}$, for use in column buckling design:

$$EI_{app-min} = 0.5184EI_{app}$$
 [8]

Cross-Laminated Timber - Tension

CLT Handbook - Ch.3

2.3 Tension Members

As wood should not be relied upon to resist tension perpendicular to the grain, only the grain parallel to the load should be included as the effective area. The total load has to be less than the adjusted tension strength multiplied by the area of the laminations where the grain is parallel to the load. In equation form,

$$T_{parallel} \le F_t' A_{parallel}$$
 C_D C_M C_t

[9]

where:

 $T_{parallel}$ = Load applied parallel to the direction of the fibers

 F_t' = Adjusted tensile strength

 $A_{parallel}$ = Area of layers with fibers running parallel to the direction of the load.

University of Michigan, TCAUP

Structures II

Slide 17 of 42

Cross-Laminated Timber - Adjustment Factors

CLT Handbook - Ch.3

Bending and Axially Loaded Members

For members undergoing both axial compression and flat-wise bending, an equation from chapter 15 of the NDS has been modified from stress inputs to loads for CLT.

$$\left(\frac{P}{F_c'A_{parallel}}\right)^2 + \frac{M + PA\left(1 + 0.234 \frac{P}{P_{cE}}\right)}{F_b'S_{eff}\left(1 - \frac{P}{P_{cE}}\right)} \le 1.0$$
[10]

where:

P = Induced axial load

M = Induced bending moment

 Δ = Eccentricity of axial load, measured perpendicular to the plane of the panel

P_{ef} = Critical buckling load (see Section 2.2.2).

Cross-Laminated Timber - Adjustment Factors

CLT Handbook - Ch.3

2.5 Bearing of Members

2.5.1 Perpendicular to the Grain

The bearing area factor for CLT is 1.0, so is not included in Table 1. The design equation is as follows:

$$P \le F'_{c\perp} A$$
 C_{t} [11]

where:

P = Load applied

 $F'_{c\perp}$ = Adjusted compression perpendicular to grain design value.

2.5.2 Parallel to the Grain

For bearing parallel to the grain or with a combination of parallel and perpendicular to grain, such as the bottom of a wall, parallel to the grain will dominate over perpendicular. The design equation is the following:

$$P_{parallel} \le F_c^* A_{parallel} \tag{12}$$

where:

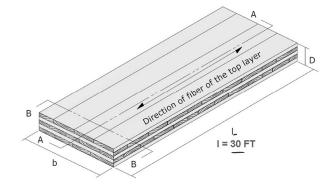
P_{parallel} = Load applied parallel to the direction of the fibers

F_c* = Reference compression parallel to grain design value multiplied by all applicable adjustment factors except the column stability factor, Cp

A_{parallel} = Area of layers with fibers running parallel to the direction of the load.

University of Michigan, TCAUP Structures II Slide 19 of 42

Cross-Laminated Timber - Flexure Example


Given: Span = 30 ft.

CLT PRG 320 <u>E1</u> "

<u>5 layer</u>, h = <u>6.87</u>5 in

Find: Load capacity ?

Cross-Laminated Timber -Flexure Example

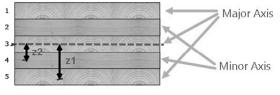
TABLE A1.	
ALLOWABLE DESIGN PROPERTIES(a,b,c) FOR PRG 320 CLT (for use in the U.S.)	

	Major Strength Direction								Minor Strength Direction							
CLT Grades	F _{b,0} (psi)	E ₀ (106 psi)	F _{t,0} (psi)	F _{c,0} (psi)	F _{v,0} (psi)	F _{s,0} (psi)		F _{b,90} psi)	E ₉₀ (10 ⁶ psi)	F _{t,90} (psi)	F _{c,90} (psi)	F _{v,90} (psi)	F _{s,90} (psi)			
El	1,950	1.7	1,375	1,800	135	45	:	500	(1.2)	250	650	135	45			
E2	1,650	1.5	1,020	1,700	180	60		525	1.4	325	775	180	60			
E3	1,200	1.2	600	1,400	110	35	;	350	0.9	150	475	110	35			
E4	1,950	1.7	1,375	1,800	175	55	:	575	1.4	325	825	175	55			
V1	900	1.6	575	1,350	180	60	;	525	1.4	325	775	180	60			
V2	875	1.4	450	1,150	135	45		500	1.2	250	650	135	45			
V3	975	1.6	550	1,450	175	55	:	575	1.4	325	825	175	55			

For SI: 1 psi = 0.006895 MPa

- (a) See Section 4 for symbols.
- (b) Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS. The design values shall be used in conjunction with the section properties provided by the CLT manufacturer based on the actual layup used in manufacturing the CLT panel (see Table A2).
- (c) Custom CLT grades that are not listed in this table shall be permitted in accordance with Section 7.2.1

University of Michigan, TCAUP


Structures II

Slide 21 of 42

Cross-Laminated Timber -Flexure Example

To find S = I/c = 2 I/h, first find I (or E I eff)

Calculation of section stiffness - E I eff

Cross-section of a 5-layer CLT panel

For a 5-layer, E1 panel:

 h_i = Thickness of an individual layer = 13/8 in.

b = Design width = 12 in.

values for all layers

Major strength axis (parallel to grain)

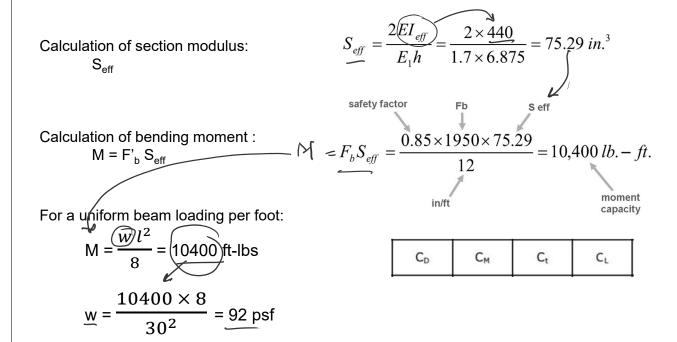
 F_{bo} = Bending strength = 1950 psi

values from Table 1

PRG-320

E₀ = Modulus of elasticity = 1.7x10⁶ psi

Minor strength axis (perpendicular to grain)


 $F_{b,00}$ = Bending strength = 500 psi

E_o = Modulus of elasticity = 1.2x10⁶ psi

Table 3						
Parallel	axis t	theorem	calcula	tions	for	EI_

Layer	E (x 10 ⁶ psi)	z (in.)	Ebh³/12 (lbin.²)	EAz²(lbin.²)	Sum of Layer
1	1.7	2.75	4.4	212.1	216.5
2	1.2/30=0.04 %	1.375	0.1	1.2	1.4
3	1.7	0.0	4.4	0.0	4.4
4	0.04	1.375	0.1	1.2	1.4
5	1.7	2.75	4.4	212.1	216.5
				Total	(440)

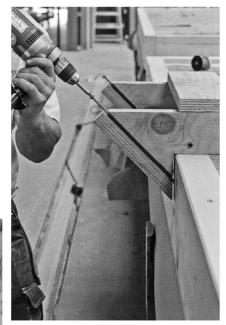
Cross-Laminated Timber - Flexure Example

University of Michigan, TCAUP Structures II Slide 23 of 42

Cross-Laminated Timber - Allowable Bending Capacity

CLT PRG 320 E1 5 layer, h = 6.875 in.

	CLT t	Lam	Lamination Thickness (in.) in CLT Layup							Strength D	irection	Minor	Strength D	irection
CLT Grade		_	1	=	1	=	Т	=	F _b S _{eff,0} (lbf-ft/ft)	(10° lbf- in.²/ft)	GA _{eff,0} (106 lbf/ft)	F _b S _{eff,90} (lbf-ft/ft)	EI _{eff,90} (106 lbf- in.2/ft)	GA _{eff,90} (106 lbf/ft
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	160	3.1	0.61
≥ E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	5		10,400	(440)	0.92	(1,370)	81	1.2
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,125	309	1.8
	4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	165	3.6	0.56
E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	1,430	95	1.1
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	3,275	360	1.7
	4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	110	2.3	0.44
E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	955	61	0.87
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,180	232	1.3
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.53	180	3.6	0.63
E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,425	441	1.1	1,570	95	1.3
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,400	1,090	1.6	3,575	360	1.9
	4 1/8	1 3/8	1 3/8	1 3/8			N.		2,090	108	0.53	165	3.6	0.59
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,800	415	1.1	1,430	95	1.2
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,275	360	1.8
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.52
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	81	1.0
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,275	898	1.4	3,125	309	1.6
	4 1/8	1 3/8	1 3/8	1 3/8					2,270	108	0.53	180	3.6	0.59
V3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			5,200	415	1.1	1,570	95	1.2
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9,200	1,027	1.6	3,575	360	1.8

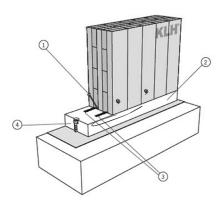

APA PRG 320

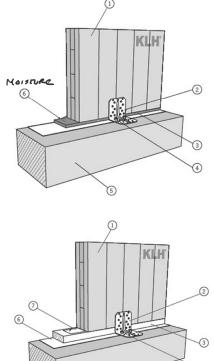
(c) Custom CLT grades that are not listed in this table shall be permitted in accordance with Section 7.2.1.

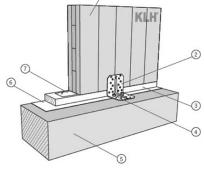
University of Michigan, TCAUP Structures II Slide 24 of 42

⁽b) This table represents one of many possibilities that the CLT could be manufactured by varying lamination grades, thicknesses, orientations, and layer arrangements in the layup.


Cross-Laminated Timber connections






University of Michigan, TCAUP Structures II Slide 25 of 42

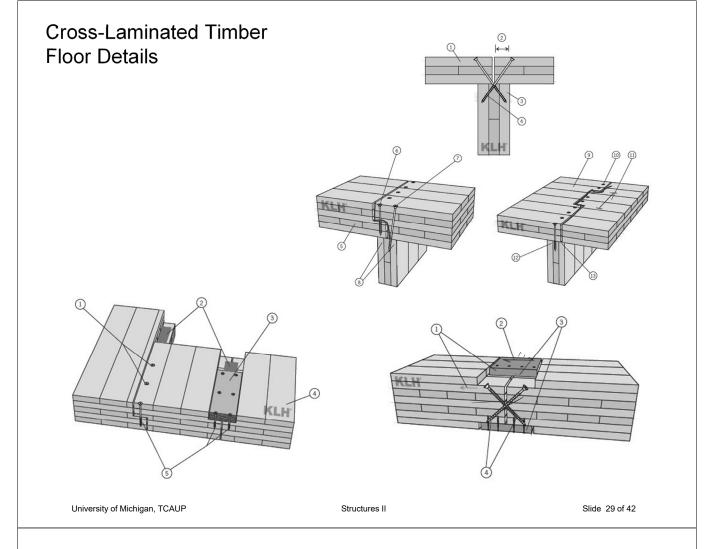
Cross-Laminated Timber Wall to Foundation Details

University of Michigan, TCAUP Structures II Slide 26 of 42

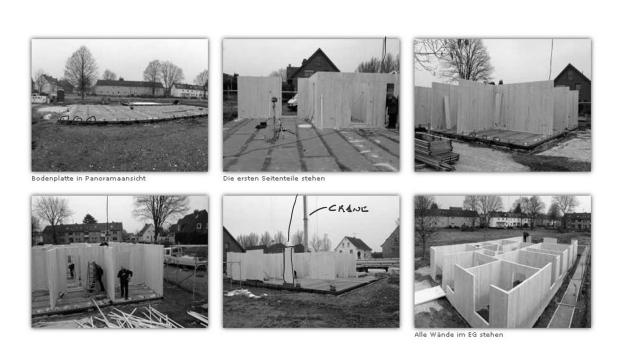
Cross-Laminated Timber Wall to Wall Details

University of Michigan, TCAUP


(5)


Structures II

Slide 27 of 42


Slide 28 of 42

Cross-Laminated Timber Wall to Roof Details

Cross-Laminated Timber Construction Sequence - Slab to Roof in 2 Weeks

R&S Münsterländer Holz & Elementbau GmbH, Lüdinghausen, Germany

Structures II

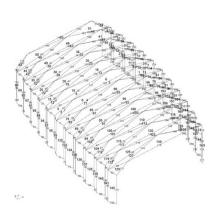
Slide 31 of 42

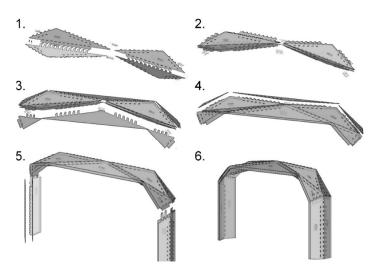
Week 2

R&S Münsterländer Holz & Elementbau GmbH

University of Michigan, TCAUP

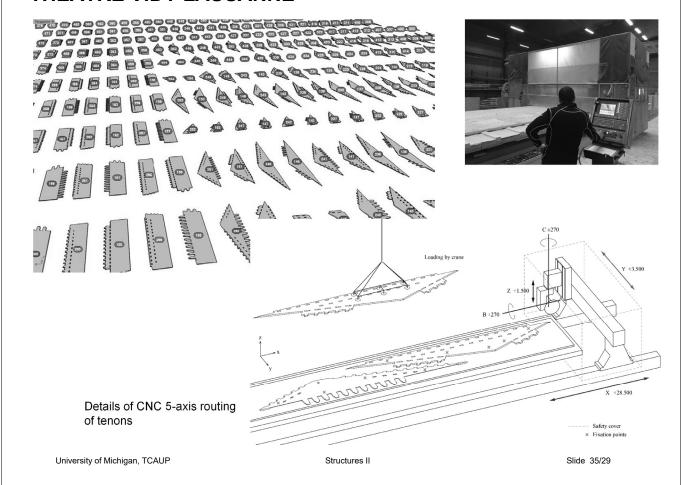
University of Michigan, TCAUP Structures II Slide 32 of 42





University of Michigan, TCAUP Structures II Slide 33 of 42

THÉÂTRE VIDY LAUSANNE: A DOUBLE-LAYERED TIMBER FOLDED PLATE STRUCTURE



Six step fabrication and erection. Steps 1-4 prefabricated. Step 5 assembly at site..

Double layer folded plate assembly with through tenons.

THÉÂTRE VIDY LAUSANNE

THÉÂTRE VIDY LAUSANNE

Shell assembly at fabrication shop

P. Rampur

University of Michigan, TCAUP

Structures II

Slide 37/29

Cross-Laminated Timber Examples

Cross-Laminated Timber Examples

"Honeycomb" construction in UK

University of Michigan, TCAUP Structures II Slide 39 of 42

Cross-Laminated Timber

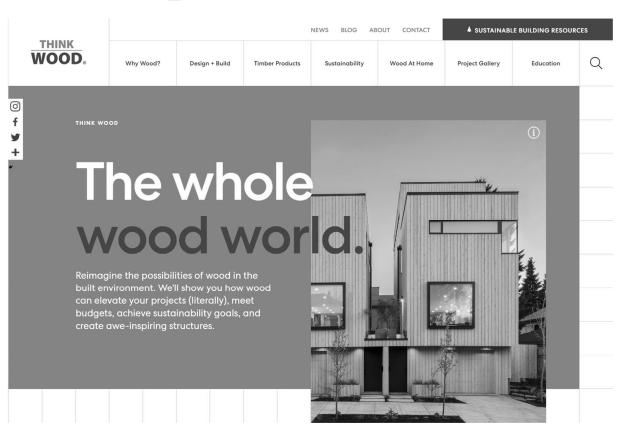
Worcester Library and History Center "The Hive"

Architect: Feilden Clegg Bradley Studios

Engineer: Hyder Consulting

University of Michigan, TCAUP Structures II Slide 40 of 42

Cross-Laminated Timber "The Hive"



University of Michigan, TCAUP Structures II Slide 41 of 42

More CLT resources and examples

https://www.thinkwood.com/

