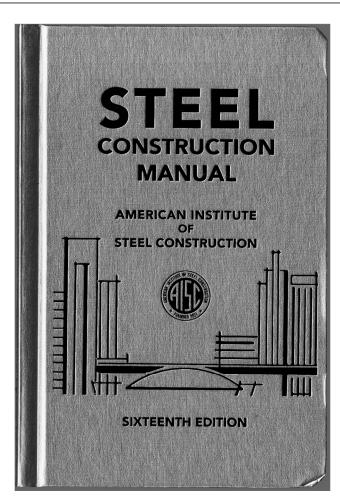
Properties of Steel

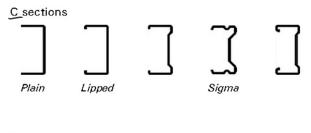

- Steel Properties
- Steel Profiles
- Steel Codes: ASD vs. LRFD

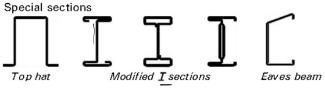
University of Michigan, TCAUP Structures II Slide 1 of 23

Current AISC Manual

Specification and Manual for both ASD and LRFD

Cold Form Sections


Photos by Albion Sections Ltd, West Bromwich, UK


University of Michigan, TCAUP Structures II Slide 3 of 23

Cold Form Sections

From:

Building Design Using Cold Formed Steel Sections: Structural Design to BS 5950-5:1998. Section Properties and Load Tables. p. 276

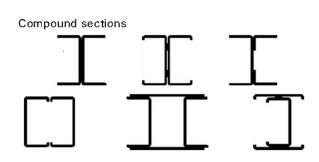
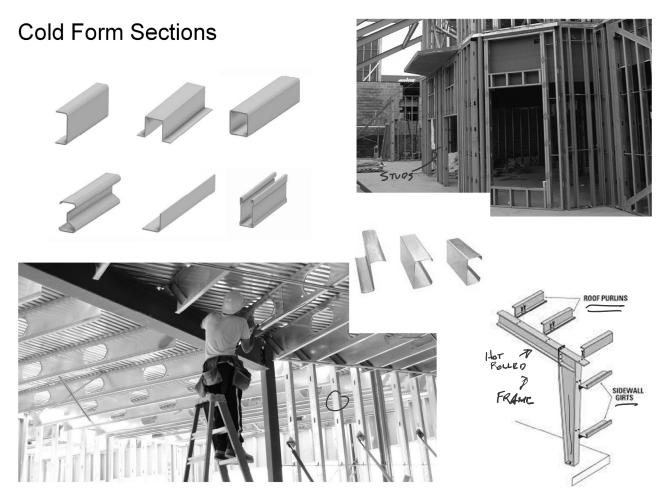
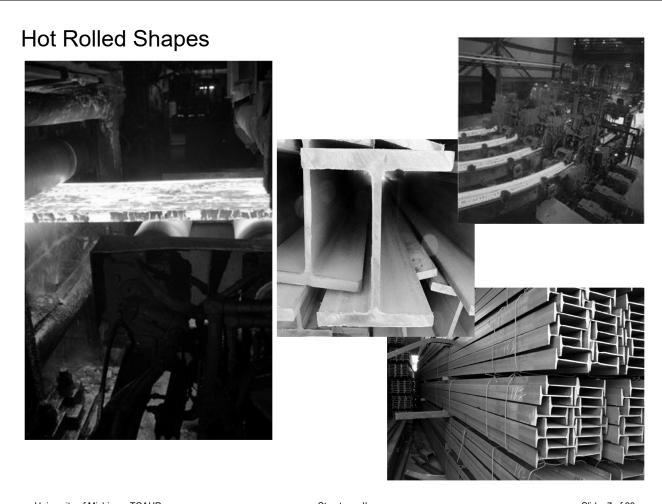



Figure 2.3 Examples of cold formed steel sections


Cold Form Sections

University of Michigan, TCAUP Structures II Slide 5 of 23

University of Michigan, TCAUP Structures II Slide 6 of 23

University of Michigan, TCAUP Structures II Slide 7 of 23

Hot Rolled Shapes

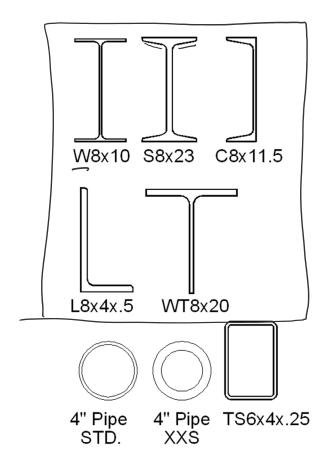
Nomenclature of steel shapes

Standard section shapes:

W – wide flange ✓✓

S – American standard beam

C – American standard channel


L - angle

WT or ST - structural T

STD, XS or XXS - Pipe

HSS – Hollow Structural Sections Rectangular, Square, Round

LLBB, SLBB - Double Angles

University of Michigan, TCAUP

Structures II

Slide 9 of 23

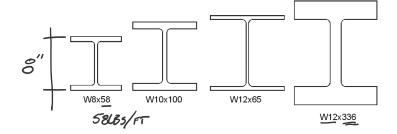
Steel Grades - Rolled Sections

Different sections are made with different grades of steel.

Most structural shapes are: Gr. 50 Steel with Fy = 50 ksi

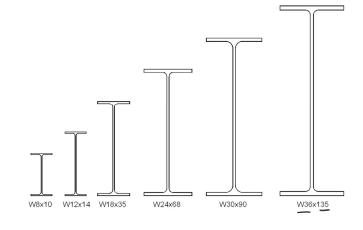
Older sections were made with: A-36 Steel with Fy = 36 ksi

Table 2-4 **Applicable ASTM Specifications** for Various Structural Shapes Туре A36/A36M A53/A53M Gr. B 35 Gr. B Gr. D 58 A501/ Gr. B A529/ A529M^[d] Gr. 50 50 65-100 Gr. 55 70-100 A709/A709M Gr. 36 36 58-80^{[t} 36-52 Gr. 50 50-65 65 Gr. A Gr. 42 42 60 Gr. 50 50 A572/ Gr. 55 55 70 Gr. 65^[h] 65 80 50^[i] 70^[i] Gr. III 50 65 Gr. 50 Gr. 50S 50-65 65 Gr. 50 Gr. 60 60 Gr. 65 65 80 Gr. 70 90 95 A1065M^[f]


AISC Manual - 16th ed.

University of Michigan, TCAUP Structures II Slide 10 of 23

Steel W-sections for beams and columns


Columns:

Closer to square Thicker web & flange

Beams:

Deeper sections
Flange thicker than web

University of Michigan, TCAUP

Structures II

Slide 11 of 23

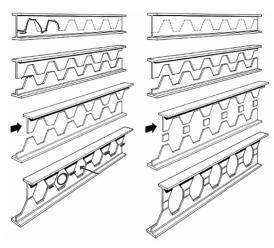
Steel W-sections for beams and columns

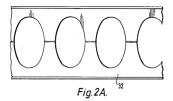
Columns:

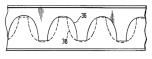
Closer to square Thicker web & flange

Beams:

Deeper sections
Flange thicker than web




Photo by Gregor Y.

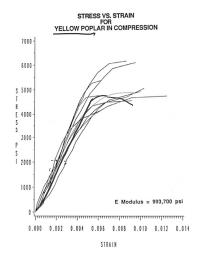

Modified Sections

- Castellated Sections:
- "Boyd beam"
- round, hexagonal, rectangular, sinusoidal
- extendable (added depth)
- cost-efficient
- lightweight

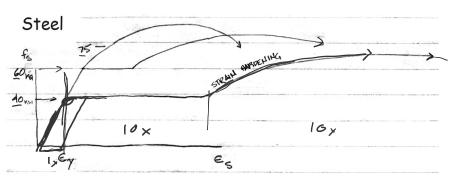
Fin 2B

Structures II

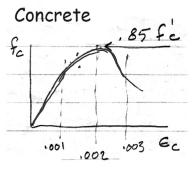
University of Michigan, TCAUP


Slide 13 of 23

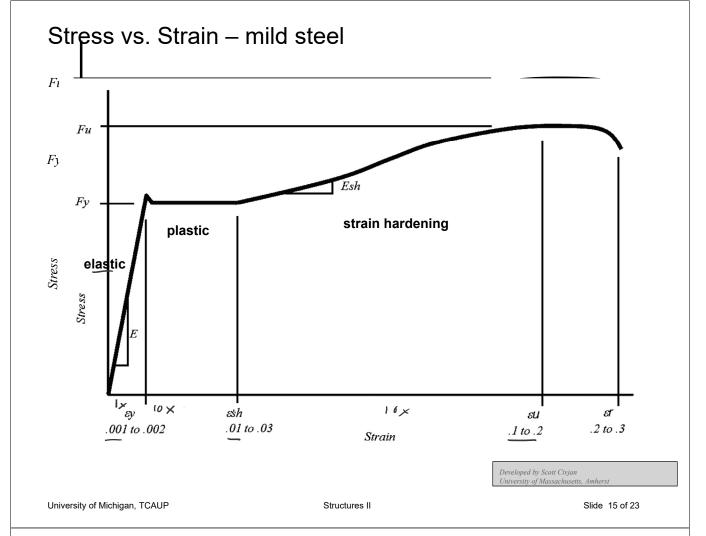
Young's Modulus

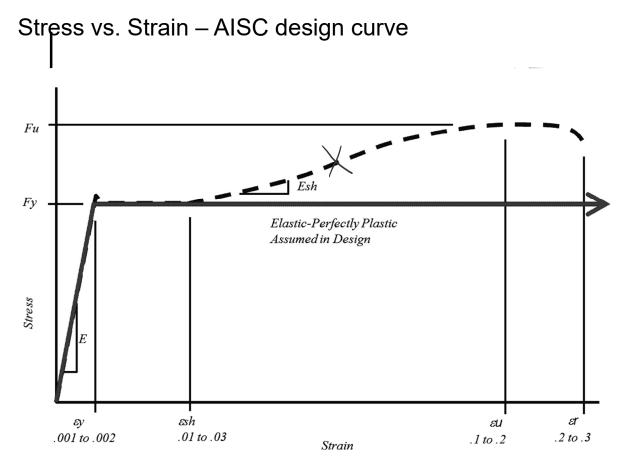

Young's Modulus or the Modulus of Elasticity, is obtained by dividing the stress by the strain present in the material. (Thomas Young, 1807)

$$E = \frac{P/A}{D/L} = \frac{\sigma}{\varepsilon}$$


It thus represents a measure of the stiffness of the material.

E = 1000 ksi




E = 29000 ksi

E = 3500 ksi

University of Michigan, TCAUP

Structures II

Slide 16 of 23

University of Michigan, TCAUP

Stress Analysis – Two Methods

Allowable Stress Design (ASD)

- use design loads (no F.S. on loads)
- reduce stress by a Factor of Safety F.S.

$$f_{actual} \le F_{allowable}$$

$$f_{actual} = \frac{P}{A}$$

$$F_{allowable} = F.S. \cdot f_{yield}$$

Load & Resistance Factored Design (LRFD)

- Use loads with safety factor γ
- Use factor on ultimate strength ϕ

$$P_{load} \le P_{resisting}$$

$$P_{load} = \underline{\gamma} \cdot P_{applied_load}$$

$$P_{\textit{resisting}} = \oint \cdot P_{\textit{material_strength}}$$

University of Michigan, TCAUP

Structures II

Slide 17 of 23

LRFD Analysis

Load & Resistance Factored Design (LRFD)

- Use loads with safety factor γ
- Use forces with strength factor ϕ

$$P_{load} = \gamma \cdot P_{applied}$$

$$P_{load} \le P_{resisting}$$

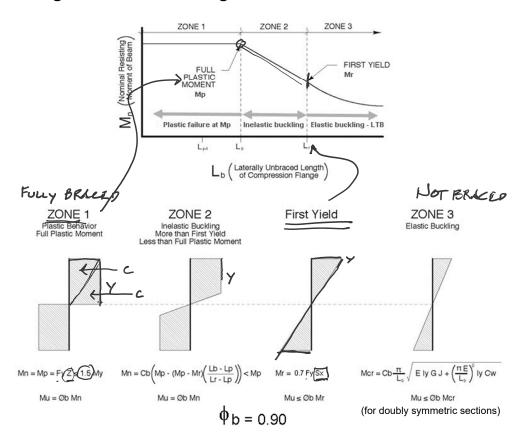
$$P_{load} = \gamma \cdot P_{applied} \qquad P_{load} \leq P_{resisting} \qquad P_{resisting} = \phi \cdot P_{material}$$

$$P_{\underline{u}} \leq \underline{\phi} P_{\underline{n}}$$

Design Strength $P_{u} \leq \Phi P_{n}$ Required (Nominal) Strength

LOAD COMBINATIONS FOR STRENGTH DESIGN

2.
$$\underline{1.2}D + \underline{1.6}L + 0.5(L_r \text{ or } S \text{ or } R)$$


3.
$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$$

4.
$$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$$

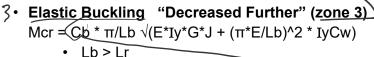
5.
$$0.9D + 1.0W$$

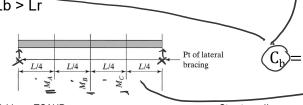
Beam Strength vs Unbraced Length

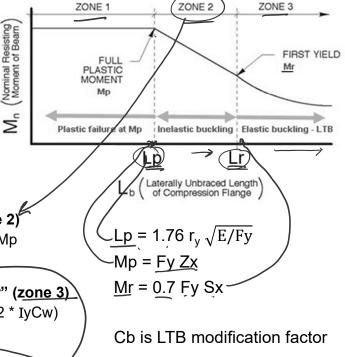
University of Michigan, TCAUP Structures II Slide 19 of 23

Steel Beams by LRFD

Yield Stress Values


- A36 Carbon Steel Fy = 36 ksi
- A992 High Strength Fy = 50 ksi


Elastic Analysis for Bending


• Plastic Behavior (zone 1)

$$Mn = Mp = \underline{FyZ} < 1.5 My$$

- Braced against LTB (Lb < Lp)
- 2 · Inelastic Buckling "Decreased" (zone 2)

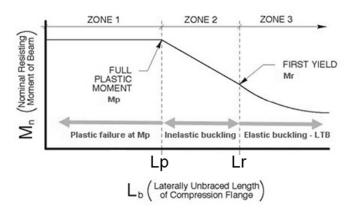
12.5 Mmax 2.5 Mmax + 3 MA + 4MB + 3MC

University of Michigan, TCAUP Structures II Slide 20 of 23

AISC 15th ed.

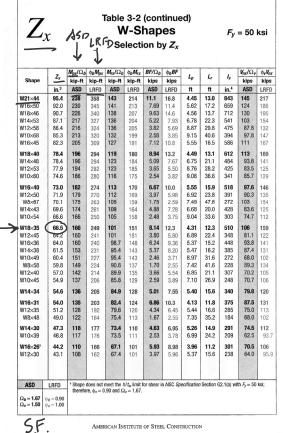
Analysis for Bending

Plastic Behavior (zone 1)
 Mn = Mp = Fy Z < 1.5 My

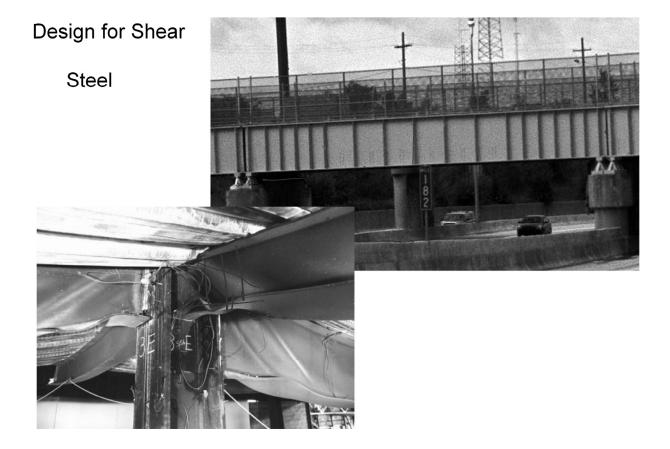

Braced against LTB (Lb < Lp)

Inelastic Buckling "Decreased" (zone 2)
 Mn = Cb(Mp-(Mp-Mr)[(Lb-Lp)/(Lr-Lp)] < Mp

Lp < Lb < Lr


Elastic Buckling "Decreased Further" (zone 3)
 Mcr = Cb * π/Lb √(E*Iy*G*J + (π*E/Lb)^2 * IyCw)

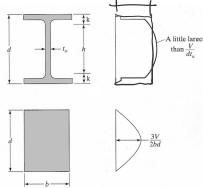
• Lb > Lr



University of Michigan, TCAUP

Structures II

Slide 21 of 23


Design for Shear

Shear stress in steel sections is approximated by averaging the stress in the web:

 $F_v = V / A_w$ $A_w = d * t_w$

To adjust the stress a reduction factor of 0.6 is applied to F_v

$$F_v = 0.6 F_y$$

so, $V_n = 0.6 F_y A_w$ (Zone 1)

University of Michigan, TCAUP

The equations for the 3 stress zones: (ϕ in all cases = 1.0)

Zone 1:

WEB YIELDING (Most beam sections fall into this category)

$$= \text{if } \frac{h}{t_w} \le 2.45 \sqrt{\text{E/F}_y} = 59 \text{ (for 50 ksi steel)}$$

then: $V_0 = 0.6 F_v A_w$

Zone 2:

INELASTIC WEB BUCKLING

if
$$2.45\sqrt{E/F_y} < \frac{h}{t_w}$$
 s $3.07\sqrt{E/F_y} = 74$ (for 50 ksi steel)

$V_n = 0.6 \, F_y \, A_w \, (2.45 \sqrt{E/F}) / \frac{h}{t_-}$

Zone 3:

ELASTIC WEB BUCKLING

if
$$3.07 \sqrt{E/F_y} < \frac{h}{t_y} \le 260$$

then: $V_n = A_w \left[\frac{4.25 E}{t_w} \right]$

Structures II Slide 23 of 23