

Yield Stress Values

- A36 Carbon Steel $F_y = 36$ ksi
- A992 High Strength $F_y = 50$ ksi

Elastic Analysis for Bending

- Plastic Behavior (zone 1) $M_n = M_p = F_y Z$
 - Braced against LTB ($L_b < L_p$)
- Inelastic Buckling "Decreased" (zone 2) $M_n = C_b(M_p-(M_p-M_r)[(L_b-L_p)/(L_r-L_p)] < M_p$ • $L_p < L_b < L_r$
- Elastic Buckling "Decreased Further" (zone 3) $M_{cr} = C_b * \pi/L_b \sqrt{(E*I_y*G*J + (\pi*E/L_b)^2 * I_yC_w)}$ • $L_b > L_r$

$$L_{p} = 1.76 r_{y} \sqrt{E/F_{y}}$$
$$M_{p} = F_{y} Z_{x}$$
$$M_{r} = 0.7 F_{y} S_{x}$$

C_b is LTB modification factor

$$C_{b} = \frac{12.5 \text{ M}_{max}}{2.5 \text{ M}_{max} + 3 \text{ M}_{A} + 4\text{M}_{B} + 3\text{M}_{C}}$$

Analysis for Bending

AISC 16th ed.

- Plastic Behavior (zone 1)
 M_n = M_p = F_y Z
 Braced against LTB (L_b < L_p)
- Inelastic Buckling "Decreased" (zone 2) $M_n = C_b(M_p-(M_p-M_r)[(L_b-L_p)/(L_r-L_p)] < M_p$ • $L_p < L_b < L_r$
- Elastic Buckling "Decreased Further" (zone 3) $M_{cr} = C_b * \pi/L_b \sqrt{(E*I_y*G*J + (\pi*E/L_b)^2 * I_yC_w)}$ • Lb > Lr

$F_y = 50 \text{ ksi}$ W-Shapes Z_x Z_χ												
Shape	Z _x in. ³	M _{px} /Ω _b kip-ft ASD	¢ <i>bMpx</i> kip-ft LRFD	M _{rx} /Ω _b kip-ft ASD	¢ <i>bMrx</i> kip-ft LRFD	<i>BF/Ωb</i> kips ASD	φ _b BF kips LRFD	L _p ft	L _r	I _x in. ⁴	V _{nx} /Ω _v	φ _v l kip
											kips	
											ASD	LF
W21×55	126	314	473	192	289	10.8	16.3	6.11	17.4	1140	156	2
W14×74	126	314	473	196	294	5.31	8.05	8.76	31.0	795	128	1
W18×60	123	307	461	189	284	9.62	14.4	5.93	18.2	984	151	2
W12×79	119	297	446	187	281	3.78	5.67	10.8	39.9	662	117	1
W14×68	115	287	431	180	270	5.19	7.81	8.69	29.3	722	116	1
W10×88	113	282	424	172	259	2.62	3.94	9.29	51.2	534	131	1
W18×55	112	279	420	172	258	9.15	13.8	5.90	17.6	890	141	2
W21×50	110	274	413	165	248	12.1	18.3	4.59	13.6	984	158	2
W12×72	108	269	405	170	256	3.69	, 5.56	10.7	37.5	597	106	1
W21×48 ^[f]	107	265	398	162	244	9.89	14.8	6.09	16.5	959	144	2
W16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	2
W14×61	102	254	383	161	242	4.93	7.48	8.65	27.5	640	104	1
W18×50	101	252	379	155	233	8.76	13.2	5.83	16.9	800	128	1
W10×77	97.6	244	366	150	225	2.60	3.90	9.18	45.3	455	112	1
W12×65 ^[7]	96.8	237	356	154	231	3.58	5.39	11.9	35.1	533	94.4	1
W21×44	95.4	238	358	143	214	11.1	16.8	4.45	13.0	843	145	2
W16×50	92.0	230	345	141	213	7.69	11.4	5.62	17.2	659	124	1
W18×46	90.7	226	340	138	207	9.63	14.6	4.56	13.7	712	130	1
W14×53	87.1	217	327	136	204	5.22	7.93	6.78	22.3	541	103	1
W12×58	86.4	216	324	136	205	3.82	5.69	8.87	29.8	475	87.8	1
W10×68 W16×45	85.3 82.3	213 205	320 309	132 127	199 191	2.58	3.85 10.8	9.15 5.55	40.6	394 586	97.8 111	1
		10.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	294		180							
W18×40	78.4	196	294	119	180	8.94	13.2 7.67	4.49	13.1	612	113	1
W14×48 W12×53	78.4	196 194	294	123 123	185	5.09 3.65	5.50	6.75 8.76	21.1	484 425	93.8 83.5	
W12×55 W10×60	74.6	186	280	116	175	2.54	3.82	9.08	28.2 36.6	341	85.7	
W16×40	73.0	182	274	113	170	6.67	10.0	5.55		518	97.6	1
W16×40 W12×50	71.9	179	274	113	169	3.97	5.98	6.92	15.9	391		1
W12×50 W8×67	70.1	175	263	105	159	1.75	2.59	7.49	23.8 47.6	272	90.3 103	
W14×43	69.6	174	261	109	164	4.88	7.28	6.68	20.0	428	83.6	1:
W10×54	66.6	166	250	105	158	2.48	3.75	9.04	33.6	303	74.7	1
1110/04	00.0	100	200	100	100	2.40	0.10	0.04	00.0	000	14.1	Γ.
				and the								
						-						
ASD	LI	RFD	^[9] Shape exceeds compact limit for flexure with $F_{\gamma} = 50$ ksi; tabulated values have been									
$\Omega_{b} = 1.67$		$\phi_b = 0.90$ adjusted accordingly.										
$\Omega_{\nu} = 1.67$ $\Omega_{\nu} = 1.50$		$\phi_b = 0.90$ $\phi_v = 1.00$										

Design for Shear

Shear stress in steel sections is approximated by averaging the stress in the web:

$$F_v = V / A_w$$

 $A_w = d * t_v$

To adjust the stress a reduction factor of 0.6 is applied to F_{v}

 $F_v = 0.6 F_y$ so, $V_n = 0.6 F_y A_w$ (Zone 1)

The equations for the 3 stress zones: $(\phi \text{ in all cases} = 1.0)$

WEB YIELDING (Most beam sections fall into this category)

if
$$\frac{h}{t_w} \le 2.45 \sqrt{E/F_y} = 59$$
 (for 50 ksi steel)
then: $V_n = 0.6 F_y A_w$

Zone 2: INELASTIC WEB BUCKLING

$$\begin{array}{ll} \text{if} & 2.45 \ \sqrt{\text{E/F}_{y}} \ < \ \frac{h}{t_{w}} \ \le \ 3.07 \ \sqrt{\text{E/F}_{y}} & = 74 \ (\text{for 50 ksi steel}) \\ \\ \text{then:} & V_{n} \ = 0.6 \ \text{F}_{y} \ \text{A}_{w} \ (2.45 \ \sqrt{\text{E/F}} \) \ / \ \frac{h}{t_{w}} \end{array}$$

Zone 3:

ELASTIC WEB BUCKLING

if
$$3.07 \sqrt{E/F_y} < \frac{h}{t_w} \le 260$$

then: $V_n = A_w \left[\frac{4.25 E}{\left(\frac{h}{t_w}\right)^2} \right]$

Structures II

Slide 5 of 19

Procedure - Analysis of Steel Beams – for Zone 1 $L_b < L_p$ Pass/Fail

Given: yield stress, steel section, loading, bracing (L_b) Find: pass/fail of section

- 1. Calculate the factored design load $w_u = 1.2w_{DL} + 1.6w_{LL}$
- 2. Determine the design moment M_u . M_u will be the maximum beam moment using the factored loads
- 3. Insure that $L_b < L_p$ (zone 1) $L_p = 1.76 r_y \sqrt{E/Fy}$
- 4. Determine the nominal moment, Mn $M_n = F_y Z_x$ (look up Z_x for section)
- 6. Check that $M_u < ø M_n$
- 7. Check shear
- 8. Check deflection

University of Michigan, TCAUP

Example: Pass/Fail Analysis of Steel Beams – for Zone 1 $L_b < L_p$

Given: yield stress, steel section, loading, braced 24" o.c.

Find: pass/fail of section

1. Calculate the factored design load w_u

 $w_u = 1.2w_{DL} + 1.6w_{LL}$

2. Determine the design moment M_u . M_u will be the maximum beam moment using the factored loads.

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load . . . - wi · · · · · · · · · · - = = $... = \frac{wx}{2}(l-x)$ Amax. (at center) - 5 m/4 $\dots \dots \dots = \frac{wx}{24E1} (l^2 - 2lx^2 + x^2)$ D=1KLF+BELM L=3KLF WZIX 44 A 992 STEEL Fy = SOKSI 21 FROM THELE 1-1 AISC Z = 95.4 in3 Wu = 1.2(1+.044) + 1.6(3) = 6.05 KLF $M_{u} = \frac{\omega_{u} l^{2}}{R} = \frac{6.05 \text{ kur} \times 21^{\prime 2}}{R} = 333.5 \text{ K}^{-1}$ Structures II Slide 7 of 19

Example: Pass/Fail Analysis of Steel Beams – for Zone 1 $L_b < L_p$

- 3. Insure that $L_b < L_p$ (zone 1) $L_p = 1.76 r_y \sqrt{E/Fy}$ $L_p = 1.76 (1.26) \sqrt{29000/50}$ $L_p = 53.4 in. > 24 in. ok$
- 4. Determine the nominal moment, $M_n = M_p = F_y Z_x$ (for zone 1) (look up Z_x for section)
- 5. Factor the nominal moment $\phi M_n = 0.90 M_n$
- 6. Check that $M_u < ø M_n$

$$D = 1 \text{ KLF} + \text{BELM} L = 3 \text{ KLF} WZI \times 44$$

$$A 992 \text{ STEEL}$$

$$F_{y} = 50 \text{ KS1}$$

FROM TABLE 1-1 AISC Z = 95.4 m3

 $M_{n} = F_{n} Z = 50 \text{ ks}; 95.4\text{m}^{3} = 4770 \text{ k}^{-7}$ $M_{n} = 4770 \frac{\text{K}^{-7}}{12} = 397.5 \text{ k}^{-1}$ $\phi M_{n} = 0.9 (397.5) = 357.7 \frac{\text{K}^{-1}}{12}$

Example: Pass/Fail Analysis of Steel Beams – for Zone 1 $L_b < L_p$ FRAM LISC THELE 1-1 7. Check shear (zone 1) $h_{f_{111}} = 53.6 < 59 \text{ (zone 1)}$ Zone 1: WEB YIELDING (Most beam sections fall into this category) CHECK SHEAR : $V_{U} = \frac{\omega_{0} f}{7} = \frac{6.05(21)}{7} = 63.5^{K}$ if $\frac{h}{t_{w}} \le 2.45 \sqrt{E/F_{y}} = 59$ (for 50 ksi steel) then: $V_n = 0.6 F_v A_w$ FRAM AISC TABLE 1-1 $h_{1} = 53.6 < 59$ (zone 1) $D = 1 \text{ KLF} + \text{BELM} \ L = 3 \text{ KLF} \qquad \text{W21x } 44 \qquad \qquad V_n = 0.6 \left[F_n A_{\omega} = 0.6 (50) (20.7 \times 0.35) \right]$ $T = 21^2 \qquad \qquad \text{M21x } 44 \qquad \qquad V_n = 217.35 \text{ K} \qquad \qquad \text{M21x } 44 \qquad \qquad V_n = 217.35 \text{ K} \qquad \qquad \text{M21x } 44 \qquad \qquad \text{$ \$Vn = 1,0 (217,35) = 217.35 K FROM THELE 1-1 AISC Z = 95.4 m3 $V_{0} = 63.5^{K} < 217.3^{K} = 4V_{N}$ Wy = 1.2(1+.044) + 1.6(3) = 6.05 KLF Therefore, pass. University of Michigan, TCAUP Structures II Slide 11 of 19

Example: Pass/Fail Analysis of Steel Beams – for Zone 1 L_b < L_p

1

8. Check deflection

$$\Delta \max = \frac{5 \omega l^4}{384 \text{ EI}} = \frac{5(3000) 21^4(1728)}{384(29000000)(843)}$$
$$= 0.535''$$

$$\frac{1}{360} = \frac{21(12)}{360} = 0.7''$$

$$D = 1 \text{ KLF} + \text{BELM} \quad L = 3 \text{ KLF} \qquad \text{WZI} \times 44$$

$$A = 992 \text{ ST EEL}$$

$$F_{X} = 50 \text{ Ks1}$$
FROM THELE I-1 (15C) $Z_{X} = 95.4 \text{ m}^{3}$

$$w_{U} = 1.2(1+.044) + 1.6(3) = 6.05 \text{ KLF}$$

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or W ^f	D + L ^{d, g}
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	#360 #240 #180	//360 //240 //180	//240 //180 //120
Floor members	//360	-	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	111	//360 //240 //120	
Interior partitions: ^b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120		
Farm buildings	—	<u> </u>	//180
Greenhouses		_	//120

Procedure - Analysis of Steel Beam - Capacity

Given: yield stress, steel section, bracing

Find: moment or load capacity

- 1. Determine the unbraced length of the compression flange $(L_{\rm h})$.
- 2. Find the L_p and L_r values from the AISC Z_x Table 3-2
- 3. Compare L_b to L_p and L_r and determine which equation for M_n or M_{cr} to be used.
- 4. Determine the beam load equation for maximum moment in the beam.
- 5. Calculate load based on maximum moment. $M_u = \phi_b M_n$

Slide 13 of 19

Example – Analysis of Steel Beam - Capacity

Structures II

Find applied live load capacity, w_{LL} in KLF $w_u = 1.2w_{DL} + 1.6w_{LL}$ w_{DL} = beam + floor = 44plf + 1500plf

Fy = 50 ksi, Fully Braced

University of Michigan, TCAUP

- 1. Find the Plastic Modulus (Z_x) for the given section from the AISC table 1-1
- 2. Check that $L_b < L_p$ (fully braced ok)
- 3. Determine $M_n = M_p = F_y Z_x$
- 4. Set $M_u = \phi_b M_n$ $\phi_b = 0.90$

For A WZ1×14 From TADLE Zx: 95.4 14 3

Mr. Fr Z = 50 m × 95.4 = 9,70 m

Ци: Фb·MH: 0.9 × 4,770 к-н) Mu: 4,293 к-н = 357.75 кгг

6. Using the maximum moment equation, solve for the factored distributed loading, w_u

$$\mathcal{M}_{u}: \frac{\omega_{u}l^{2}}{8} \Rightarrow \omega_{u}: \frac{\partial \mathcal{M}_{u}}{l^{2}}$$

7. The applied (unfactored) load $w = w_u / (\gamma \text{ factors})$ $w_u = 1.2 \text{wDL} + 1.6 \text{wLL}$

$$\omega_{0L}$$

$$\omega_{0} = 7.155 \text{ KLF} = 1.2(0.044 + 1.5) + 1.6(\omega_{LL})$$

$$\omega_{0} = 1.853 + 1.6 \omega_{LL} = 7.155 \text{ KLF}$$

$$\omega_{LL} = 3.31 \text{ KLF}$$

Slide 18 of 19

