Architecture 324
Structures II

Steel Beam Design

- Design Method
- Flitched Beams

Design of Steel Beam - Procedure (zone 1)

1. Use the maximum moment equation, and solve for the ultimate moment, M_{u}.
2. Set $\phi M_{n}=M_{u}$ and solve for M_{n}
3. Assume Zone 1 to determine Z_{x} required
4. Select the lightest beam with a Z_{x} greater than the Z_{x} required from AISC table
5. Determine if $\mathrm{h} / \mathrm{tw}<59$
(case 1, most common)
6. Determine A_{w} :

$$
A w=d t_{w}
$$

7. Calculate V_{n} :

$$
V_{n}=0.6 F_{y} A_{w}
$$

8. Calculate Vu for the given loading

$$
\mathrm{V}_{\mathrm{u}}=\mathrm{w}_{\mathrm{u}} \mathrm{~L} / 2 \quad \text { (e.g. unif. load) }
$$

9. Check $\mathrm{V}_{\mathrm{u}}<\phi \mathrm{V}_{\mathrm{n}}$ ϕ for $\mathrm{V}=1.0$
10. Check deflection

Design of Steel Beam

Example - Bending

> Applied Load:
> LL = $500+$ beam plf $\quad L L=1000$ pf
> $1.2(500)+1.6(1000)=2200 \mathrm{lb} / \mathrm{ft}$

Given: $F_{y}=50 \mathrm{ks}$
Fully braces

1. Use the maximum moment equation, and solve for the ultimate moment, M_{u}.
2. Set $\phi M_{n}=M u$ and solve for M_{n}

Example - Design of Steel Beam

3. Determine Z_{x} required (assume zone 1) $M n=F_{y} Z_{x}$
4. Select the lightest beam with a Z_{x} greater than the Z_{x} required from AISC table

$$
\begin{aligned}
& M_{u}=247,500 \%-F_{T}=247.5 \mathrm{keT} \\
& M_{N}=M_{0} / \phi_{6}=\frac{247.5 \mathrm{kr}}{0.90}=275 \mathrm{keT} \\
& Z_{\text {*REQ'D }}=\frac{\mu_{N}}{F_{Y}}=\frac{275 \mathrm{kFT}\left(\frac{12^{\prime}}{F_{F}}\right)}{50 \mathrm{ksi}} \\
& Z_{\text {reaio }}=66 \mathrm{w}^{3} \\
& \text { Sever W18:35 }
\end{aligned}
$$

4. revise Dead Load to include selfweight.

$\phi \mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}=252.9 \mathrm{k}$-ft
use W16x40

Example - Design of Steel Beam

Check Shear

5. Determine if $\mathrm{h} / \mathrm{t}_{\mathrm{w}}<59$ (case 1, most common)
6. Determine A_{w} :

$$
\begin{aligned}
& A_{w}=d^{*} t_{w}{ }^{w}=16.0^{\prime \prime} \times 0.305^{\prime \prime} \\
& A_{w}=4.88^{2} \mathrm{in}^{2}
\end{aligned}
$$

Fino h/tw from tables for a W16×40

$$
h / t_{w}=46.5<59
$$

Example - Design of Steel Beam

Check Shear

5. Determine if $\mathrm{h} / \mathrm{t}_{\mathrm{w}}<59$ (case 1, most common)
6. Determine Aw:

$$
\mathrm{A}_{\mathrm{w}}=\mathrm{d}^{*} \mathrm{t}_{\mathrm{w}}=4.88 \mathrm{in}^{2}
$$

7. Calculate Vn :

$$
V_{n}=0.6^{*} F_{y}^{*} A_{w}
$$

8. Calculate $V u$ for the given loading $\mathrm{Vu}=\mathrm{w}_{\mathrm{u}} \mathrm{L} / 2$ (unif. load)
9. Check $V_{u}<\phi_{v} V_{n}$

$$
\phi_{v}=1.0
$$

Example - Design of Steel Beam

Check Deflection

Deflection limits by application IBC Table 1604.3

For steel structural members, the DL can be taken as zero (note g)

DL deflection can be compensated for by beam camber

TABLE 1604.3 DEFLECTION LIMITS ${ }^{\text {a, } \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{i}}$

CONSTRUCTION	L	S or $W^{\text {t }}$	$D+L^{\text {d, }, ~}$
Roof members: ${ }^{\text {e }}$			
Supporting plaster ceiling	l/360	1/360	//240
Supporting nonplaster ceiling	l/240	//240	//180
Not supporting ceiling	//180	//180	//120
Floor members	l/360	-	//240
Exterior walls and interior partitions:			
With brittle finishes	-	l/240	-
With flexible finishes	-	l/120	-
Farm buildings	-	-	//180
Greenhouses	-	-	//120

V16 1640

$$
\begin{aligned}
\Delta_{L L} & =\frac{5 \omega_{L L} \ell^{4}}{384 E I}=\frac{5\left(1 \frac{\mathrm{~K}}{\mathrm{FT}}\right)(30 \mathrm{FT})^{4} 1728 \frac{\mathrm{iN}^{3}}{\mathrm{FT}}}{384\left(29000 \frac{\mathrm{~K}}{\mathrm{NN}^{2}}\right)\left(518 \mathrm{NN}^{4}\right)} \\
& =1.23^{\prime \prime}
\end{aligned}
$$

$$
\frac{\ell}{360}=\frac{30(12)}{360}=1^{\prime \prime}<1.21 \quad \therefore \mathrm{NG} \text { ! }
$$

$$
\begin{aligned}
& \text { TRYW } 18 \times 40 \\
& \Delta_{L L}=\frac{5 w_{L L} l^{4}}{384 E I}=\frac{5\left(1 \frac{\mathrm{~K}}{\mathrm{FT}}\right)(30 \mathrm{FT})^{4} 1728 \frac{1 \mathrm{~N}^{3}}{\mathrm{ET}}{ }^{3}}{384\left(29000 \frac{\mathrm{~K}}{1 \mathrm{~N}^{2}}\right)\left(6121 \mathrm{~N}^{4}\right)} \\
& \Delta_{L C}=1.02^{\prime \prime}
\end{aligned}
$$

Beam without Camber

Results in deflection in floor under Dead Load.
This can affect thickness of slab and fit of non-structural components.

Results in deflection in floor under Dead Load.
This can affect thickness of slab and fit of non-structural components.

University of Michigan, TCAUP
Slide 11 of 24

Results in deflection in floor under Dead Load. This can affect thickness of slab and fit of non-structural components.

Cambered heam counteracts service dead load deflection.

Flitched Beams \& Scab Plates

Advantages

- Compatible with the wood structure,
i.e. can be nailed
- Easy to retrofit to existing structure
- Lighter weight than a steel section
- Stronger than wood alone
- Less deep than wood alone
- Allow longer spans
- The section can vary over the length of the span
 to optimize the member (e.g. scab plates)
- The wood stabilizes the thin steel plate

Flitched Beams \& Scab Plates

 Disadvantages- More labor to make - expense. Flitched beams require shop fabrication or field bolting.
- Often replaced by Composite Lumber which is simply cut to length - less labor
- Glulam
- LVL
- PSL
- Flitched Beams are generally heavier than
 Composite Lumber

Steel Sandwiched Beams

based on strain compatibility

Applications:

Renovation in Edina, Minnesota
Four 2×8 LVLs, with two $1 / 2$ " steel plates.
18 FT span
Original house from 1949
Renovation in 2006
Engineer: Paul Voigt

© Chris Withers used with permission

Strain Compatibility

With two materials bonded together, both will act as one, and the deformation in each is the same.

Therefore, the strains will be the same in each material under axial load.

In flexure the strains are the same as in a homogeneous section, i.e. linear.

In flexure, if the two materials are at the same distance from the N.A., they will have the same strain at that point because both materials share the same strain diagram. We say the strains are "compatible".

Stress = E x Strain
So stress will be higher if E is higher.

Axial

Flexure

Strain Compatibility (cont.)

The stress in each material is determined by using Young's Modulus

$$
\sigma=\mathrm{E} \varepsilon
$$

Care must be taken that the elastic limit of each material is not exceeded. The elastic limit can be expressed in either stress or strain.

flexure

Capacity Analysis (ASD)

Flexure

Given

- Dimensions
- Material

Required

- Load capacity

1. Determine the modular ratio. It is usually more convenient to transform the stiffer material.

$$
n=\frac{E_{s}}{E_{w}}=\frac{29000}{1000}=29
$$

Capacity Analysis (cont.)

2. Construct the transformed section. Multiply all widths of the transformed material by n . The depths remain unchanged.

$$
I_{\omega}=\frac{3.5(5.5)^{3}}{12}=48.53 \mathrm{~m}^{4}
$$

3. Calculate the transformed moment of inertia, I_{tr}.

$$
I_{s}=2\left[\frac{101.5(0.25)^{3}}{12}+25.375(2.875)^{2}\right]
$$

$$
I_{s}=2[0.132+209.74]=419.7 \mathrm{~m}^{4}
$$

$$
\mathrm{I}_{\mathrm{tr}}=\sum \mathrm{I}+\sum \mathrm{A} d^{2}
$$

$$
I_{T R}=48.83+419.7=468.3 \mathrm{~m}^{3}
$$

Capacity Analysis (cont.)

4. Calculate the allowable strain based on the allowable stress for the material.

$$
\varepsilon_{\text {allow }}=\frac{\mathrm{F}_{\text {allow }}}{\mathrm{E}}
$$

$$
\begin{aligned}
& \epsilon=\frac{\sigma}{E} \\
& \epsilon_{w}=\frac{725}{1000000}=0.000725 \\
& \epsilon_{S}=\frac{21.6}{29000}=0.000745
\end{aligned}
$$

Capacity Analysis (cont.)

5. Construct a strain diagram to find which of the two materials will reach its limit first. The diagram should be linear, and neither material may exceed its allowable limit.

$$
\begin{aligned}
& \epsilon=\frac{\sigma}{E} \\
& \epsilon_{w}=\frac{725}{1000000}=0.000725 \\
& \epsilon_{s}=\frac{21.6}{29000}=0.000745
\end{aligned}
$$

$$
\frac{E}{c}: \frac{0.000745}{3.0^{\prime \prime}}: \frac{\epsilon_{w}}{2.75^{\prime \prime}}
$$

$$
\sigma=E \epsilon
$$

$$
f_{w}=1000000(0.000683)
$$

$$
\epsilon_{w}=0.000683
$$

$$
f_{w}=682 \mathrm{psi}
$$

$$
f_{s}=29000(0.000683)
$$

$$
f_{s}=19.8 \mathrm{ks1}
$$

Capacity Analysis (cont.)

6. The allowable moments (load capacity) may now be determined based on the stress of either material. Either stress should give the same moment if the strain diagram from step 5 is compatible with the stress diagram (they align and allowable are not exceeded).
7. Alternatively, the controlling moment can be found without the strain investigation by using the maximum allowable stress for each material in the moment-stress equation. The lower moment will be the first failure point and

$$
\begin{aligned}
& M_{S}=\frac{f_{S} I_{T R}}{C n}=\frac{21.6(468.3)}{3(29)}=116.2^{\mathrm{k}-\prime \prime} \\
& M_{w}=\frac{f_{w} I_{T R}}{C}=\frac{0.682(460.3)}{2.75^{\prime \prime}}=116.1^{\mathrm{k}-\prime \prime}
\end{aligned}
$$ the controlling material.

