Structures	
Arch 324	

Name 1	
Name 2	

Name 3

Wood Beams

Description

This project uses observation and calculation to understand how bracing effects the stability and performance of a wooden beam.

Goals

To observe the bending behavior of a simple span beam through physical modeling. To see the effects of unbraced length on lateral buckling.

To calculate the effective length for different bracing conditions.

Procedure

- 1. Set the 1/16"x1/2" basswood stick in the support as shown. This approximately models a 2x12 (1.5" x1.25") at 1:24 scale with a span of 45 FT.
- 2. First load the unbraced stick ($\ell u = 45'$) at the center line with you finger. Observe the lateral buckling failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 3. Next brace the stick at the center load point ($\ell u = 22.5$ '). Again, observe the lateral failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 4. Now brace and load the stick at the 1/3 points ($\ell u = 15$) and observer the lateral failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 5. Finally, brace and load the stick at the 1/4 points ($\ell u = 11.25$ ') and again observer the failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 6. Compare the R_B values found for the 4 bracing conditions and note how the bracing effects the slenderness. Note which case comes closest to 50 and which one is the smallest. As R_B decreases, the beam gets more stable and stronger.

luleRB45'-22.5'-15'-11.25'-

Beam Properties: b = 1.5 IN d = 11.25 IN L = 45 FT

-			
Cantilever ¹	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$		ℓ_{e} =0.90 ℓ_{u} + 3d
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$	<u>.</u>	ℓ_{e} =1.44 ℓ_{u} + 3d
Single Span Beam ^{1,2}	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$	5. S	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		ℓ_{e} =1.11 ℓ_{u}	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	
of load application			
Equal end moments		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	

Table 3.3.3 Effective Length, <i>Ce</i> , for Bending Membe	ble 3.3.3	Effective	Length, ℓ	e, for	Bending	Member
---	-----------	-----------	----------------	--------	---------	--------

1. For single span or cantilever bending members with loading conditions not specified in Table 3.3.3:

 $\ell_{\rm e} = 2.06 \ \ell_{\rm u}$ where $\ell_{\rm u}/{\rm d} < 7$

 $\begin{array}{ll} \ell_e = 1.63 \ \ell_u + 3d & \text{where } 7 \leq \ell_u/d \leq 14.3 \\ \ell_e = 1.84 \ \ell_u & \text{where } \ell_u/d > 14.3 \end{array}$

2. Multiple span applications shall be based on table values or engineering analysis.

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{b^2}}$$
(3.3-5)

3.3.3.7 The slenderness ratio for bending members, R_B , shall not exceed 50.