Lovejeet Gehlot

Combined Stress

Lab Recitation \#12
Group \#3

April 82020

University of Michigan, TCAUP

Combined Stress

12. Combined Stress

The given roof truss carries both an exterior snow load and an interior (attic) floor load. Determine the member forces and stresses and calculate the combined stress levels (top and bottom) for the lower chord member using the NDS combined stress equations. Consider all joints pinned, with simple (joint to joint) members. The given allowable stresses (F^{\prime} and $\mathrm{F}^{\prime} \mathrm{b}$) are for southern pine with all adjustment factors already applied.

DATASET: $1 \quad-2-$	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
Size of bottom chord	2×4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF
Live Load in attic, w2	30 PSF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Q\＃1 Load on one truss－top chord，w1（in PLF）

\mathbf{W}_{1} IN PLF＝O．C．spacing in feet＊Snow load，W1

	（given）		（given）
\mathbf{W}_{1} IN PLF＝	（16／12）	＊	40
	（0．c．in feet）		

DATASET： 1 －－2－－3－	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
ことし	n－ 1.
Actual width，b	1.5 IN
Amtual denth d	35 IN
Snow Load on roof，w1	40 PSF
Live Load in atuc，wz	suror
Factored allowable bending stress，F＇b	1265 PSI
Factored allowable tension stress，F＇t	776 PSI

Q\#2 Load on one truss - bottom chord, w2 (in PLF)

\mathbf{W}_{2} IN PLF = O.C. spacing in feet * Live load, W2
W2 IN PLF $\left.=\begin{array}{ccc}\text { (given) } & \\ (16 / 12) \\ (\text { (0.c. in feet) }\end{array}\right) \quad * \quad 30$

DATASET: 1 -2- -3-	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
gize iftulutichick	$\xrightarrow{\text { n }} 1.4$
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Live Load in attic, w2	30 PSF
ractored allowade denaing stress, $\mathrm{F}^{-} \mathrm{D}$	$1 \mathrm{L65} \mathrm{PSI}$
Factored allowable tension stress, F't	776 PSI

Q\#3 Total left reaction due to W1 and W2 (in PLF)

$$
\begin{aligned}
& \text { R1 }=\underset{\text { (Ans1) }}{\left[\mathrm{W}_{1} *(\text { given })\right.} \quad \underset{\text { (Ans2) }}{\text { (given) }} \\
& \mathbf{R 1}=\left[53.333_{2} *(16 / 2)\right]+[40 *(16 / 2)] \\
& \mathbf{R 1}=[53.333 * 8]+[40 * 8] \\
& \mathbf{R 1}=[426.6664]+[320] \\
& \mathbf{R 1}=746.664
\end{aligned}
$$

[^0]
Q\#4 Vertical force component in truss top chord (IN LBS)

(Ans1) (given)
$S L=\left[W_{1} *(\right.$ span $\left./ 4)\right]=213.332$
$\mathrm{LL}=\left[\mathrm{W}_{2} *(\right.$ span $\left./ 4)\right]=160$
(Ans2) (given)
$\Sigma F_{v}=0$
$\mathrm{SL}+\mathrm{LL}+\mathrm{R}_{1}+\mathrm{V}_{\mathrm{T}}=0$
$213.332+160+(-746.66)+V_{T}=0$
$V_{T}=-373.33 \mathrm{lbs}$

* Note that the question asks for a signless answer
$V_{T}=373.33 \mathrm{lbs}$

Q\#5 Horizontal force component in truss top chord

$$
\mathrm{V}_{\mathrm{T}} / \mathrm{HT}=4 / 8
$$

$373.33 / \mathrm{HT}=4 / 8$
(Ans4)
$373.33 / \mathrm{HT}=4 / 8$

* Note that the question asks for a signless answer
$H T=746.66$

nATASET: 1	
Full span of truss	
Height of truss	4 FT
Un Center spacing or trusses	2×4
Size of bottom chord	1.5 IN
Actual width, b	3.5 IN
Actual depth, d	40 PSF
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	1265 PSI
Factored allowable bending stress, F'b	776 PSI
Factored allowable tension stress, F't	

W1

\qquad

Q\#6 Axial force in truss bottom chord

DATASET: $1 \quad-2-\quad-3-$	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
Size of bottom chord	2×4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF
Live Load in attic, w2	30 PSF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Q\#7 Area of the bottom chord member

$b \times d=1.5 \times 3.5=5.25$
(given) (given)

DATASET: $1 \quad-2-\quad-3-$	
Full span of truss	
Height of truss	16 FT
On Center spacing of trusses	16 FT
Size of bottom chord	2×4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF
Live Load in attic, w2	30 PSF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Q\#8 Axial stress in the bottom chord

$$
\mathrm{F}_{\mathrm{T}}^{=\underset{\text { (Ans6) }}{\mathrm{HB}}} \quad / \text { Area }
$$

$$
\mathrm{F}_{\mathrm{T}}=746.66 / 5.25
$$

$$
\mathrm{F}_{\mathrm{T}}=142.22
$$

DATASET: $1 \quad-2-\quad-3-$	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
Size of bottom chord	2×4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF
Live Load in attic, w2	30 PSF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Q\#9 Max. Bending moment in the bottom chord member

$$
\begin{aligned}
& M=\underset{\text { (Ans2) (Span/2) }}{W} L^{2 / 8} \\
& M=40 *(8 * 8) / 8 \\
& M=320
\end{aligned}
$$

Q\#10 Section modulus of the bottom chord member, Sx

$$
\begin{aligned}
& S_{x}=\underset{\text { (given) }}{(b * h * h) / 6} \\
& S_{x}=(1.5 * 3.5 * 3.5) / 6
\end{aligned}
$$

$$
S_{x}=3.0625
$$

DATASET: $1 \quad-2-$	
Full span of truss	
Height of truss	46 FT
On Center spacing of trusses	16 IN
Size of bottom chord	2×4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF
Live Load in attic, w2	30 PSF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Cross Section	Section Modulus Z
+	

Q\#11 Maximum bending stress in the bottom chord member

```
FB}=M/S
    (Ans 9) (Ans 10)
FB}=(320*12)/3.062
    (convert to inches)
FB}=1253.87
```

DATASET: $1 \quad-2-\quad-3-$	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 NN
Size of bottom chord	1.5 IN
Actual width, b	3.5 NN
Actual depth, d	40 PSF
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	1265 PSI
Factored allowable bending stress, F'b	776 PSI
Factored allowable tension stress, F't	

Q\#12 Combined stress using NSD equation 3.9-1

$$
\left(\mathrm{f}_{\mathrm{t}} \div F t^{\prime}\right)+\left(\mathrm{f}_{\mathrm{b}} \div F b^{\prime}\right)
$$

$$
(142.22 \div 776)+(1253.88 \div 1265)
$$

$$
=0.1832+0.9912
$$

$$
1.174
$$

DATASET: 1 -2- -3-	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	16 IN
Size of bottom chord	2x4
Actual width, b	1.5 IN
Actual depth, d	3.5 IN
Snow Load on roof, w1	40 PSF an DCF
Factored allowable bending stress, F'b	1265 PSI
Factored allowable tension stress, F't	776 PSI

Q\#13 Combined stress using NSD equation 3.9-2

```
(fb-ft)/Fb
(1253.88-142.22) / 1265
    =1111.66 / 1265
    0 . 8 7 8 7 8
```

DATASET: $1 \quad-2-\quad-3-$	
Full span of truss	16 FT
Height of truss	4 FT
On Center spacing of trusses	2×4
Size of bottom chord	1.5 IN
Actual width, b	3.5 IN
Actual depth, d	40 PSF
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	1265 PSI
Factored allowable bending stress, F'b	776 PSI
Factored allowable tension stress, F't	

Q\#14 Does member pass?

* Note that for the member to pass, both answers 12 and 13 should be less than or equal to 1

Since Ans12 > 1
The member failed

Any Questions?

Contact: gehlot@umich.edu

[^0]: * Note that since the truss is symmetrical, R1 = R2 = 746.664 = Half of total load

