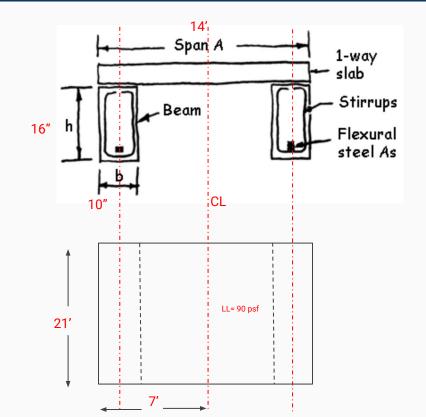
Lovejeet Gehlot

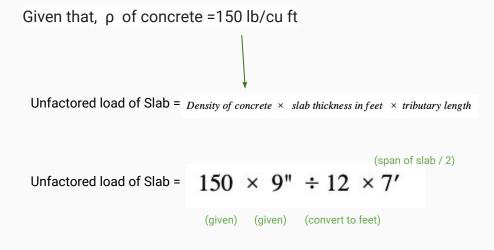
Concrete Beam Design

Lab Recitation #10 Group #3

March 25 2020 University of Michigan, TCAUP

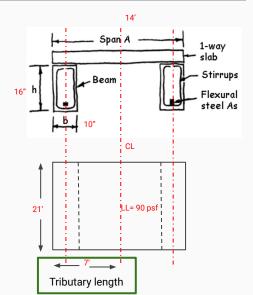


Concrete Beam Design

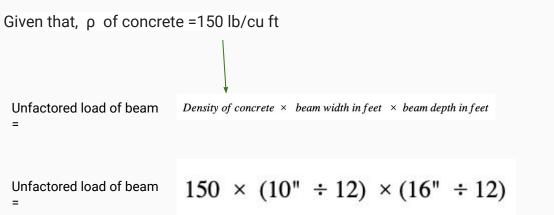

10. Concrete Beam Design

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, f'c	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF



Q#1 Unfactored dead load on beam from slab



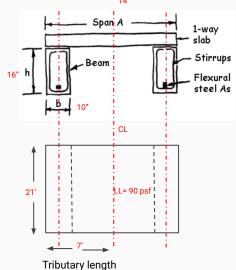
Unfactored load of Slab = 787.5 PLF

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#2 Unfactored dead load on beam from the beam itself

(given)

(given) (convert to feet)


(given) (convert to feet)

Unfactored load of beam = 166.66 PLF

=

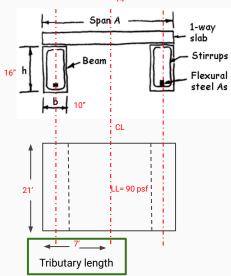
=

Q#3 Unfactored live load on beam, LL

Unfactored live load on Beam = Floor live load x Tributary length

Unfactored live load on Beam =

90 PSF х


7'

Unfactored live load on Beam =

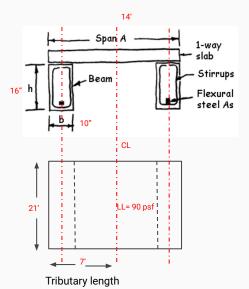
630 PLF

section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI

14'

Q#4 Total factored beam load, wu

Total factored beam load $w_u = 1.2 (D_L) + 1.6 (L_L)$

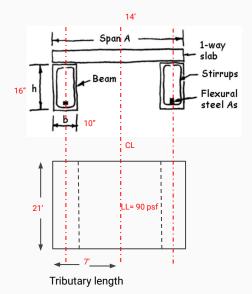

Total factored beam load $w_u = 1.2 (787.5 + 166.66) + 1.6 (630)$

(Ans1) (Ans2) (Ans3)

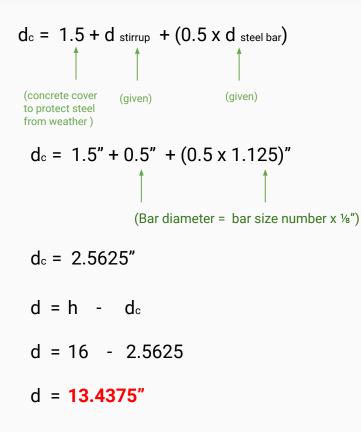
Total factored beam load $w_u = 1144.992 + 1008$

Total factored beam load wu = 2152.992 PLF

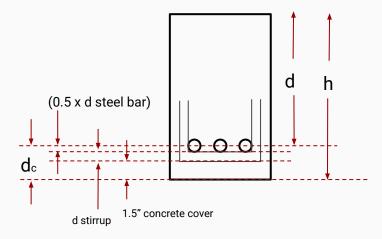
DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, f'c	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF



Q#5 Factored design moment from the loads, Mu


Factored design moment from the load Mu =WL2/8

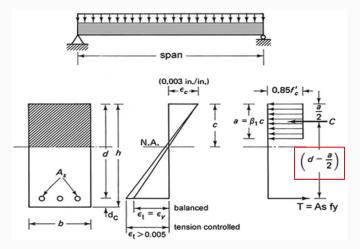
- = 2153 × 21² ÷ 8
 - (Ans4) (span of beam)
 - = 118684.125 lb-ft / 1000 (convert to k-ft)
 - = 118.684125 k-ft


Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#6 Distance from the top beam edge to centroid of flexural steel, d

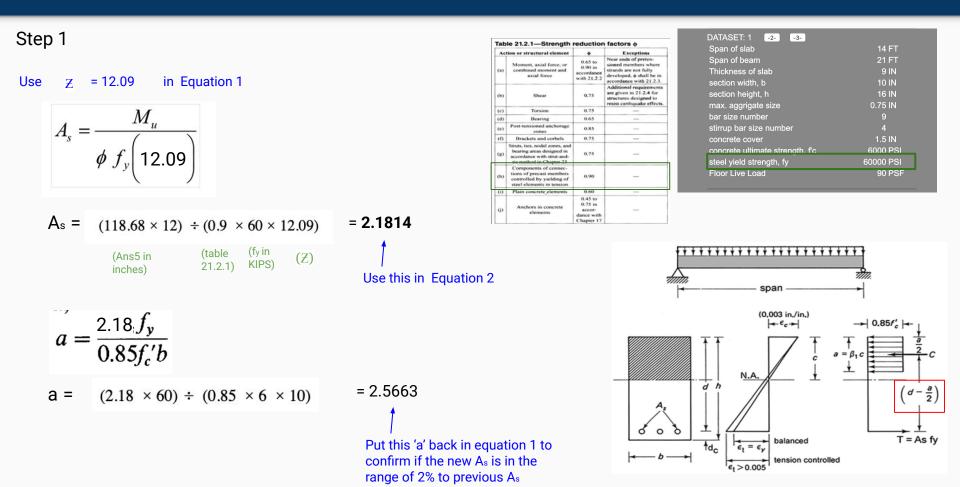
DATASET: 1 <u>-2-</u> -3-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate eize	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#7 The final calculated area of steel required , As, min

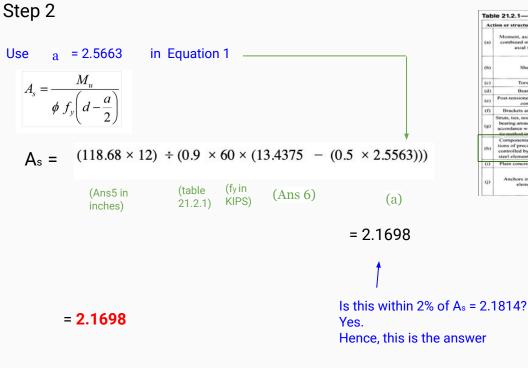

EQUATION 1

$$A_{s} = \frac{M_{u}}{\oint f_{y} \left(d - \frac{a}{2} \right)} = \text{moment arm} = \text{jd} = Z$$

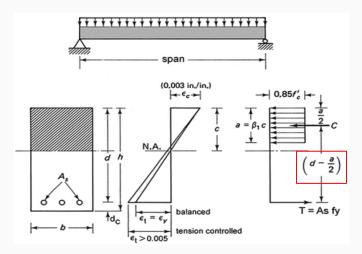
Estimating Z to be 0.9 times of d
Z = 0.9 x 13.4375
(Ans6)
Z = 12.09


EQUATION 2

$$a = \frac{A_s f_y}{0.85 f_c' b}$$


DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 in
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI

Q#7 The final calculated area of steel required , As, min



Q#7 The final calculated area of steel required , As, min

Ac	tion or structural element	•	Exceptions
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21.2.2	Near ends of preten- sioned members where strands are not fully developed, \$\$ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist carthquake effects
(c)	Torsion	0.75	
(d)	Bearing	0.65	-
(e)	Post-tensioned anchorage zones	0.85	-
(f)	Brackets and corbels	0.75	-
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and- tic method in Chapter 23	0.75	-
(h)	Components of connec- tions of precast members controlled by yielding of steel elements in tension	0.90	_
(i)	Plain concrete elements	0.60	
0	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	_

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength. fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#8 Number of rebars used

A steel bar #9 = 1.00

Required number of bars = As req / A steel bar

Required number of bars = 2.1698 / 1

(Ans 7)

= 2.1698

= **3** (round off to higher integer)

DATASET: 1 -2 -3 Span of slab Span of beam Thickness of slab section width, b section height, h man eggrigate size bar size number surrup par size number concrete cover concrete cover concrete ultimate strength, fc steel yield strength, fy	14 FT 21 FT 9 IN 10 IN 16 IN 0.75 IN 9 4 1.5 IN 6000 PSI 6000 PSI
Floor Live Load	90 PSF

	ASTM	STAND	ARD	REINF	ORCING	BARS
--	------	-------	-----	-------	--------	------

Bar size, no.	Nominal diameter, in.	Nominal area, in. ²	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.21	4.505
11	1.410	1.56	5.313
14	1.693	2.25	7.65
18	2.257	4.00	13.60

Q#9 Final area of flexural steel used, As, used

A steel bar #9 = 1.00
(ASTM chart)

 A_s used = Bars used x A steel bar

 A_s used = 3 x 1

(Ans 8)

As used = **3 sq.in**

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

ASTM STANDARD REINFORCING DAR	ASTM	STANDARD	REINFORCING	BARS
-------------------------------	------	----------	-------------	------

Bar size, no.	Nominal diameter, in.	Nominal area, in. ²	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.505
11	1.410	1.56	5.313
14	1.693	2.25	7.65
18	2.257	4.00	13.60

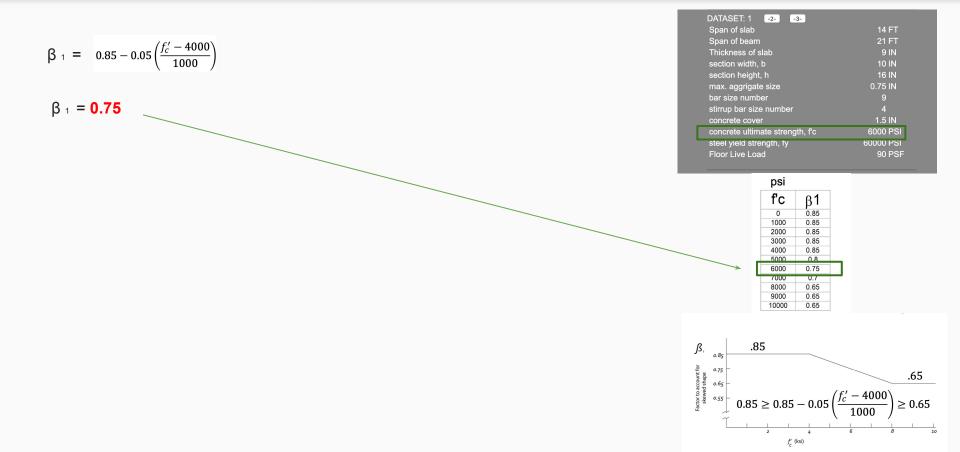
Q#10 Minimum required area of steel, A_s, min

As, min = $3\sqrt{f'c} (bd) \div fy$ OR $200 \times (bd) \div fy$ (WHICHEVER IS HIGHER) $3\sqrt{6000}$
= 232.37>200Hence, we use $3\sqrt{f'c} (bd) \div 200$
= 232.37 (10) (13.4375) / 60000

= 0.5204

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, f'c	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#11 Depth of concrete stress block, a


Calculate 'a' for As used (Ans 9)

$$a = \frac{A_s f_y}{0.85 f_c' b}$$

= 3(60) / 0.85 (6) (10)

= 3.5294 in

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q#13 Distance to neutral axis from top of the beam, c

c = a / β 1

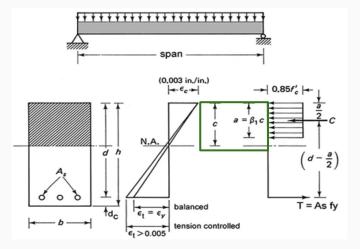
c = 3.5294 / 0.75

(Ans 11) (Ans 12)

= 4.705

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, f'c	6000 PSI
steel yield strength, ty	60000 PSI
Floor Live Load	90 PSF

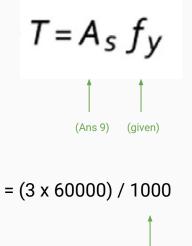
Q#14 Strain in flexural steel, epsilon_t


$$\epsilon_t = \frac{d-c}{c} (0.003)$$

= ((13.4375 - 4.705) x (0.003)) / 4.705

= **0.0055** > .0005 (Hence under Tension control)

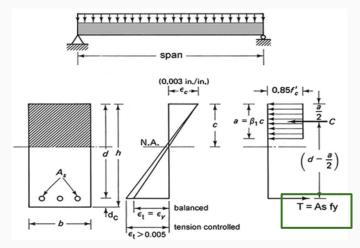
DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF



Since the member is under Tension control, we use phi = **0.9** as our strength reduction factor

Table 21.2.1—Strength reduction factors ϕ

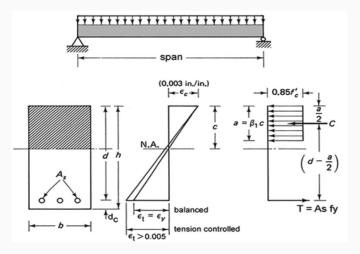
Ac	tion or structural element		
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21.2.2	Near ends of preten- sioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirements are given in 21.2.4 for structures designed to resist carthquake effects
(c)	Torsion	0.75	
(d)	Bearing	0.65	-
(c)	Post-tensioned anchorage zones	0.85	-
(f)	Brackets and corbels	0.75	_
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and- tic method in Chapter 23	0.75	_
(h)	Components of connec- tions of precast members controlled by yielding of steel elements in tension	0.90	—
(1)	Plain concrete elements	0.60	
6)	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	_


Q#16 Tensile force in the flexural steel, T

(convert to ksi)

= 180

DATASET: 1 -23-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	
stirrup bar size number	
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
FIOOF LIVE LOAD	90 PSF

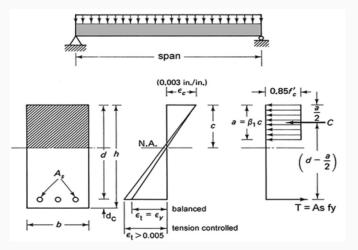

Q#17 The nominal bending moment, Mn

$$M_n = A_s f_y \left(d - \frac{a}{2} \right) \quad (Ans \ 11)$$

$$(Ans \ 12) \quad (Ans \ 6)$$

= 2100.83

DATASET: 1 -23-	
simple span	30 FT
section width, b	17 IN
section height, h	33 IN
max. aggrigate size	0.75 IN
bar size number	9
the number of bars	5
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength. fc	5500 PSI
steel yield strength, fy	60000 PSI


Q#18 The factored bending resistance, phi Mn

= (0.9 x 2100.83) / 12

= 157.56

DATASET: 1 -23-	
simple span	30 FT
section width, b	17 IN
section height, h	33 IN
max. aggrigate size	0.75 IN
bar size number	9
the number of bars	5
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI

Any Questions?

Contact: gehlot@umich.edu