Lovejeet Gehlot

Concrete Beam Design

Lab Recitation \#10
Group \#3
March 252020
University of Michigan, TCAUP

Concrete Beam Design

10. Concrete Beam Design

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is $>\mathrm{Mu}$.

Q\#1 Unfactored dead load on beam from slab

Given that, ρ of concrete $=150 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
Unfactored load of Slab $=$ Density of concrete \times slab thickness in feet \times tributary length
(span of slab / 2)
Unfactored load of Slab $=150 \times 9^{\prime \prime} \div 12 \times 7^{\prime}$
(given) (given) (convert to feet)

Unfactored load of Slab $=$ 787.5 PLF

DATASET: $1 \quad-2-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, f'c	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#2 Unfactored dead load on beam from the beam itself

Given that, ρ of concrete $=150 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$

Unfactored load of beam = 166.66 PLF

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	U. 15 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fic	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#3 Unfactored live load on beam, LL

Unfactored live load on Beam $=$ Floor live load \times Tributary length	
Unfactored live load on Beam $=$	90 PSF
Unfactored live load on Beam $=$	630 PLF

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fic	6000 PSI
	¢000ก nc!
Floor Live Load	90 PSF

Q\#4 Total factored beam load, wu

```
Total factored beam load \(w_{u}=1.2\left(D_{L}\right)+1.6(\mathrm{LL})\)
```

Total factored beam load $w_{u}=1.2(787.5+166.66)+1.6(630)$

$$
\text { (Ans1) } \quad \text { (Ans2) } \quad \text { (Ans3) }
$$

Total factored beam load $W_{u}=1144.992+1008$

Total factored beam load $\mathrm{w}_{u}=$ 2152.992 PLF

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, $\mathrm{f}^{\prime} \mathrm{C}$	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#5 Factored design moment from the loads, Mu

Factored design moment from the load $\mathrm{M}_{u}=\mathbf{W} L^{2 /} 8$
$=2153 \times 21^{2} \div 8$
(Ans4) (span of beam)

DATASET: 1 Snan of slah
Span of beam
Thickness of slab
section width, b
section height, h
max. aggrigate size
bar size number
stirrup bar size number
concrete cover
concrete ultimate strength, fc
steel yield strength, fy
Floor Live Load

$=118684.125 \mathrm{lb}-\mathrm{ft} / 1000$
(convert to k - ft)
$=118.684125 \mathrm{k}-\mathrm{ft}$

Q\#6 Distance from the top beam edge to centroid of flexural steel, d

DATASET: $1 \quad-2-\quad-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width. b	10 IN
section height, h	16 IN
	- Mivir
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fic	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#7 The final calculated area of steel required , As, min

EQUATION 1

$$
A_{s}=\frac{M_{u}}{\phi f_{y},\left[\left(d-\frac{a}{2}\right)\right.}=\begin{aligned}
{\left[\begin{array}{rl}
\text { Estimating } & z
\end{array}\right.} & \text { to be be } 0.9 \text { times of } \mathrm{d} \\
Z & =0.9 \times 13.4375 \\
Z & =12.09
\end{aligned}
$$

EQUATION 2

$a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}$

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width. b	10 IN
section height, h	16 IN
Titux. uys riyut uizi	*.ivin
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fic	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#7 The final calculated area of steel required , As, min

Step 1

Use $Z=12.09 \quad$ in Equation 1

$$
A_{s}=\frac{M_{u}}{\phi f_{y}(12.09)}
$$

$$
A_{s}=(118.68 \times 12) \div(0.9 \times 60 \times 12.09)=2.1814
$$

(Ans5 in	(table	(fy in	(Z)
inches)	$21.2 .1)$	KIPS)	

$a=\frac{2.18 f_{y}}{0.85 f_{c}^{\prime} b}$
$a=(2.18 \times 60) \div(0.85 \times 6 \times 10)$

DATASET: 1 Span of slab Span of beam

$$
\text { Confirm if the now } A \text { ic in the }
$$

Put this 'a' back in equation 1 to confirm if the new A_{s} is in the range of 2% to previous As_{s}
Use this in Equation 2

Q\#7 The final calculated area of steel required , As, min

Step 2

$$
\begin{aligned}
& \text { Use } \quad a \quad=2.5663 \quad \text { in Equation } 1 \\
& A_{s}=\frac{M_{u}}{\phi f_{y}\left(d-\frac{a}{2}\right)} \\
& A_{s}=(118.68 \times 12) \div(0.9 \times 60 \times(13.4375-(0.5 \times 2.5563))) \\
& \text { 21.2.1) KIPS) } \\
& \text { (a) } \\
& =2.1698
\end{aligned}
$$

DATASET: 1 Span of slab Span of beam Thickness of slat Thickness of slab
section width, b section height, h max. aggrigate size bar size number stirrup bar size number concrete cover \qquad enncrete ultimate strencith fre f0n PSI steel yield strength, fy Floor Live Load

Is this within 2% of $A_{s}=2.1814$? Yes.
Hence, this is the answer

Q\#8 Number of rebars used

A steel bar \#9 $=1.00$
(ASTM chart)

Required number of bars $=A_{s}$ req $/ A_{\text {steel bar }}$

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
Tluan uyyliyuto cizo	0.75 M
bar size number	9
stirrup dar size number	4
concrete cover	1.5 IN
concrete ultimate strength, $\mathrm{fl}^{\prime} \mathrm{c}$	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Required number of bars $=2.1698 / 1$
(Ans 7)
$=2.1698$
$=3$ (round off to higher integer)

ASTM STANDARD REINFORCING BARS

Bar size, no.	Nominal diameter, in.	Nominal area, i.. ${ }^{2}$	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2670
9	1.128	1.00	3.400
70	1.270	4.57	
11	1.410	1.56	5.313
14	1.693	2.25	7.65
18	2.257	4.00	13.60

Q\#9 Final area of flexural steel used, As, used

A steel bar \#9 $=\underset{\text { (ASTM chart) }}{1.00}$

As used = Bars used \times A steel bar
As used $=3 \quad x \quad 1$
(Ans 8)

Asused = 3 sq.in

DATASET: 1 -2- -3-	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
Ituan. usguiyuto size	0.75 N
bar size number	9
stirrup dar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fc	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

ASTM STANDARD REINFORCING BARS

Bar size, no.	Nominal diameter, in.	Nominal area, in. ${ }^{2}$	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
4	4.270	4.27	
11	1.410	1.56	5.313
14	1.693	2.25	7.65
18	2.257	4.00	13.60

Q\#10 Minimum required area of steel, A_{s}, min

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}, \min }= & 3 \sqrt{f^{\prime} c}(b d) \div f y \quad \text { OR } \\
& (\text { WHICHEVER IS HIGHER }) \\
& 3 \sqrt{6000} \\
& 232.37
\end{aligned}
$$

```
DATASET: }
Span of slab
Span of beam
Span of beam
Thickness of slab
section width, b
section height, h
max. aggrigate size
bar size number
stirrup bar size number

Hence, we use \(\quad 3 \sqrt{f^{\prime} c}(b d) \div 200\)
\[
=232.37 \text { (10) (13.4375) / } 60000
\]
\[
=0.5204
\]

\section*{Q\#11 Depth of concrete stress block, a}

Calculate 'a' for \(A_{s}\) used (Ans 9)
\[
\begin{aligned}
a & =\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \\
& =3(60) / 0.85
\end{aligned}
\]
```

DATASET: 1 --2- -3-
Span of slab
Span of beam
Span of beam
Thickness of slab
section width, b
section height, h
max. aggrigate size 0.75 IN
bar size number
stirrup bar size number
1.5 IN
concrete ultimate strength, f'c 6000 PSI
steel yield strength, fy
Floor Live Load
$=3.5294$ in

Q\#12 Factor beta_1

$$
\beta_{1}=0.85-0.05\left(\frac{f_{c}^{\prime}-4000}{1000}\right)
$$

$$
\beta_{1}=0.75
$$

DATASET: 1		
Span of slab	$-3-$	14 FT
Span of beam	21 FT	
Thickness of slab	9 IN	
section width, b	10 IN	
section height, h	16 IN	
max. aggrigate size	0.75 IN	
bar size number	9	
stirrup bar size number	4	
concrete cover	1.5 IN	
concrete ultimate strength, fc	6000 PSI	
steel yield strength, fy	60000 PSI	
Floor Live Load	90 PSF	

psi	
$\mathrm{f}^{\prime} \mathrm{C}$	$\beta 1$
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	08
6000	0.75
1000	0.1
8000	0.65
9000	0.65

Q\#13 Distance to neutral axis from top of the beam, c

$$
\begin{aligned}
c & =a / \beta_{1} \\
c & =3.5294 / 0.75 \\
& (\text { Ans 11) } \quad \text { (Ans 12) } \\
& =4.705
\end{aligned}
$$

DATASET: 1 -2- $-3-$	
Span of slab	14 FT
Span of beam	21 FT
Thickness of slab	9 IN
section width, b	10 IN
section height, h	16 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	4
concrete cover	1.5 IN
concrete ultimate strength, fic	6000 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	90 PSF

Q\#14 Strain in flexural steel, epsilon_t

$$
\epsilon_{t}=\frac{d-c}{c}(0.003)
$$

$$
=((13.4375-4.705) \times(0.003)) / 4.705
$$

$$
=0.0055>.0005 \text { (Hence under Tension control) }
$$

Q\#15 Strength reduction factor, phi

Since the member is under Tension control, we use phi $=0.9$ as our strength reduction factor

Action er structural element		0.65 to 0.90 in accordance with 21.2.2	Exceptions Near ends of pretensioned members where strands are not fully developed. \$ shall be in accordance with 21.2.3.
(a)	Moment, axial force, or combined moment and axial force		
(b)	Shear	0.75	Additional requirements are given in 21.2 .4 for structures designed to resist earthquake effects.
(c)	Torsion	0.75	-
(d)	Bearing	0.65	-
(c)	Post-tensioned anchorage zones	0.85	-
(1)	Brackets and corbels	0.75	-
(g)	Seruts, ties, nodal zones, and bearing areas designed in accoedance with strut-and- \qquad	0.75	-
(h)	Components of connections of precast members controlled by yielding of steel elements in tension	0.90	-
(1)	Prain concrewe clicments	0.80	-
(j)	Anchors in concrete elements	0.45 to 0.75 in accor- dance with Chapter 17	-

Q\#16 Tensile force in the flexural steel, T

$$
T=A_{S} f_{y}
$$

```
DATASET: } Span of slab Span of beam
\(=(3 \times 60000) / 1000\)

(convert to ksi)
\(=180\)


\section*{Q\#17 The nominal bending moment, Mn}
\(M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)\)

\section*{(Ans 11)}
\begin{tabular}{|c|c|}
\hline DATASET: 1 -2- -3- & \\
\hline simple span & 30 FT \\
\hline section width, b & 17 IN \\
\hline section height, h & 33 IN \\
\hline max. aggrigate size & 0.75 IN \\
\hline bar size number & 9 \\
\hline the number of bars & 5 \\
\hline stirrup bar size number & 4 \\
\hline concrete cover & 1.5 IN \\
\hline concrete ultimate strenath. fic & 5500 PSI \\
\hline steel yield strength, fy & 60000 PSI \\
\hline
\end{tabular}


\section*{Q\#18 The factored bending resistance, phi Mn}
\(=(\) phi \(x \quad M n) / 12\)
\(=(0.9 x \quad 2100.83) / 12\)
\(=\quad 157.56\)



\section*{Any Questions?}

Contact: gehlot@umich.edu```

