Given:

$$
\begin{gathered}
\operatorname{Span} A-29^{\prime} \\
\operatorname{span} B-28^{\prime} \\
\operatorname{Span} C-26^{\prime} \\
\omega_{1}-3 K L F \\
\omega_{2}-4 K L F \\
P-40^{K} \\
D-14^{\prime}
\end{gathered}
$$

Q) Moment at end supports is always 0

$$
\therefore \quad R_{1}=R_{4}=0 \quad-\text { Ans l \& Ans } 4
$$

Q2. Is it statically indeterminate?

- It is asymmetrically loaded
- It has more than 2 spars yes.
To find the internal moments of a statically indeterminate beam, we well, 'Three moment equation.

$$
\begin{aligned}
& \text { we wee, 'Three moment equation } \\
& \text { Given: } M_{1} L_{1}+2 M_{2}\left(L_{1}+L_{2}\right)+M_{3} L_{2}=6\left[E I \theta_{1}+E I \theta_{2}\right] \\
& \text { Ans }
\end{aligned}
$$

Solving for first 25 pans:
$\omega=3 \times 29=87 \mathrm{~K}, \begin{aligned} & 40 \mathrm{~K} \\ & R_{2} 4 / 2\end{aligned} 4_{2} R_{3}$

$$
\begin{array}{ll}
& \text { Ans l } \\
M_{1}=0 & L_{1}=29^{\prime} \\
M_{2}=\text { ? } & L_{2}=28^{\prime} \\
M_{3}=\text { ? } & L_{1}+L_{2}=57^{\prime}
\end{array}
$$

$$
\left.\longleftarrow L_{L_{1}=29^{\prime}}\right\rangle \leftrightarrows
$$

Left of $R_{2} \longrightarrow$ Right of R_{2}

Condition taken from the given chart,. In my case, load is at equal distances from R2 and R3

Using the given equation \rightarrow

$$
\begin{align*}
O(29)+2 M_{2}(57)+M_{3}(28) & =6(3048.62+1960) \\
14 M_{2} & =3005172-28 M_{3} \\
M_{2} & =263.611-0.2456 M_{3} \tag{1}
\end{align*}
$$

Solving for next 2 spans

$$
\stackrel{4 / 2}{\stackrel{U}{4}=28^{\top}} \stackrel{L_{3}=26^{1}}{\stackrel{1}{4}}
$$

$$
\begin{array}{lr}
M_{2}=? & \angle \angle_{2}=28^{\prime} \\
M_{3}=? & \angle 3=26^{\prime} \\
M_{4}=0 & \angle 2+L_{3}=54^{\prime}
\end{array}
$$

$$
\begin{aligned}
\text { Cerf } R_{3}
\end{aligned} \longrightarrow E I \theta_{1}=\frac{P L^{2}}{16}=\frac{40(28)^{2}}{16}=1960
$$

\ldots Ans 5
Right of $R_{3} \rightarrow E I \Theta_{2}=\frac{\omega L^{2}}{24}=\frac{104(26)^{2}}{24}=2929.33-$ Ans
Using the given equation \longrightarrow

$$
\begin{gather*}
0(28)+2 M_{3}(54)+0(26)=6[1960+2929 \cdot 33] \\
28 M_{2}=29335.58-108 M_{3} \\
M_{2}=1047.71-3.857 M_{3} \tag{2}
\end{gather*}
$$

From equations (1) $\varepsilon_{1}(2) \rightarrow$

$$
\begin{array}{r}
M_{2}=263.611-0.2456 M_{3}=104771-3857 M_{3} \\
M_{3}=\frac{783.799}{3.6114}=217.03 \quad A M-8
\end{array}
$$

Applying M_{3} to eq.(i):

$$
\begin{aligned}
& M_{2}=263.611-(0.2456 \times 217.11) \\
& M_{2}=263.611-53.322 \\
& M_{2}=210.2 \mathrm{kFT} \quad \text { Ans } 7 .
\end{aligned}
$$

To find support reactions, draw Free Body Diagrams
FED

$$
\sum M @ R_{2}=0
$$

$$
R_{1}(29)-87(14.5)+210.206=0
$$

$$
R_{1}=\frac{1261.5-210.206}{29}=36: 234 \text { Ans } 9
$$

$$
\Sigma f_{v}=0
$$

$$
R_{1}-\omega+v=0
$$

$$
V=\omega-R_{1}=87-36.234=50.766
$$

KM@R3=0

$$
\begin{aligned}
& \text { R } 217-210.206+217.11-50.761(28)-40(14)+R_{2}(28)=0 \\
& R_{2}=\frac{217 \cdot 11-210.206-1421.288-560}{-28}=70.51-\text { Ans } 10
\end{aligned}
$$

$$
\begin{aligned}
& \sum F v=0 \\
& -V_{2}+R_{2}-40+\frac{4}{4} V_{3}=0 \\
& V_{3}=50.766+40-70.51=20.256
\end{aligned}
$$

FBI 3

$$
\begin{aligned}
& \sum M @ R_{3}=0 \\
& 104(13)-R_{4}(26)-217: 11=0 \\
& R_{4}=43.649-\text { Ans } 12
\end{aligned}
$$

$$
\Sigma f_{v}=0
$$

$$
\begin{aligned}
&-V_{3}+R_{3}-\omega+R_{4}=0 \\
& R_{3}=20.256+104-43.649 \\
&=80.612 k \quad-\text { Ans } 11
\end{aligned}
$$

MAXIMUM VALUES: SLOPE, DEFLECTION, AND BENDING MOMENT
NOTE: VALUES OF SLOPE AND DEFLECTION TO BE DIVIDED BY "ET"

