Lovejeet Gehlot

Masonry Walls

Lab Recitation \#11
Group \#3

April 12020

University of Michigan, TCAUP

Masonry Walls

11. Masonry Walls

Using the strength method for axial compression described in TMS 402, determine the safety of the given concrete masonry wall (pass or fail). Calculate the factored nominal axial strength, phi_Pn and compare it to the required strength, Pu for the given loads. (loads are given without factors)

DATASET: 1 -2- $-3-$

Height of wall, h	21 FT
Nominal thickness of wall	16 IN
grouted cells o.c. spacing	40 IN
Masonry compressive strength, fm	1500 PSI
The wall DL	17 KLF
The wall LL	13 KLF

Q\#1 Actual wall thickness, t

$$
\begin{aligned}
& T=16 "-3 / 8^{\prime \prime}=15 \text { 5/8" } \\
& \text { (given) (common) }
\end{aligned}
$$

DATASET: 1
Heinht of wall
h^{-2-}
-3-

Nominal thickness of wall	16 IN
grourea cels o.c. spacing	40 IN
Masonry compressive strength, fm	1500 PSI
The wall DL.	17 KLF
The wall LL.	13 KLF

Q\#2 Net area per foot of wall, A_{n}

Find A_{n} at Tek 14-1B table (available in canvas)

An at Tek 14-1B table (available in						al thicknes d cells o.c	ss of wall spacing		$\begin{aligned} & 16 \mathrm{IN} \\ & 40 \mathrm{IN} \end{aligned}$	
	\rangle					all DL all LL			$\begin{aligned} & 17 \mathrm{KL} \\ & 13 \mathrm{KL} \end{aligned}$	
$A n=63$										
		Table 7-	inch (406-	m)) ingle	ythe	1/4 in. (32	mm) Face	Shells (stan	dard)	
			7a: Horizon	al Section	Properties	Masonry Sp	anning Ver	tically)		
		Grout	Mortar	Net cros	-sectional	operties^	Avera	ge cross-sect	tional proper	ies ${ }^{\text {B }}$
	Unit	spacing (in.)	bedding	$A_{n}\left(\mathrm{in} .^{2} \mathrm{ff}\right)$	$I_{n}(\mathrm{in} .4 / \mathrm{ft})$	$S_{n}\left(\mathrm{in} .{ }^{3} / \mathrm{ft}\right)$	$A_{\text {anz }}\left(\mathrm{in.}^{2} / \mathrm{ft}\right)$	$I_{\text {avz }}$ (in. ${ }^{4} \mathrm{ft}$)	$S_{\text {avz }}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$	$r_{\text {ang }}$ (in.)
	Hollow	No grout	Face shell	30.0	1,553.7	198.9	63.2	2,030.6	259.9	5.67
	Hollow	No grout	Full	63.2	2,030.6	259.9	63.2	2,030.6	259.9	5.67
	100\% so	id/solidly grouted	Full	187.5	3,814.7	488.3	187.5	3,814.7	488.3	4.51
	Hollow	16	Face shell	112.4	2,737.2	350.4	123.5	2,896.2	370.7	4.84
	Hollow	24	Face shell	85.0	2,342.7	299.9	103.4	2,607.7	333.8	5.02
	Hollow	32	Eace shell	71.2	2.145 .5	274.6	93.4	2,463.4	315.3	5.14
Look for 40" grout spacing	Hollow	40	Face shell	63.0	2,027.1	259.5	87.3	2,376.9	304.2	5.22
Look for 40 grout spacing		+0	тatesmı	97.	+,40.2	249.4	83.3	2,319.1	296.9	5.28
	Hollow	72	Face shell	48.3	1,816.7	232.5	76.6	2,223.0	284.5	5.39
	Hollow	96	Face shell	43.7	1,751.0	224.1	73.3	2,174.9	278.4	5.45
	Hollow	120	Face shell	41.0	1,711.5	219.1	71.3	2,146.0	274.7	5.49

Q\#3 Net moment of inertia per foot of wall, In_{n}

Find moment of inertia, In at Tek 14-1B table (available in canvas)

DATASET: 1
Heinht of wall h -2 -3-
Heimht of wall n
Nominal thickness of wall
grouted cells o.c. spacing

The wall DL
17 KLF
The wall LL
13 KLF
In = 2027.1

Q\#4 Find radius of gyration per foot of wall

$$
\begin{aligned}
r & =\underset{(\text { Ans3) (Anns) }}{\sqrt{I / A}} \\
& =\sqrt{2027.1 / 63} \\
& =5.6724
\end{aligned}
$$

DATASET: 1

Q\#5 Ratio of h/r

h / r
$=(21 \times 12) / 5.6724$

Q\#6 Which tms equation is used, 11 or 12

$$
h / r=44.425
$$

(Ans 5)
$=44.425<99$
Hence use equation 3-11
(a) For members having an h / r ratio not greater than 99:

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}(\text { Equation 3-11) }
$$

(b) For members having an h / r ratio greater than 99

$$
P_{n}=0.80\left[0.80 A_{n} f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2}\right]
$$

(Equation 3-12)

(find these equations at TMS 402, available in canvas)

Q\#7 Nominal axial strength, Pn

Q\#8 Factored nominal axial strength, Phi_Pn

Phi_Pn $=0.9 \times$ Pn

(Ans 7)
(Phi for axial force is 0.9)
$=0.9 \times 54.39$
$=48.95$

```
DATASET: 1
```

Height of wall, h
Nominal thickness of wall
16 IN Ninutad ralle ar anarina

Q\#9 Required axial strength, Pu

$$
\begin{aligned}
P_{u} & =1.2(\mathrm{DL})+1.6(\mathrm{LL}) \\
& =1.2(17)+1.6(13) \\
& =41.2
\end{aligned}
$$

DATASET: 1

Height of wall, h
Nominal thickness of wall
grouted cells o.c. spacing

Q\#10 Does the wall pass or fail?

If $\mathrm{Pu}>\mathrm{phi} \mathrm{P}_{\mathrm{n}}$	- Fail
If $\mathrm{Pu}<\mathrm{phi} \mathrm{P}_{\mathrm{n}}$	- Pass
41.2 <	49.95
(Pu, Ans 9)	(phi Pn, Ans 8)
= Pass	

DATASET: 1

Height of wall, h
Nominal thickness of wall
grouted cells o.c. spacing
16 IN

Any Questions?

Contact: gehlot@umich.edu

