Structure II Recitation 3/15

Concrete Beam Analysis

Before we start ...

Today's Tasks:

Homework Example (Concrete Beam Analysis) (15 Questions)

Lab Session (Flexural Strain)

Reminder:

Tower Testing: 3/20, Wednesday!!!!!(Remember to sign up for your testing order)

8. Concrete Beam Analysis

Analyze the given composite floor system. Using a transformed section, determine peak stress values in both concrete and steel.

DATASET: 1 -23-	
simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	8000 PSI
steel yield strength, fy	60000 PSI

Rectangular Beam Analysis

Data:

- Section dimensions b, h, (span)
- Steel area As
- Material properties f'c, fy

Required:

- Nominal Strength (of beam) Moment Mn
- Required (by load) Design Moment Mu

As_{min}:

(a) $\frac{3\sqrt{f_c'}}{f_y}b_w d$

(b) $\frac{200}{f_v}b_w d$

Load capacity

- 1. Calculate d
- Check As min 2.
- Calculate a 3.
- Determine c 4.
- Check that $\mathcal{E}_t \ge 0.005$ (tension controlled) 5.
- Find nominal moment, Mn 6.
- 7. Calculate required moment, ϕ Mn \ge Mu

(if $\mathcal{E}_t \ge 0.005$ then $\phi = 0.9$)

Determine max. loading (or span) 8.

Q1: Flexural Steel Bar Diameter (db) Look at Table A.2, for my situation: Bar Size Number = #7, <u>db = 0.875 in</u>

Q2: Stirrup Bar Diameter Look at Table A.2, for my situation: Stirrup Bar Size Number = #3, <u>Answer = 0.375 in</u>

Q3: Distance from the Lower Beam Edge to Center of Flexural Steel (dc) Q2 Q1

dc = <u>Concrete Cover + Stirrup Bar Diameter + db/2</u> = 1.5 + 0.375 + 0.875/2= <u>2.3125 in</u>

Q4: Distance from the Top Beam Edge to Center of Flexural Steel (d)

d =Section Height - dc = 20 - 2.3125 = 17.6875 in

		nT
	*3	d 20,
*1	4×**6	

12"

simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, f'c	8000 PSI
steel yield strength, fy	60000 PSI

Course Slides 3/13 p5. (PDF)

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

	C	ustomary Uni	ts		SI Units	
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm ²)	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

Q5: Minimum Required Area of Steel (As min) Calculate the two formulas and choose the bigger one:

 $(3 \text{ x (fc')}^{0.5}/\text{ fy}) \text{ x b x d} = 3 \text{ x } 8000^{0.5} / 60000 \text{ x } 14 \text{ x } 17.6875 = 1.107412$

200 / fy x b x d = 200 / 60000 x 14 x 17.6875 = 0.825

Since 1.107412 > 0.825, <u>As min = 1.107412 in^2 </u>

Q6: Actual Area of Flexural Stress (As)

<u>As = cross sectional area x the number of bars</u> As = (0.6) x 5 = <u>3 in</u>²

Get area from Table A-2 Check if As > As min, For my situation, It's a Pass!

(fc', fy, b, number of bars given from question, d from Q4)

simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	8000 PSI
steel vield strength. fy	60000 PSI

As_{min}: greater of (a) and (b)

(b) $\frac{200}{f} b_w d$

			simple span	17 FT
07. Denth of Concrete	Stress Block (1)		section width, b	14 IN
Q7. Depth of Coherete	Stress Diver (a)		section height, h	20 IN 0 75 IN
Q6			har aiza number	0.7 J IN 7
l l			bar size number	/ E
+				5
a = (As x fy) / (0.85 x fc')	<u>x b)</u>		stirrup bar size number	3 4 E INI
$= (3 \times 60000) / (0.85 \times 8)$	000 x 14)		concrete ultimate strength for	8000 PSI
-1.89 in			steel yield strength, fy	60000 PSI
– <u>1.87 m</u>	Course Slid	es 3/13 p4. (PDF)		
Q8: Factor Beta 1 (β 1) $\beta 1 = 0.85 - 0.05 \times ((fc' - 4)^{-4})$ $= 0.85 - 0.05 \times ((8000 - 4)^{-4})$ Q9: Distance to Neutra $c = a / \beta 1 = 1.89 / 0.65 = 0.05$	<u>4000) / 1000) (or look at the table)</u> 2000) / 1000) = <u>0.65</u> al Axis from Top of the Beam (c) = <u>2.9 in</u>	$\begin{array}{c c} f'_{c} & \beta_{1} \\ 0 & 0.85 \\ 1000 & 0.85 \\ 2000 & 0.85 \\ 2000 & 0.85 \\ 3000 & 0.85 \\ 4000 & 0.85 \\ 5000 & 0.85 \\ 5000 & 0.8 \\ 6000 & 0.75 \\ 7000 & 0.7 \\ 8000 & 0.65 \\ 9000 & 0.65 \\ 10000 & 0.65 \\ \end{array}$	$a = \frac{A_s f_y}{0.85 f_c' b}$	$a = \beta_1 c$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underbrace{\begin{array}{c} .65\\ 00\\ $	N.A. $e_t = e_y$ $e_t > 0.005$ balanced tension controlled	$\left(\frac{d-\frac{a}{2}}{1-\frac{a}{2}}\right)$

Q10: Strain in Flexural Steel (st) $\underline{\varepsilon t = (d - c) / c \times (0.003)} = (17.6875 - 2.9) / 2.9 \times 0.003 = \underline{0.0152}$ $\frac{1}{Q4} \qquad Q9$ Q11: Strength Reduction Factor (Φ) Check if εt is bigger than 0.005, Since my εt is bigger, its tension - controlled, $\underline{\Phi} = 0.9$

Q12: Tensile Force in the Flexural Steel (T) $\underline{T = As \ x \ fy} = 3 \ x \ 60000 \ / \ 1000 = \underline{180 \ k}$

simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	8000 PSI
steel yield strength, fy	60000 PSI

Q13: The Nominal Bending Moment (Mn) $Mn = T \times (d - (a / 2)) = 180 \times (17.6875 - 1.89 / 2) = 3013.6 \text{ k-in}$ Q12 Q4 Q7

Q14: The Factored Bending Resistance (Φ Mn) Φ Mn = 0.9 x 3013.6 = <u>2712.2 k-in</u> Q10 Q13

Q15: The Factored Design Moment (Mu) $Mu = \Phi Mn = 2712.2 / 12 = 226 \text{ k-ft}$

Covert Unit (in to ft)

$$M_n = T\left(d - \frac{a}{2}\right) = A_s f_y\left(d - \frac{a}{2}\right)$$

simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	8000 PSI
steel yield strength, fy	60000 PSI

We good?

Flexural Strain

Description

This project produces a graphic representation of the strain diagram for a tension controlled concrete beam.

Goals

To plot the compression and tension strain levels in a concrete beam To graphically determine the neutral axis.

To draw the ACI "Whitney" stress block showing C and T forces.

To compare plotted and calculated results.

Procedure

Due

- For the tension controlled beam analysis discussed in lecture, construct the strain diagram with €cu = 0.003 and €t as calculated.
- Use fc = 6000 psi and fy = 60000 psi
- Graphically determine the c distance from the top to the N.A on your diagram.
- Make a second diagram to show the relationship of C & T forces to the strains.
- Draw the ACI Whitney stress block at "a" distance from the top.
- 6. Show the moment arm and calculate j using jd = z.

e Calculate Moment Sunday, March 28

Lab Session: Calculate β1, a, c, εt, Bending Mo
--

 $A_{s}J_{v}$

0.85*f*/l

 $a = \beta_1 c$

Moment:

a =

Et

T x Moment Arm = $(As \times Fy) \times (d - a/2)$

As = cross sectional area (#6) x number of bars

(0.003)

f' _c	β ₁
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

Table A.2 Designations, Areas, Perimeter

	C	ustomary Uni	ts	
Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	
3	0.375	0.11	0.376	
4	0.500	0.20	0.668	
5	0.625	0.31	1.043	
6	0.750	0.44	1.502	
7	0.875	0.60	2.044	
8	1.000	0.79	2.670	
9	1.128	1.00	3.400	
10	1.270	1.27	4.303	
11	1.410	1.56	5.313	
14	1.693	2.25	7.650	
18	2.257	4.00	13.600	

*3 4×*6

12"