Structure II Recitation 3/15

Concrete Beam Analysis

Before we start ...

Today's Tasks:

Homework Example (Concrete Beam Analysis) (15 Questions)
Lab Session (Flexural Strain)

Reminder:

Tower Testing: 3/20, Wednesday!!!!!(Remember to sign up for your testing order)

8. Concrete Beam Analysis

Analyze the given composite floor system. Using a transformed section, determine peak stress values in both concrete and steel.

DATASET: 1 -2-

simple span 17 FT
section width, b 14 IN
section height, h 20 IN
max. aggrigate size $\quad 0.75 \mathrm{IN}$
bar size number $\quad 7$
the number of bars 5
stirrup bar size number 3
concrete cover $\quad 1.5 \mathrm{IN}$
concrete ultimate strength, fc
steel yield strength, fy
60000 PSI

Rectangular Beam Analysis

Data:

- Section dimensions - b, h, (span)
- Steel area - As
- Material properties - f'c, fy

Required:

- Nominal Strength (of beam) Moment - Mn
- Required (by load) Design Moment - Mu
- Load capacity

$$
\begin{aligned}
& \mathrm{As}_{\text {min }} \text { : } \\
& \text { greater of (a) and (b) }
\end{aligned}
$$

$$
c=\frac{a}{\beta_{1}} \quad \varepsilon_{t}=\frac{d-c}{c} 0.003 \geq 0.005
$$

1. Calculate d
(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
2. Check As min
(b) $\frac{200}{f_{y}} b_{w} d$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \quad M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

3. Calculate a
4. Determine c

$$
\varphi M_{n} \geq M_{u}
$$

5. Check that $\varepsilon_{\mathrm{t}} \geq 0.005$ (tension controlled)
6. Find nominal moment, Mn
7. Calculate required moment, $\phi \mathrm{Mn} \geq \mathrm{Mu}$ (if $\varepsilon_{\mathrm{t}} \geq 0.005$ then $\phi=0.9$)

$$
\begin{aligned}
& M_{u}=\frac{\left(1.2 w_{D L}+1.6 w_{L L}\right) l^{2}}{8} \\
& 1.6 w_{L L}=\frac{M_{u} 8}{l^{2}}-1.2 w_{D L}
\end{aligned}
$$

8. Determine max. loading (or span)

Q1: Flexural Steel Bar Diameter (db)
Look at Table A.2, for my situation:
Bar Size Number $=\# 7, \underline{\mathbf{d b}}=\mathbf{0 . 8 7 5}$ in

Q2: Stirrup Bar Diameter

Look at Table A.2, for my situation:
Stirrup Bar Size Number = \#3, $\underline{\text { Answer }=0.375 \text { in }}$
Q3: Distance from the Lower Beam Edge to Center of Flexural Steel (dc)
dc

$=$ Concrete Cover + Stirrup Bar Diameter $+\mathrm{db} / 2$
$=1.5+0.375+0.875 / 2$
$=\underline{2.3125}$ in
Q4: Distance from the Top Beam Edge to Center of Flexural Steel (d)
$\mathrm{d}=$ Section Height $-\mathrm{dc}=20-2.3125=\underline{\mathbf{1 7} .6875}$ in

simple span	17 FT
section width, b	14 IN
section height, h	20 IN
max. aggrigate size	0.75 IN
bar size number	7
the number of bars	5
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	8000 PSI
steel yeld strength, fy	60000 PSI

Course Slides 3/13 p5. (PDF)

Table A.2 D		Course Slides 3/13 p5. (PDF)				
		Designations, Areas, Perimeters, and Weights of Standard Bars				
		stomary Un			SI Units	
Bar No.	Diameter (in.)	Crosssectional Area (in. ${ }^{2}$)	Unit Weight ($\mathrm{lb} / \mathrm{ft}$)	Diameter (mm)	$\begin{gathered} \text { Cross- } \\ \text { sectional } \\ \text { Area }\left(\mathrm{mm}^{2}\right) \end{gathered}$	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

Q5: Minimum Required Area of Steel (As min)

Calculate the two formulas and choose the bigger one:
$\left(3 \times\left(f c^{\prime}\right)^{0.5} / \mathrm{fy}\right) \times \mathrm{bxd}=3 \times 8000^{0.5} / 60000 \times 14 \times 17.6875=1.107412$
$200 /$ fy x b x d $=200 / 60000 \times 14 \times 17.6875=0.825$
Since $1.107412>0.825, \underline{\text { As } \min }=\mathbf{1 . 1 0 7 4 1 2}$ in $^{\underline{2}}$
Q6: Actual Area of Flexural Stress (As)

As = cross sectional area x the number of bars
$\mathrm{As}=(0.6) \times 5=\underline{3 \text { in }^{2}}$

Get area from Table A-2
Check if As > As min, For my situation, It's a Pass!
(fc', fy, b, number of bars given from question, d from Q 4)

$\mathrm{As}_{\text {min }}$:

greater of (a) and (b)
(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
(b) $\frac{200}{f_{y}} b_{w} d$

Q7: Depth of Concrete Stress Block (a)

\quad| $\mathrm{a}=(\mathrm{A} s \times \mathrm{fy}) /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)$ |
| :--- |
| $=(3 \times 60000) /(0.85 \times 8000 \times 14)$ |
| $=\underline{\mathbf{1 . 8 9} \mathrm{in}}$ |

simple span
$\frac{\text { section width, } \mathrm{b}}{\text { section height } \mathrm{h}}$
section height, h

Q10: Strain in Flexural Steel ($\varepsilon \mathrm{t}$)

$\underline{\varepsilon \mathrm{t}=(\mathrm{d}-\mathrm{c}) / \mathrm{cx}(0.003)}=(17.6875-2.9) / 2.9 \times 0.003=\underline{\mathbf{0 . 0 1 5 2}}$

Q11: Strength Reduction Factor (Φ)

Check if ε t is bigger than 0.005 ,
Since my ε t is bigger, its tension - controlled, $\boldsymbol{\Phi}=\mathbf{0 . 9}$

Q12: Tensile Force in the Flexural Steel (T)
$\underline{T}=$ As $\times \mathrm{fy}=3 \times 60000 / 1000=\underline{180 \mathrm{k}}$

14 IN 20 IN 0.75 IN

$$
\varepsilon_{t}=\frac{d-c}{c}(0.003)
$$

Q13: The Nominal Bending Moment (Mn)
$\operatorname{Mn}=\operatorname{Tx}(\mathrm{d}-(\mathrm{a} / 2))=180 \times(17.6875-1.89 / 2)=\underline{3013.6} \mathrm{k}-\mathrm{in}$

Q14: The Factored Bending Resistance ($\mathbf{\Phi M n}$)
$\Phi \mathrm{Mn}=0.9 \times 3013.6=\underline{\mathbf{2 7 1 2}} \mathbf{2} \mathbf{k}$ k-in

Q15: The Factored Design Moment (Mu)
$\mathrm{Mu}=\Phi \mathrm{Mn}=2712.2 / 12=\underline{\mathbf{2 2 6} \mathbf{k}-\mathrm{ft}}$

Covert Unit (in to ft)

$$
M_{n}=T\left(d-\frac{a}{2}\right)=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

20 IN 0.75 IN
max. aggrigate size
,

Flexural Strain

Description

This project produces a graphic representation of the strain diagram for a tension controlled concrete beam.

Goals

To plot the compression and tension strain levels in a concrete beam
To graphically determine the neutral axis.
To draw the ACI "Whitney" stress block showing C and T forces.
To compare plotted and calculated results.

Procedure

1. For the tension controlled beam analysis discussed in lecture, construct the strain diagram with $\boldsymbol{\epsilon c u}=$ 0.003 and $\boldsymbol{\epsilon}_{\mathrm{t}}$ as calculated.
2. Use fc $=6000$ psi and fy $=60000 \mathrm{psi}$
3. Graphically determine the c distance from the top to the N.A on your diagram.
4. Make a second diagram to show the relationship of C \& T forces to the strains.
5. Draw the ACI - Whitney stress block at " a " distance from the top.
6. Show the moment arm and calculate jusing $j d=z$. Due Calculate Moment
Sunday, March 28

Lab Session:

Calculate $\beta 1$, a, c, ε t, Bending Moment

Moment:

T x Moment Arm = (As x Fy) x (d - a/2)
As = cross sectional area (\#6) x number of bars

$\boldsymbol{f}_{\mathbf{C}}^{\prime}$	$\boldsymbol{\beta}_{1}$
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

$$
a=B_{1} c
$$

$$
\varepsilon_{t}=\frac{d-c}{c}(0.003)
$$

Table A. 2 Designations, Areas, Perimeter
Table

	Customary Units Bar Bo.		
Diameter (in.)	Cross- (ectional Area (in. $\left.{ }^{2}\right)$	Unit Weight $(\mathrm{lb} / \mathrm{ft})$	
3 0.375 0.11 0.376 4 0.500 0.20 0.668 5 0.625 0.31 1.043 6 0.750 0.44 1.502 7 0.875 0.60 2.044 8 1.000 0.79 2.670 9 1.128 1.00 3.400 10 1.270 1.27 4.303 11 1.410 1.56 5.313 14 1.693 2.25 7.650 18 2.257 4.00 13.600			

