Concrete Beam Design 3/29

HW – Concrete Beam Design

Lab – Reinforcement Placement

Structure II Section 004

Yifan Ma yifanma@umich.edu

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

HW - Concrete Beam Design

Data:

Load and Span Material properties – f'c, fy All section dimensions: h and b

Required:

Steel area - As

- 1. Calculate the factored load and find factored required moment, Mu
- 2. Find $d = h cover stirrup d_b/2$ (one layer)
- 3. Estimate moment arm z = jd. For beams j \approx 0.9 for slabs j \approx 0.95
- 4. Estimate As based on estimate of jd.
- 5. Use As to find a
- 6. Use a to find As (repeat...until 2% accuracy)
- Choose bars for As and check As max & min
- 8. Check that $\varepsilon_t \ge 0.005$
- 9. Check $Mu \le \phi Mn$ (final condition)

 $M_n = A_s f_y \left(d - \frac{a}{2} \right)$

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

1. Unfactored dead load on beam from slab

½* Span A * Slab thickness * 150 pcf = ½*19*12/12*150 =1425 plf

2. Unfactored dead load on beam from the beam(PLF)(beam selfweight)

b * h * 150 = 18/12 * 39/12 *150= 731.25 plf

3. Unfactored live load on beam, LL

LL = LLfloor * (Span A) /2 = 45*19/2 = 427.5 plf

4. Total factored beam load, wu

wu = 1.2*DL + 1.6*LL = 1.2 *(1425+731.25)+1.6*427.5 = 3271.5 plf

5. Factored design moment from the loads, Mu

 $Mu = 1/8 * wu*(Spanbeam) ^ 2 = 1/8* 3271.5*30^2 = 368.04 \text{ ft-k}$

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

6. Distance from top beam edge to centroid of flexural steel,d

Bar size designa- tion	Nominal cross section area, sq. in.	Weight, lb per ft	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
#8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

dc = cover + stirrup bar diameter + 1/2 flexural steel bar diameter = 1.5+0.375+0.5*1.128 = 2.439 in

d = h - dc = 39 - 2.439 = 36.561 in

19 FT
30 FT
12 IN
18 IN
39 IN
0.75 IN
9
3
1.5 IN
5500 PSI
60000 PSI
45 PSF

7. The final calculated area of steel required , As, req

(1) Estimate moment arm Z = jd

For beams $j \approx 0.9$

h Beam I-way slab Stirrups Flexural steel As Zset = 0.9*36.561 = 32.905"

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

7. The final calculated area of steel required , As, req

(3) Use As1 to find a1

$$a = \frac{A_s f_y}{0.85 f_c b}$$
 = 2.486*60000/ (0.85*5500*18)= 1.773 in

Z = d – a/2 = 36.561- 1.773 /2 = 35.674 in

(4) Use a1 to find As2

As2 = 368.04 * 12 *1000 / (0.9*60000* 35.674) = 2.293 in²

(5) Compare As1 and As2

|As2-As1| / As2 = | 2.293 - 2.486 | / 2.293 > 2%

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

7. The final calculated area of steel required , As, req

(6) Repeat, use As2 to find a2

$$a = \frac{A_s f_y}{0.85 f_c b}$$
 = 2.293 *60000/ (0.85*5500*18)= 1.635 in

(7) Use a2 to find As3

Z = d – a/2 = 36.561- 1.635 /2 = 35.744 in

$$A_{s} = \frac{M_{u}}{\phi f_{y} \left(d - \frac{a}{2} \right)} = 368.04 * 12 * 1000 / (0.9*60000* 35.744) = 2.288 \text{ in}^{2}$$

(8) Compare As3 and As2

|As3-As2| / As3 = | 2.288 - 2.293 | / 2.288 < 2% Pass! As req = 2.288 in²

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSI

8. Numberof rebars used

Choose bars for As and check As min

 Table A.4 Areas of Groups of StandardBars (in.²)

						Num	ber of Ba	ırs					
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

As req = 2.288 in² N=3

(a)

(b) $\frac{200}{f} b_w d$

9. Actual, final area of flexural steel used, As, used

As used = Ab * N= $1.000^{*}3 = 3 \text{ in}^2$

10. Minimum required area of steel, As,min

$$\frac{3\sqrt{f_c'}}{f_y}b_w d = 3 * \frac{\sqrt{5500}}{60000} * 18 * 36.561 = 2.440 \text{ in}$$

 $=\frac{200}{60000}$ * 18 * 36.561 = 2.194 in

Bar size designa- tion	Nominal cross section area, sq. in.	Weight, lb per ft	Nominal diameter, in.
#3	0.11	0.376	0.375
#4	0.20	0.668	0.500
#5	0.31	1.043	0.625
#6	0.44	1.502	0.750
#7	0.60	2.044	0.875
#8	0.79	2.670	1.000
#9	1.00	3.400	1.128
#10	1.27	4.303	1.270
#11	1.56	5.313	1.410
#14	2.25	7.650	1.693
#18	4.00	13.600	2.257

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

11. Depth of concrete stress block, a

fc

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

β1

0.85

0.85

0.85

0.85

0.85

0.8

0.75

0.7

0.65

0.65

0.65

$$a = \frac{A_s f_y}{0.85 f_c b}$$
 As used

= 3 *60000/ (0.85*5500*18)

= 2.139 in

12. The factor beta_1

 β₁ is a factor to account for the non-linear shape of the compressi on stress block.

 $\beta 1 = 0.775$

Check that $\epsilon_t \ge 0.005$ (tension controlled)

13. Distance to Neutral Axis from top of beam, c

$$c = \frac{a}{\beta_1} = 2.139 / 0.775 = 2.76$$
 in

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, f'c	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

0.65 + 0.25 -

0.90

0.75

0.65

Compression

controlled-

Spiral

Other

\$\$ = 0.65

Check that $\epsilon_t \ge 0.005$ (tension controlled)

= 0.037

15. Strength reduction factor, phi

 $\varepsilon_t = \varepsilon_{tv}$

$$\mathbf{\epsilon}_{t} = \frac{d-c}{c} 0.003 \ge 0.005$$
 $\mathbf{\phi} = 0.9$

 $(\varepsilon_t - \varepsilon_t)$

 $(0.005 - \varepsilon$

Transition

ø = 0.90

Tension

controlled

 $\varepsilon_t = 0.005$

DATASET: 1 -23-	
Span of slab	19 FT
Span of beam	30 FT
Thickness of slab	12 IN
section width, b	18 IN
section height, h	39 IN
max. aggrigate size	0.75 IN
bar size number	9
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fc	5500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	45 PSF

 $T = fy^* As = 60000^* 3/1000 = 180 k$

17. Nominal bending moment, Mn

Mn = fy* As *(d –a/2) = 180* (36.561-2.139/2) = 6388.47 k-in

Check Mu≤ φMn

18. Factored bending resistance, phi Mn

 ϕ *Mn = 0.9 * 6388.47/12 = 479.14 k-ft > Mu = 368.044 k-ft

Final Report

Due Apr 12th

Tower Project Score Sheet

PRELIMINARY REPORT (re-submit with final report) 40				
TESTING	60			
	00			
Tower weight \leq 4oz (15 pts); height = 48" (5 pts); holds \geq 50 lbs (5 pts)	30			
Correct Materials (5 pts) (scaled if doesn't meet requirements)				
Efficiency (4/weight OZ)+(load LBS/50)+(load LBS/weight OZ)x1.5	30			
(scaled based on class rank)				
FINAL REPORT REQUIREMENTS	150			
Preliminary Design Development	20			
How cross-sectional design of preliminary tower was chosen	4			
How elevation of preliminary tower was developed (e.g. bracing taper etc.)	4			
Why/how cross-section was or was not adjusted from preliminary report	4			
Why/how elevation of tower was or was not adjusted from preliminary report	4			
Discussion of how basic principles of columns supported these decisions	4			
Discussion of now basic principles of columns supported these decisions	4			
Revised/Tested Tower Design Analysis [SHOW WORK AND UNITS]]	50			
Calculated/modeled axial forces and derivation of required member cross	10			
sectional areas from axial forces (consider both crushing and buckling)	10			
Estimated weight calculation using actual member sizes used - include	7			
weight from members alue and aussets etc	·			
Member properties table: A r L slenderness ratio (L/r)	7			
utilization ratio (actual load / allowable load)	·			
Indicate critical member (largest utilization ratio)	8			
Tower stability (as a whole) - buckling calculation	0			
Prodiction of consolity of tower and mode of failure	10			
Frediction of capacity of tower and mode of failure	10			
Illustration of Final/Tested Design	20			
Cross-section and elevations(s) of tower	5			
Perspective(s) or isometric of tower (no screenshots)	5			
Overall dimensions labeled (height width etc.) with units	5			
Member sizes labeled (cross sectional area, length of vertical members and	5			
cross-bracing) with units	· · ·			
cioss-bracing/ with drifts				
Testing Results	30			
Final weight and height of tower	6			
Tested canacity of tower	6			
Observations of testing (loading, any buckling observed, etc.)	6			
Description of mode of failure	6			
Images of failure	6			
inages or iditure				
Post-Testing Analysis	30			
Comparison of testing results with predicted capacity and modes of failure	10			
Discussion of discremancies between results	10			
Suggested improvements for future designs with reasoning discussed	10			
ouggested improvements for future designs with reasoning discussed	10			
	050			
FINAL GRADE	250			

(Note: re-submit your Preliminary Design Proposal with your Final Report.)

LAB - Reinforcement Placement

Description

This project produces a graphic representation of the reinforcing layout of a concrete beam.

Procedure

- 1. For the example beam worked in class, determine the required spacing, s_v and s_h , for the bar size used.
- 2. For the given stirrup size determine the bend radius for a 90° bend.
- 3. Make a sketch showing the proper locations of bars and the stirrup including cover.
- 4. Draw and dimension the depth of the stress block, "a" and the distance to the N.A. from the top of the beam, "c".
- 5. Dimension and label "d" and "dc".

Goals

To determine bar diameters and horizontal spacing.

To find the placement and dimensions of a shear stirrup.

To establish proper cover for reinforcement. To draw all beam elements in the proper scale and location.

Horizontal Spacing in Beams ACI 25.2.1 1 inch db 4/3 max aggregate

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] <i>l_{exp}</i> in.	Type of standard hook	
90-degree hook	No. 3 through No. 5	$4d_b$	Greater of $6d_b$ and 3 in.	db 90-degree bend	
	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter	
135-degree hook	No. 3 through No. 5	$4d_b$	Greater of $6d_{h}$ and	db 135-degree	
	No. 6 through No. 8	6 <i>d</i> _b	3 in.	Diameter Lext	
180-degree hook	No. 3 through No. 5	4 <i>d</i> _b	Greater of	db 180-degree	
	No. 6 through No. 8	6 <i>d</i> _b	$4a_b$ and 2.5 in.	Diameter bend	

^[1]A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

¹¹A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

- For the example beam, determine the required spacing, Sv and Sh, for the bar size used.
- horizontal spacing in beams ACI 25.2.1 • 1 inch Sh greater than d_b (Flexural bar) 4/3 max aggregate
- vertical spacing in beams ACI 25.2.2 1 inch

4/3 max aggregate

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

^[1]A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

- For the given stirrup size determine the bend radius for a 90° bend.

Minimum inside bend diameter = 4db

Minimum inside bend radius?

(Flexural bars can't be set inside the radius)

- Make a sketch showing the proper locations of bars and the stirrup including cover.

Determine put 5 bars in one layer or two layers.

Meet the spacing requirement.

One layer does not pass!

- Make a sketch showing the proper locations of bars and the stirrup including cover.

Put 5 bars in two layers!

- Draw and dimension the depth of the stress block, "a" and the distance to the N.A. from the top of the beam, "c"

a =7.843" c =9.227"

- Dimension and label "d" and "dc".

dc= cover + stirrup bar diameter + y

Any Questions?

yifanma@umich.edu

Thank You!

