Concrete Beam Design 3/29
HW - Concrete Beam Design
Lab - Reinforcement Placement

Structure II
 Section 004

Yifan Ma
yifanma@umich.edu

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu, based on the given parameters. Check that the section is tension controlled (epsilon_t > 0.005), and that the amount of steel, As is more than the minimum, As_min.

DATASET: 1

Span of slab 19 FT

Span of beam

30 FT

Thickness of slab

12 IN
section width, b 18 IN
39 IN
section height, h
0.75 IN
ax. aggrigate size
3
1.5 IN

5500 PSI
60000 PSI
45 PSF

HW - Concrete Beam Design

Data:

Load and Span
Material properties - f'c, fy All section dimensions: h and b_{h}

Required:
Steel area - As

1. Calculate the factored load and find factored required moment, Mu
2. Find $d=h-$ cover - stirrup $-d_{b} / 2$ $M_{u}=\frac{\left(\gamma w_{D L}+\gamma w_{L L}\right) l^{2}}{8}$ (one layer)
3. Estimate moment arm $z=j d$. For beams $\mathrm{j} \approx 0.9$ for slabs $\mathrm{j} \approx 0.95$
4. Estimate As based on estimate of jd.
(0.003 in./in.)

5. Use As to find a
6. Use a to find As (repeat... until 2\% accuracy)

7. Choose bars for As and check As max \& min
8. Check that $\varepsilon_{t} \geq 0.005$
9. Check $\mathrm{Mu} \leq \phi \mathrm{Mn}$ (final condition)

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

1. Unfactored dead load on beam from slab

$$
\begin{aligned}
& 1 / 2^{*} \text { Span A * Slab thickness * } 150 \text { pcf } \\
& =1 / 2^{*} 19^{*} 12 / 12^{*} 150 \\
& =1425 \text { plf }
\end{aligned}
$$

2. Unfactored dead load on beam from the beam(PLF)(beam selfweight)

$$
\text { b * } h * 150=18 / 12 * 39 / 12 * 150=731.25 \text { plf }
$$

3. Unfactored live load on beam, LL

$$
\text { LL }=\text { LLfloor * }\left(\text { Span A) } / 2=45^{*} 19 / 2=427.5\right. \text { plf }
$$

4. Total factored beam load, wu

$$
w u=1.2^{*} \mathrm{DL}+1.6^{*} \mathrm{LL}=1.2 *(1425+731.25)+1.6^{*} 427.5=3271.5 \mathrm{plf}
$$

5. Factored design moment from the loads, Mu

$$
\mathrm{Mu}=1 / 8^{*} \mathrm{wu}(\text { Spanbeam })^{\wedge} 2=1 / 8^{*} 3271.5^{*} 30^{2}=368.04 \mathrm{ft}-\mathrm{k}
$$

Using the Ultimate Strength Method, analyze the given section to determine its safe moment capacity, Mu based on the given parameters. Check that the section is tension controlled (epsilon_t > 0.005), and that the amount of steel, As is more than the minimum, As_min.

DATASET: 1

Span of slab

```
Span of beam

\section*{Thickness of slab}
```

30 FT
section width, b
section height, h
max. aggrigate size bar size number stirrup bar size number concrete cover
concrete ultimate strength, fic steel yield strength, fy Floor Live Load

```
 6. Distance from top beam edge to centroid of flexural steel,d
dc \(=\) cover + stirrup bar diameter \(+1 / 2\) flexural steel bar diameter
\[
\begin{aligned}
\mathrm{dc} & =\text { cover + stirrup bar dia } \\
& =1.5+0.375+0.5^{* 1} .128 \\
& =2.439 \mathrm{in}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bars size } \\
\text { desigua } \\
\text { tion }
\end{gathered}
\] &  &  & \[
\begin{aligned}
& \text { Nominal } \\
& \text { diameter, } \\
& \text { in. }
\end{aligned}
\] \\
\hline \#3 & 0.11 & 0.376 & 0.375 \\
\hline \#4 & 0.20 & 0.668 & 0.500 \\
\hline \#5 & 0.31 & 1.043 & 0.625 \\
\hline \#6 & 0.44 & 1.502 & 0.750 \\
\hline \#7 & 0.60 & 2.044 & 0.875 \\
\hline \#8 & 0.79 & 2.670 & 1.000 \\
\hline \#9 & 1.00 & 3.400 & 1.128 \\
\hline \#10 & 1.27 & 4.303 & 1.270 \\
\hline \#11 & 1.56 & 5.313 & 1.410 \\
\hline \#14 & 2.25 & 7.650 & 1.693 \\
\hline \#18 & 4.00 & 13.600 & 2.257 \\
\hline
\end{tabular}

\footnotetext{

}
号
\[
d=h-d c=39-2.439=36.561 \text { in }
\]
י

Using the Ultimate Strength Method, analyze the given section to determine its safe moment capacity, Mu based on the given parameters. Check that the section is tension controlled (epsilon \(t>0.005\) ), and that the
amount of steel, As is more than the minimum, As_min.
\begin{tabular}{|c|c|}
\hline DATASET: 1 -2- & \\
\hline Span of slab & 19 FT \\
\hline Span of beam & 30 FT \\
\hline Thickness of slab & 12 IN \\
\hline section width, b & 18 IN \\
\hline section height, h & 39 IN \\
\hline max. aggrigate size & 0.75 IN \\
\hline bar size number & 9 \\
\hline stirrup bar size number & 3 \\
\hline concrete cover & 1.5 IN \\
\hline concrete ultimate strength, \(\mathrm{f}^{\prime} \mathrm{C}\) & 5500 PSI \\
\hline steel yield strength, fy & 60000 PSI \\
\hline Floor Live Load & 45 PSF \\
\hline
\end{tabular}

  \(+\)
 \(\qquad\)

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu
```

DATASET: }
Span of slab
19 FT
Span of beam
Thickness of slab
30 FT
12 IN
18 IN
39 IN
0.75 IN
9
3
1.5 IN
5500 PSI
6 0 0 0 0 ~ P S I ~
45 PSF

```

amount of steel, As is more than the minimum, As_min.

\section*{7. The final calculated area of steel required, As,req}

(1) Estimate moment arm \(Z=j d \quad\) For beams \(j \approx 0.9\)

Zset \(=0.9^{*} 36.561=32.905^{\prime \prime}\)
(2) Estimate As based on estimate \(Z\)
\[
\begin{aligned}
A_{s} & =\frac{M_{u}}{\phi f_{y}\left(d-\frac{a}{2}\right)} \\
& \approx \mathrm{Mu} /(0.9 * \mathrm{fy} * \mathrm{Zset}) \\
& =368.04 * 12 * 1000 /(0.9 * 60000 * 32.905)=2.486 \mathrm{in}^{2}
\end{aligned}
\]
\(\xrightarrow{\mathrm{b}}\)

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu, based on the given parameters. Check that the section is tension controlled (epsilon_t > 0.005), and that the amount of steel, As is more than the minimum, As_min.

\section*{DATASET: 1}

\section*{Span of slab}

19 FT
Span of beam
30 FT

\section*{Thickness of slab}

12 IN
section width, b
18 IN
39 IN
section height, h
0.75 IN

9
3
1.5 IN

5500 PSI
60000 PSI
45 PSF

\section*{7. The final calculated area of steel required, As,req}
(3) Use As1 to find a1
\[
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \quad=2.486^{*} 60000 /\left(0.85^{*} 5500^{*} 18\right)=1.773 \text { in }
\]
(4) Use a1 to find As2
\(Z=d-a / 2\)
\[
=36.561-1.773 / 2
\]
\[
=35.674 \text { in }
\]
\[
A_{s}=\frac{M_{u}}{\phi f_{y}\left(d-\frac{a}{2}\right)}
\]


As2 \(=368.04 * 12 * 1000 /(0.9 * 60000 * 35.674)=2.293 \mathrm{in}^{2}\)
(5) Compare As1 and As2
|As2-As1| / As2 = | \(2.293-2.486 \mid / 2.293>2 \%\)

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu based on the given parameters. Check that the section is tension controlled (epsilon_t > 0.005), and that the amount of steel, As is more than the minimum, As_min.
```

DATASET: }
Span of slab
19 FT
Span of beam
30 FT
12 IN
Thickness of slab
18 IN
39 IN
section width, b
section height, h
max. aggrigate size
bar size number
0.75 IN
9
3
1.5 IN
5500 PSI
6 0 0 0 0 ~ P S I ~
45 PSF

```

\section*{7. The final calculated area of steel required, As,req}
(6) Repeat, use As2 to find a2
\[
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=2.293 * 60000 /\left(0.85^{*} 5500 * 18\right)=1.635 \text { in }
\]
(7) Use a2 to find As3
\(Z=d-a / 2\)
\[
=36.561-1.635 / 2
\]
\[
=35.744 \text { in }
\]
\[
A_{s}=\frac{M_{u}}{\phi f_{y}\left(d-\frac{a}{2}\right)}=368.04 * 12 * 1000 /(0.9 * 60000 * 35.744)=2.288 \mathrm{in}^{2}
\]
(8) Compare As3 and As2
\[
\text { |As3-As2| / As3 = | } 2.288-2.293 \mid / 2.288<2 \%
\]

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu

based on the given parameters. Check that the section based on the given parameters. Check that the sectic
is tension controlled (epsilon_t>0.005), and that the amount of steel, As is more than the minimum, As_min.
\begin{tabular}{lr}
\hline DATASET: 1 & \\
Span of slab & \(-3-\) \\
Span of beam & \\
Thickness of slab & 30 FT \\
section width, b & 12 IN \\
section height, h & 18 IN \\
max. aggrigate size & 0.75 IN \\
bar size number & 9 \\
stirrup bar size number & 3 \\
concrete cover & 1.5 IN \\
concrete ultimate strength, fic & 5500 PSI \\
steel yield strength, fy & 60000 PSI \\
Floor Live Load & 45 PSF \\
\end{tabular}
(b) \(\frac{200}{f_{y}} b_{w} d \quad=\frac{200}{60000} * 18 * 36.561=2.194\) in As, min: greater of a and b

\section*{8. Numberof rebars used \\ Table A. 4 Areas of Groups of StandardBars (in. \({ }^{2}\) ) \\ \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Bar No.} & \multicolumn{13}{|c|}{Number of Bars} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline 4 & 0.39 & 0.58 & 0.78 & 0.98 & 1.18 & 1.37 & 1.57 & 1.77 & 1.96 & 2.16 & 2.36 & 2.55 & 2.75 \\
\hline 5 & 0.61 & 0.91 & 1.23 & 1.53 & 1.84 & 2.15 & 2.45 & 2.76 & 3.07 & 3.37 & 3.68 & 3.99 & 4.30 \\
\hline 6 & 0.88 & 1.32 & 1.77 & 2.21 & 2.65 & 3.09 & 3.53 & 3.98 & 4.42 & 4.86 & 5.30 & 5.74 & 6.19 \\
\hline 7 & 1.20 & 1.80 & 2.41 & 3.01 & 3.61 & 4.21 & 4.81 & 5.41 & 6.01 & 6.61 & 7.22 & 7.82 & 8.42 \\
\hline 8 & 1.57 & 2.35 & 3.14 & 3.93 & 4.71 & 5.50 & 6.28 & 7.07 & 7.85 & 8.64 & 9.43 & 10.21 & 11.00 \\
\hline 9 & 2.00 & 3.00 & 4.00 & 5.00 & 6.00 & 7.00 & 8.00 & 9.00 & 10.00 & 11.00 & 12.00 & 13.00 & 14.00 \\
\hline 10 & 2.53 & 3.79 & 5.06 & 6.33 & 7.59 & 8.86 & 10.12 & 11.39 & 12.66 & 13.92 & 15.19 & 16.45 & 17.72 \\
\hline 11 & 3.12 & 4.68 & 6.25 & 7.81 & 9.37 & 10.94 & 12.50 & 14.06 & 15.62 & 17.19 & 18.75 & 20.31 & 21.87 \\
\hline 14 & 4.50 & 6.75 & 9.00 & 11.25 & 13.50 & 15.75 & 18.00 & 20.25 & 22.50 & 24.75 & 27.00 & 29.25 & 31.50 \\
\hline 18 & 8.00 & 12.00 & 16.00 & 20.00 & 24.00 & 28.00 & 32.00 & 36.00 & 40.00 & 44.00 & 48.00 & 52.00 & 56.00 \\
\hline
\end{tabular} \\ 8. Numberof rebars used}

As req \(=2.288 \mathrm{in}^{2} \quad \mathrm{~N}=3\)
9. Actual, final area of flexural steel used, As, used

As used \(=A b\) * \(N=1.000 * 3=3 \mathrm{in}^{2}\)
10. Minimum required area of steel, As,min
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Bar size \\
designa- \\
tion
\end{tabular} & \begin{tabular}{c} 
Nominal \\
cros \\
section. \\
area. \\
sq. in.
\end{tabular} & \begin{tabular}{c} 
Weight. \\
loppr ti
\end{tabular} & \begin{tabular}{c} 
Nominal \\
diameter. \\
in.
\end{tabular} \\
\hline\(\# 3\) & 0.11 & 0.376 & 0.375 \\
\hline\(\# 4\) & 0.20 & 0.668 & 0.500 \\
\hline\(\# 5\) & 0.31 & 1.043 & 0.625 \\
\hline\(\# 6\) & 0.44 & 1.502 & 0.750 \\
\hline\(\# 7\) & 0.60 & 2.044 & 0.875 \\
\hline\(\# 8\) & 0.79 & 2.670 & 1.000 \\
\hline\(\# 9\) & 1.00 & 3.400 & 1.128 \\
\hline\(\# 10\) & 1.27 & 4.303 & 1.270 \\
\hline\(\# 11\) & 1.56 & 5.313 & 1.410 \\
\hline\(\# 14\) & 2.25 & 7.650 & 1.693 \\
\hline\(\# 18\) & 4.00 & 13.600 & 2.257 \\
\hline
\end{tabular}
(a) \(\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d=3 * \frac{\sqrt{5500}}{60000} * 18 * 36.561=2.440\) in \(V\)
(
\begin{tabular}{l|l|l|l|l}
\hline & & \\
\hline
\end{tabular}

(
erex
d
\[
0^{2}
\]
\(\qquad\)

Using the Ultimate Strength Method, analyze the given section to determine its safe moment capacity, Mu based on the given parameters. Check that the section
is tension controlled (epsilon_t>0.005), and that the amount of steel, As is more than the minimum, As_min.
```

DATASET: 1 -2- -3-
Span of slab
19 FT
Span of beam
Thickness of slab
30 FT
section width, b
section height, h 39 IN
max. aggrigate size
bar size number
stirrup bar size number
concrete cover
concrete ultimate strength, icc
steel yield strength, fy
Floor Live Load
DATASET: 1 -2- -3-
12 IN
0.75 IN
9
3
1.5 IN
5500 PSI
6 0 0 0 0 ~ P S I ~
45 PSF var size number

```

11. Depth of concrete stress block, a
\[
\begin{aligned}
a & =\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \\
& =3 * 60000 /(0.85 * 5500 * 18) \\
& =2.139 \mathrm{in}
\end{aligned}
\] block.
\[
c=\frac{a}{\beta_{1}}=2.139 / 0.775=2.76 \mathrm{in}
\]
\(\beta_{1}\) is a factor to account for the non-linear shape of the compressi on stress
12. The factor beta_1
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(\beta_{1}\) is a factor to account} & \multirow{11}{*}{5500} & \(\mathrm{f}^{\prime} \mathrm{C}\) & \(\beta 1\) \\
\hline & & 0 & 0.85 \\
\hline & & 1000 & 0.85 \\
\hline for the & & 2000 & 0.85 \\
\hline n-linear & & 3000 & 0.85 \\
\hline non-linear & & 4000 & 0.85 \\
\hline shape of & & \(\frac{5000}{6000}\) & \(\begin{array}{r}0.8 \\ \hline 0.75\end{array}\) \\
\hline the & & 7000 & 0.7 \\
\hline compressi & & 8000 & 0.65 \\
\hline & & 9000 & 0.65 \\
\hline block & & 10000 & 0.65 \\
\hline
\end{tabular}

\section*{13. Distance to Neutral Axis from top of beam, c}
\[
\beta 1=0.775
\] block.
\[
0
\]

Check that \(\epsilon_{\mathrm{t}} \geq 0.005\) (tension controlled)


\[
0.85 \geq 0.85-0.05\left(\frac{f_{c}^{\prime}-4000}{1000}\right) \geq 0.65
\]



\section*{}

 .

Using the Ultimate Strength Method, analyze the giver section to determine its safe moment capacity, Mu

based on the given parameters. Check that the section
is tension controlled (epsilon \(t>0.005\) ), and that the based on the given parameters. Check that the section
is tension controlled (epsilon \(t>0.005\) ), and that the amount of steel, As is more than the minimum, As_min.
\begin{tabular}{lr}
\hline DATASET: 1 & \\
Span of slab & \(-3-\) \\
Span of beam & \\
Thickness of slab & 30 FT \\
section width, b & 12 IN \\
section height, h & 18 IN \\
max. aggrigate size & 39 IN \\
bar size number & 0.75 IN \\
stirrup bar size number & 9 \\
concrete cover & 3 \\
concrete ultimate strength, ic & 5500 PSI \\
steel yield strength, fy & 60000 PSI \\
Floor Live Load & 45 PSF \\
\end{tabular}
DATASET: 1
DATASET: 1
Span of slab
Span of slab
    30 FT
    30 FT
    12 IN
    12 IN
    18 IN
    18 IN
    39 IN
    39 IN
    0.75 IN
    0.75 IN
        9
        9
                            1.5 IN
                            1.5 IN
                            5500 PSI
                            5500 PSI
                            000 PSI
                            000 PSI
                            45 PSF
                            45 PSF
steel As


,都

\section*{14. Strain in flexural steel, epsilon_t}

\section*{15. Strength reduction factor, phi \\ .}
\[
\boldsymbol{\varepsilon}_{t}=\frac{d-c}{c} 0.003 \geq 0.005 \quad \phi=0.9
\]
.
\(\varepsilon\)

\section*{3}
Compression \(\phi=0.65 \begin{aligned} & 0.65+0.25\left(\frac{\left.\varepsilon_{2}-\varepsilon_{1}\right)}{\left(0.005-\varepsilon_{5}\right)}\right. \\ & \text { Tension I }\end{aligned}\)
\[
\boldsymbol{\varepsilon}_{t}=\frac{d-c}{c} 0.003 \geq 0.005
\]
\[
=0.037
\]






\section*{}
-
14. Strain in flexural steel, epsilon _t


\(\square\)
heck that \(\epsilon_{\mathrm{t}} \geq 0.005\) (tension controlled)
,
```

Using the Ultimate Strength Method, analyze the given section to determine its safe moment capacity, Mu, based on the given parameters. Check that the section is tension controlled (epsilon $t>0.005$), and that the amount of steel, As is more than the minimum, As_min.

```
```

DATASET: }

```
```

DATASET: }

```
```

DATASET: }
Span of slab
Span of slab
Span of slab
Span of beam
Span of beam
Span of beam
19 FT
19 FT
19 FT
Thickness of slab 12 IN
Thickness of slab 12 IN
Thickness of slab 12 IN
section width, b
section width, b
section width, b
section height, h 39 IN
section height, h 39 IN
section height, h 39 IN
max. aggrigate size
max. aggrigate size
max. aggrigate size
bar size number
bar size number
bar size number
stirrup bar size number
stirrup bar size number
stirrup bar size number
0.75 IN
0.75 IN
0.75 IN
9
9
9
3
3
3
1.5 IN
1.5 IN
1.5 IN

```
concrete cover
```

concrete cover

```
concrete cover
```

concrete cover
concrete ultimate strength, fcc
concrete ultimate strength, fcc
concrete ultimate strength, fcc
concrete ultimate strength, fcc
5500 PSI
5500 PSI
5500 PSI
5500 PSI
6 0 0 0 0 ~ P S I ~
6 0 0 0 0 ~ P S I ~
6 0 0 0 0 ~ P S I ~
6 0 0 0 0 ~ P S I ~

```
steel yield strength, fy
```

steel yield strength, fy

```
steel yield strength, fy
```

steel yield strength, fy

```
steel yield strength, fy
Floor Live Load
    4 5 ~ P S F
```

```
    4 5 ~ P S F
```

```
```

-3-

```
```

-3-

```
```

-3-

```
```

Floor Live Load

```
Floor Live Load
```

Floor Live Load

```
Floor Live Load
```

Floor Live Load
concrete cover
concrete cover
concrete cover
concrete cover
F

```
F
```

F

```
F
```

F

```

steel As
steel As





\(\qquad\)
\(\square\)
\(\qquad\)

\section*{nh}
\(\qquad\)

■


\(c k M \leq \varphi\)
\[
\square
\]
.
17. Nominal bending moment, Mn
\(\begin{aligned} \mathrm{Mn} & =\mathrm{fy}^{*} \mathrm{As} *(\mathrm{~d}-\mathrm{a} / 2) \\ & =180^{*}(36.561-2.139 / 2) \\ & =6388.47 \mathrm{k}-\mathrm{in}\end{aligned}\)
18. Factored bending resistance, phi Mn
 17. Nominal bending moment, Mn
\[
\begin{aligned} M n & =\text { fy* }^{*} \mathrm{As}^{*}(\mathrm{~d}-\mathrm{a} / 2) \\ & =180 *(36.561-2.139 / 2) \\ & =6388.47 \mathrm{k} \text {-in }\end{aligned}
\]
18. Factored bending resistance, phi Mn





\[
\begin{aligned}
\mathrm{Mn} & =f y^{*} A s^{*}(\mathrm{~d}-\mathrm{a} / 2) \\
& =180^{*}(36.561-2.139 / 2) \\
& =6388.47 \mathrm{k}-\mathrm{in}
\end{aligned}
\]
\[
\operatorname{leche}_{2}
\]
17. Nominal bending moment, Mn

T
 -


\[
\phi * \mathrm{Mn}=0.9 * 6388.47 / 12=479.14 \mathrm{k}-\mathrm{ft}>\mathrm{Mu}=368.044 \mathrm{k}-\mathrm{ft}
\]
\(\qquad\) -














 \begin{tabular}{l} 
Span of slab \\
Span of beam \\
Thickness of slab \\
section width, b \\
section height, h \\
max. aggregate size \\
var size number \\
stirrup bar size number \\
concrete cover \\
concrete ultimate strength, fcc \\
steel yield strength, fy \\
Floor Live Load \\
18 IN \\
39 IN \\
0.75 IN \\
\hline
\end{tabular}



 \begin{tabular}{l} 
DATASET: 1 -2- \\
Span of slab \\
Span of beam \\
Thickness of slab \\
section width, b \\
section height, h \\
max. aggrigate size \\
bar size number \\
stirrup bar size number \\
concrete cover \\
concrete ultimate strength, fcc \\
steel yield strength, fy \\
Floor Live Load \\
\hline
\end{tabular} \begin{tabular}{l} 
Span of slab \\
Span of beam \\
Thickness of slab \\
section width, b \\
section height, h \\
max. aggrigate size \\
bar size number \\
stirrup bar size number \\
concrete cover \\
concrete ultimate strength, fcc \\
steel yield strength, fy \\
18 IN \\
39 IN \\
0.75 IN \\
\hline
\end{tabular}



\section*{16. Tensile force in the flexural steel, T \\ \[
T=f y^{*} A s=60000^{*} 3 / 1000=180 k
\] \\ \(T=f y^{*}\) As \(=60000 * 3 / 1000=180 k\)}
.
路




\begin{tabular}{|c|c|c|}
\hline PRELIMINARY REPORT (re-submit with final report) & \multicolumn{2}{|l|}{40} \\
\hline TESTING & \multicolumn{2}{|l|}{60} \\
\hline Tower weight \(\leq 40 z\) ( 15 pts ); height \(=48^{\text {" }}(5 \mathrm{pts})\); holds \(\geq 50 \mathrm{lbs}(5 \mathrm{pts})\) Correct Materials ( 5 pts) (scaled if doesn't meet requirements) & 30 & \\
\hline Efficiency (4/weight OZ)+(load LBS/50)+(load LBS/weight OZ)x1.5
(scaled based on class rank) & 30 & \\
\hline FINAL REPORT REQUIREMENTS & \multicolumn{2}{|l|}{150} \\
\hline Preliminary Design Development & 20 & \\
\hline How cross-sectional design of preliminary tower was chosen & 4 & \\
\hline How elevation of preliminary tower was developed (e.g. bracing, taper, etc.) & 4 & \\
\hline Why/how cross-section was or was not adjusted from preliminary report & 4 & \\
\hline Why/how elevation of tower was or was not adjusted from preliminary report & 4 & \\
\hline Discussion of how basic principles of columns supported these decisions & 4 & \\
\hline Revised/Tested Tower Design Analysis [SHOW WORK AND UNITS!] & 50 & \\
\hline Calculated/modeled axial forces and derivation of required member crosssectional areas from axial forces (consider both crushing and buckling) & 10 & \\
\hline Estimated weight calculation using actual member sizes used - include weight from members, glue, and gussets, etc. & 7 & \\
\hline Member properties table: A, r, L, slenderness ratio (L/r), utilization ratio (actual load / allowable load) & 7 & \\
\hline Indicate critical member (largest utilization ratio) & 8 & \\
\hline Tower stability (as a whole) - buckling calculation & 8 & \\
\hline Prediction of capacity of tower and mode of failure & 10 & \\
\hline & & \\
\hline Cross-section and elevations(s) of tower & 5 & \\
\hline Perspective(s) or isometric of tower (no screenshots!) & 5 & \\
\hline Overall dimensions labeled (height, width, etc.) with units & 5 & \\
\hline Member sizes labeled (cross-sectional area, length of vertical members and cross-bracing) with units & 5 & \\
\hline Testing Results & 30 & \\
\hline Final weight and height of tower & 6 & \\
\hline Tested capacity of tower & 6 & \\
\hline Observations of testing (loading, any buckling observed, etc.) & 6 & \\
\hline Description of mode of failure & 6 & \\
\hline Images of failure & 6 & \\
\hline Post-Testing Analysis & 30 & \\
\hline Comparison of testing results with predicted capacity and modes of failure & 10 & \\
\hline Discussion of discrepancies between results & 10 & \\
\hline Suggested improvements for future designs with reasoning discussed & 10 & \\
\hline FINAL GRADE & 250 & \\
\hline
\end{tabular}
(Note: re-submit your Preliminary Design Proposal with your Final Report.)

\section*{LAB - Reinforcement Placement}

\section*{Procedure}
1. For the example beam worked in class, determine the required spacing, \(\mathrm{s}_{\mathrm{v}}\) and \(\mathrm{s}_{\mathrm{h}}\), for the bar size used.
2. For the given stirrup size determine the bend radius for a \(90^{\circ}\) bend.
3. Make a sketch showing the proper locations of bars and the stirrup including cover.
4. Draw and dimension the depth of the stress block, "a" and the distance to the N.A. from the top of the beam, " c ".
5. Dimension and label "d" and "dc"

Table 25.3.2-Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

\section*{Goals}

To determine bar diameters and horizontal spacing.
To find the placement and dimensions of a shear stirrup.
To establish proper cover for reinforcement. To draw all beam elements in the proper scale and location.


Horizontal Spacing in Beams ACI 25.2.1

1 inch
db
4/3 max aggregate
\begin{tabular}{|c|c|c|c|c|}
\hline Type of standard hook & Bar size & Minimum inside bend diameter, in. & Straight extension \({ }^{\text {(1I) }}\) \(\ell_{e n}\), in. & Type of standard hook \\
\hline \multirow[t]{2}{*}{90 -degree hook} & No. 3 through No. 5 & \(4 d_{b}\) & Greater of \(6 d_{b}\) and 3 in. & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & \(12 d_{b}\) & \\
\hline \multirow[t]{2}{*}{135-degree hook} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[t]{2}{*}{Greater of \(6 d_{b}\) and 3 in.} & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 180-degree } \\
& \text { hook }
\end{aligned}
\]} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[t]{2}{*}{Greater of \(4 d_{b}\) and 2.5 in .} & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & & \\
\hline
\end{tabular}
\({ }^{11} \mathrm{~A}\) standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2-Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops


Horizontal Spacing in Beams ACI 25.2.1

1 inch
db
4/3 max aggregate
\begin{tabular}{|c|c|c|c|c|}
\hline Type of standard hook & Bar size & Minimum inside bend diameter, in. & Straight extension \({ }^{\text {(1) }}\) \(\ell_{c x}\), in. & Type of standard hook \\
\hline \multirow[t]{2}{*}{90 -degree hook} & No. 3 through No. 5 & \(4 d_{b}\) & Greater of \(6 d_{b}\) and 3 in. & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & \(12 d_{b}\) & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 135-degree } \\
& \text { hook }
\end{aligned}
\]} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[b]{2}{*}{Greater of \(6 d_{b}\) and 3 in .} & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & & \\
\hline \multirow[t]{2}{*}{180-degree
hook} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[b]{2}{*}{Greater of \(4 d_{b}\) and 2.5 in .} & \multirow[t]{2}{*}{} \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & & \\
\hline
\end{tabular}
\({ }^{11}\) A standard hook for stirups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.
- For the example beam, determine the required spacing, Sv and Sh , for the bar size used.
- horizontal spacing in beams ACI 25.2.1

Sh greater than
- vertical spacing in beams

ACl 25.2.2
1 inch

Table 25.3.2-Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops


Horizontal Spacing in Beams ACl 25.2.1

1 inch
db
4/3 max aggregate
\begin{tabular}{|c|c|c|c|c|}
\hline Type of standard hook & Bar size & Minimum inside bend diameter, in. & Straight extension \({ }^{\text {(1I) }}\) \(\ell_{a r n}\) in. & Type of standard hook \\
\hline 90 -degree hook & \begin{tabular}{|c} 
No. 3 \\
through \\
No. 5 \\
\hline No. 6 \\
through \\
No. 8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 4 d_{b} \\
& 6 d_{b}
\end{aligned}
\] & \begin{tabular}{l}
Greater of \(6 d_{b}\) and 3 in. \\
\(12 d_{b}\)
\end{tabular} &  \\
\hline \multirow[t]{2}{*}{135-degree hook} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[b]{2}{*}{Greater of \(6 d_{b}\) and 3 in .} &  \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & &  \\
\hline \multirow[b]{2}{*}{180-degree hook} & No. 3 through No. 5 & \(4 d_{b}\) & \multirow[b]{2}{*}{Greater of \(4 d_{b}\) and 2.5 in .} &  \\
\hline & No. 6 through No. 8 & \(6 d_{b}\) & &  \\
\hline
\end{tabular}
\(\pi_{\text {A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall }}\) be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook

Flexural bar \#9
\[
b=15 "
\]
db=1.128"
5 Flexural bars
Stirrup bar \#4
db=0.5"
Aggregate \(=3 / 4 "\)

Cover 1.5"
- For the given stirrup size determine the bend radius for a \(90^{\circ}\) bend.

Minimum inside bend diameter \(=4 \mathrm{db}\)
Minimum inside bend radius?

- Make a sketch showing the proper locations of bars and the stirrup including cover.

Determine put 5 bars in one layer or two layers.
Meet the spacing requirement.

One layer does not pass!

- Make a sketch showing the proper locations of bars and the stirrup including cover.

Put 5 bars in two layers!
- Draw and dimension the depth of the stress block, "a" and the distance to the N.A. from the top of the beam, "c"
\[
a=7.843^{\prime \prime} \quad c=9.227^{\prime \prime}
\]
- Dimension and label "d" and "dc".

\[
\mathrm{y} 1=\mathrm{db} / 2
\]

\(y 2=d b+S v+d b / 2\)
the centroid \(\bar{y}=\frac{\sum \mathbf{A} \times d_{x}}{\sum \mathbf{A}}=(3 y 1+2 y 2) / 5 \quad d=h-d c\)

\section*{Any Questions?}
yifanma@umich.edu

Thank You!
```

