Recitation 7

Three Moment Theorem

Homework problem

Three moment theorem

7. Three Moment Theorem

Use the Three Moment Theorem to determine all reactions and support moments for the given continuous beam.

DATASET: 1 -23-	
Span A	17 FT
Span B	30 FT
Span C	10 FT
Uniform load on span A, w1	5 KLF
Uniform load on span C, w2	4 KLF
Point load on span b, P	44 K
Distance to point load P from R2, D	10 FT

7) Three Moment theorem:

To determine all reactions and support moments for the given continuous beam.

Sc) el Theta on left side of Pz:-

$$= \frac{WL^{2}}{24}$$

$$= \frac{(5 \times 17) \times (17)^{L}}{24} = 1023.5416$$

O3) &1 Theta on right side of R2:-

84) Moment at support R4, M4 :-

Mu= 0 k-ft (pinned end reactions always have a zero moment).

QE) El Treta on left side of R3 :-

$$C10 = 4 rc^{2} = 4 \times 44 \times 30^{2}$$

$$= 1955.55$$

D6) 618 on right side of K3:-

$$e^{18} = \frac{wl^2}{24}$$

$$= \frac{4 \times (10) \times (10)^2}{24}$$

$$= 166.66$$

84) Homent at support K2, M2:-

 $M_1(L_1) + 2M_2(L_1+L_2) + M_3(L_2) = 6(E10_1 + E10_2)$ $O(17) + 2M_2(17+30) + M_3(30) = 6(1023.5416 + 2444.44).$ $O + 94M_2 + 30M_3 = 20807.8896$

94ML+30M3= 20804.8896 — (1)

 $M_3 = 20807.8896 - 94 M_2$

88) Homent at support R3, M3:-

$$H_2(L_1) + 2H_3(L_1+L_2) + H_4(L_2) = 6(610, +6102).$$

$$H_2(30) + 2M_5(40) + 0(10) = 6(1955.55 + 166.66)$$

$$30 \text{ M}_2 + 80 \text{ M}_3 = 12733.26 - 2$$

from @ and @ $30 \text{ M}_2 + 86 \left(\frac{20807.8896 - 94\text{ML}}{30} \right) = 12733.26.$

$$90M_2 + 8(20807.8896 - 94M_2) = 38,199.78$$

 $90M_2 + 166,463.1168 - 752M_2 = 38,199.78$

$$H_3 = 20807 \cdot 8896 - 94(193.75)$$
30
 $H_3 = +86.51$

Kemember of M. and Hs: - These values are in tension. Refer to the graphic below. Because of that we have to write final value as negative.

V = 53.898.

$$V = 52 - 898$$

$$V =$$

Point load P

$$f_{V} = 0 = -53.898 + 86.806 + V - 94$$

$$V = 11.092$$

Qu) Support Reaction, 13:-

$$H = 0 = -36.51 + (-11.092)(10) + K_3(Sqpanc) + (-142)(\frac{Spanc}{2}) + 0$$

$$= -86.51 + (-110.92) + K_3(40) + (-4 \times 10)(\frac{10}{2}) + 0$$

$$= -86.51 + (-110.92) + 10 K_3 - 200$$

$$= -86.51 + (-110.92) + 10 K_3 - 200$$

R2 = 39.748.K

$$F = 0 = R_1 + R_2 + R_3 + R_4 = w1 - P - w2$$

$$0 = 31.102 + 86.06 + 39.743 + R_4 - 85 - 44 - 140$$

$$R_4 = +12.035 \text{ K}$$

Thankyou!!!