Structure II Recitation 3/8

Three Moment Theorem

Before we start ...

Today's Tasks:

Homework Example (Three Moment Theorem) (12 Questions)

Lab Session (Continuous Beam)

Reminder:

Preliminary Report Resubmission: 3/11, Monday (Email Submission)

Tower Testing: 3/20, Wednesday

Use the Three Moment Theorem to determine all reactions and support moments for the given continuous beam.

DATASET: 1 -23-	
Span A	16 FT
Span B	24 FT
Span C	15 FT
Uniform load on span A, w1	7 KLF
Uniform load on span C, w2	3 KLF
Point load on span b, P	68 K
Distance to point load P from R2, D	18 FT

Three-Moment Theorem

- Any number of spans
- Symmetric or non-symmetric

Procedure:

- 1. Draw a free body diagram of the first two spans.
- 2. Label the spans L1 and L2 and the supports (or free end) A, B and C as show.
- 3. Use the Three-Moment equation to solve for each unknown moment, either as a value or as an equation.

 $M_{A}L_{1} + 2M_{B}(L_{1} + L_{2}) + M_{C}L_{2} = 6[EI\Theta_{1} + EI\Theta_{2}]$

Three-Moment Theorem Procedure (continued):

- 4. Move one span further and repeat the procedure.
- In a 3 span beam, the mid-moment from step 3 above (B), can now be solved using the two equations from step 4 and 3 together, by writing 2 equations with 2 unknowns.
- 6. Repeat as needed, always moving one span to the right and writing a new set of moment equations.
- Solve 2 simultaneous equations for 3 spans, or 3 equations for more than 3 spans, to get the interior moments.
- 8. Once all interior moments are known, solve for reactions using free body diagrams of individual spans.
- 9. Draw shear and moment diagrams as usual. This will also serve as a check for the moment values.

Q1: Moment at support R1 (M1) Since its end support, <u>M1 =0</u>

Q2: EI θ on Left Side of R2 Based on the given data: MA = 0 (From Q1) L1 = Span A = 16 ft L2 = Span B = 24 ft

Use the slope diagram to find the EI θ (Course Slides P.8, 3/4) EI θ (Left) = W x L² / 24 = (7 x 16) x 16² / 24 = <u>1194.667</u>

Continuous Beam

- Exterior end moments = 0
- Interior support moments are usually negative
- Mid-span moments are usually positive
- End + Mid = 0.125wL²

Span A	16 FT
Span B	24 FT
Span C	15 FT
Uniform load on span A, w1	7 KLF
Uniform load on span C, w2	3 KLF
Point load on span b, P	68 K
Distance to point load P from R2, D	18 FT

Q4: Moment at support R4 (M4) Since its end support, M4 = 0

Q5: EI θ on Left Side of R3 Based on the given data: $M_{\rm C} = 0$ (From Q4) L1 = Span B = 24 ftL2 = Span C = 15 ft

Use the slope diagram to find the $EI\theta$: $EI\theta(Left) = 7 \times P \times L^2 / 128 = 7 \times 68 \times 24^2 / 128 = 2142$

Q6: EI θ on Right Side of R3 $EI\theta(Right) = W \times L^2 / 24 = (3 \times 15) \times 15^2 / 24 = 421.875$

w 1

Span A	16 FT
Span B	24 FT
Span C	15 FT
Uniform load on span A, w1	7 KLF
Uniform load on span C, w2	3 KLF
Point load on span b, P	68 K
Distance to point load P from R2, D	18 FT

w2L2

Continuous Beam

- Exterior end moments = 0
- Interior support moments are usually negative
- Mid-span moments are usually positive
- $End + Mid = 0.125wL^2$

 $M_{A}L_{1} + 2M_{B}(L_{1} + L_{2}) + M_{C}L_{2} = 6[EI\Theta_{1} + EI\Theta_{2}]$

Q7 & Q8 (M₂ & M₃)

Plug in the values into the Three Moment Theorem: <u>First Formula:</u> $M_A = 0, L1 = 16 \text{ ft}, L2 = 24 \text{ ft}, EI\theta_1 = 1194.667, EI\theta_2 = 1530, M_B = M_2, M_C = M_3$ $0 \ge 16 + 2 \ge M_2 \ge (16 + 24) + M_3 \ge 24 = 6 \ge (1194.667 + 1530)$ **80 x M**₂ + **24 x M**₃ = **16348.002**

Second Formula: $M_{C} = 0, L1 = 24 \text{ ft}, L2 = 15 \text{ ft}, EI\theta_{1} = 2142, EI\theta_{2} = 421.875, M_{A} = M_{2}, M_{B} = M_{3}$ $M_{2} \times 24 + 2 \times M_{3} \times (24 + 15) + 0 \times 15 = 6 \times (2142 + 421.875)$ $24 \times M_{2} + 78 \times M_{3} = 15383.25$

Both tension on top: M2 = -148.00635 k-ft , M3 = -159.948 k-ft

Q9 Support Reaction R1 Draw Free Body Diagram

Span A	16 FT
Span B	24 FT
Span C	15 FT
Uniform load on span A, w1	7 KLF
Uniform load on span C, w2	3 KLF
Point load on span b, P	68 K
Distance to point load P from R2, D	18 FT

 $\Sigma M \text{ at } R2 = 0:$ <u>R1 x Span A + M₂ - (w1 x Span A) x (Span A / 2) = 0</u> R1 x 16 + 148.00635 - (7 x 16) x (16 / 2) = 0 R1 = (112 x 8 - 148.00635) / 16 = <u>46.75 k</u>

R1 - (w1 x L) + V2 = 0V2 = (7 x 16) - 46.75 = 65.25

Q10: Support Reaction R2 Draw Free Body Diagram

 $\Sigma M \text{ at } R3 = 0: \qquad M$ <u>R2 x Span B + M3 - P x (Span B - D) - M2 - V2 x (Span B) = 0</u> R2 x 24 + 159.948 - 68 x (24 - 18) - 148.00635 - 65.25 x 24 = 0 R2 = (408 + 148.00635 + 1566 - 159.948) / 24 = <u>81.75 k</u>

Q12: Support Reaction R4
Draw Free Body Diagram

 ΣM at R3 = 0:

 $\frac{(w2 \times \text{Span C}) \times (\text{Span C} / 2) - M3 - R4 \times \text{Span C} = 0}{(3 \times 15) \times (15 / 2) - 159.948 - R4 \times 15 = 0}$ R4 = (337.5 -159.948) / 15 = <u>11.837 k</u>

Q11: Support Reaction R3 Look at the whole beam

 $\Sigma Fy = 0$:

 $\frac{(R1 + R2 + R3 + R4) = (w1 \times Span A) + P + (w2 \times Span C)}{(46.75 + 81.75 + R3 + 11.837) = 7 \times 16 + 68 + 3 \times 15}$

R3 = <u>84.663 k</u>

Span A	16 FT
Span B	24 FT
Span C	15 FT
Uniform load on span A, w1	7 KLF
Uniform load on span C, w2	3 KLF
Point load on span b, P	68 K
Distance to point load P from R2, D	18 FT

[visible confusion]

Continuous Beams

Description

This project uses observation to understand the behavior of beams continuous over multiple supports.

Goals

To observe the behavior of continuous beams under different loadings To estimate locations of contraflexure and effective lengths

To determine areas of positive and negative moment based on curvature

Procedure

- Using the 24 inch stick, position the supports and loads (with your finger) as shown in the diagrams below. Hold the beam down on the reactions if it lifts up.
- 2. For each case observe and draw the elastic curve.
- Label + and curvature (moment) and points of contraflexure.
- 4. Estimate the effective lengths, Le, across the beam. (between points of M=0)

Lab Session:

Step 1: Draw the elastic curve Step 2: Label curvature with + or – Step 3: Label the points of contraflexure Step 4: Estimate the effective lengths (Total L is 24 inch)

