Structure II Recitation 2/9

Steel Beam Analysis

Before we start ...

Today's Tasks

1. Homework Example (Steel Beam Analysis) (17 Questions)
2. Lab (Steel Beams)

Reminder

1. Don't forget to start your report!
2. Scale besides Peter's office if needed.

Go to Structure Website >> Tower 1

Description
This project gives students the chance to apply concepts learned in column analysis to the design of a structural system that carries primarily a compression load - a tower. Work is to be done in groups of up to four people. The project is divided into 3 parts: 1) initial conceptual design, 2) design development and testing, 3) final analysis and documentation.

Goals

- to explore design parameters of geometry and material under compression.
- to develop a design of a compression member to meet the criteria below.
to make some rough hand calculation to estimate the expected performance.
- to test the compression member and record the resuits.
- to document the results in a well organized and clear report format

Criteri

The tower is to be made of wood. Either linear wood (sticks) or wood panels (sheets) can be used. Glue can be used to connect the elements. Gusset plates at the joints are allowed and can also be glued. But no steel pins or fasteners may be used.

- Wood: any species. maximum cross-sectional dimension $=1 / 4^{\text {n }}$
- NO paper, mylar or plastic or string or dental floss.
- If a member is made by laminating multiple pleces together, the maximum cross-sectional dimension or thickness still cannot exceed $1 / 4^{*}$.
- The height of the tower $=48^{\prime \prime}$.
- The tower must hold at least 50 lbs
- The entire tower can weigh no more than 4 oz
- The top of the tower must be loadable. The weights will be stacked on top of the tower, but you may optionally use a loose piece of MDF or plywood as a tray under the weights. (It will not be counted in either weight or load)
- Towers will be graded on their low weight, high load-carrying capacity, and the load/weight ratio. The evaluation formula is:
(4/weight in OZ) + (load in LBS/50) + (load LBS/weight OZ) x1.5
- The score will be normalized to a range of 50 to 100 . It is used together with report scores to assess your project (a detalled evaluation form is given separately).

Procedur

1. Develop a structural concept for a tower meeting the above criteria.
2. Analyze the design concept with either hand calculations or a computer program (e.g. Dr. Frame)
3. Determine the capacity of the major members and of the overall tower (total capacity in LBS)
4. Estimate your expected score using the formula above.
5. Write the preliminary report.
6. Construct the structural model.
7. Test the model. 5 -pound steel bars will be placed on top of the model, until the model fails.

8. Produce final report documenting requirements and process. See also score sheet

Due Dates
See Course Schedule

Scoring
Preliminary Report
Testing
Final Report

40 pts
60 pts
60 pts
150 pts

Tower Project - Preliminary Report Requirements

1 Explanation - describe how the design was developed, the basis of the structural concept, and how the principles of column behavior influenced the design decisions.
Illustration - include diagrams/drawings that describe the structure in its entirety. At least a horizontal cross section and an elevation of the tower are required. Dimensions are to be included and the member sizes labeled.
3 Analysis - the report should include the following:
Choose wood type and stress properties. Either use values below for typical model grade Basswood or use values in the NDS or find test values online. Indicate in the report which values you choose F'c. The force P cans-sectional area of each member. Find ed truss analysis or as a second oster analysis in Dr. Frame or STAAD. Pro. The stress F'c should be found using the NDS equations for C and $\mathrm{F}^{\prime} \mathrm{c}$. Other NDS stress adjustment factors ($\mathrm{CD}, \mathrm{Cm}, \mathrm{C}, \mathrm{C}=$ and C) can be taken equal to 1.0. Size members based on the predicted load, P and the allowable stress F ' . Target (or predict) some total capacity load for the tower. A minimum of 50 LBS is required. Then size the members based on the orce in each member.
Predict the total weight of the tower. Provide a table with each member type showing, length, section and weight for each. Make an estimate of the weight added by glue joints and/or gusset plates. The tota
Predict Capacity. Predict the ultimate capacity in pounds that the entire tower can carry based on actual cross-sections chosen. Produce a utilization table to show for each member type (e.g. main vertical, horizontal tie, diagonal brace) the utilization ratio fc/F'c based on the predicted total capacity load. This ratio should be below 1.0 for all members.
Calculate the buckling capacity of the tower as a whole. This is done by treating the tower as one the tower cross-section, and use it to calculate the criticitiple columns. Show the moment of inertia of xample of this calculation is given in the slides from thital buckling load using the Euler equation. An of the two capacities (critical member or tower as a whole).
Note: If an excel spreadsheet is used to make calculations, show the equations being used for each eell or column in the table. If STAAD.Pro or Dr. Frame is used to do any of the above, include print-outs showing the applied loads and resulting member forces
Format - Reports should be formatted for $81 / 2 \times 11$ paper. 11×17 format reports will not be accepted. Once eturned to you graded, save the original copy of the preliminary report for submission together with the Final Report.
The report is a professional document. Text should be clear, grammatically correct, and language should e appropriate and professional. All calculations should be legible and clearly described - not just numbers or results, but with a clear description of what is being calculated included.

```
Properties of Basswood: (like in the Media Center)
Density (oven dry) 20 pcf
E (buckling)
F (Compression || to grain)
F}\mathrm{ (Compression }\perp\mathrm{ to grain)
F}\mathrm{ (Tension || to grain)
F (Tension \perp to grain)
F (Shear || to grain)
F (Flexure)
* from httpil/www.matweb.com/
,650,000 psi \({ }^{\text {*. }}\)
4745 psi
377 psi *
4500 psi (estimate)
348 psi
86 psi
5900 psi *
tested by PvB (small pieces in compression)
```

Winter 2024
Home
Modules

Assignments
Files
Announcements \varnothing
Discussions \varnothing
Grades
People
Pages
Quizzes
Collaborations
BigBlueButton
Item Banks
Canvas Course
Manager
Media Gallery
NameCoach Roster

三 ARCH 324001 WN 2024 ＞Files＞Steel

Search for files	Q	\odot	Q_{Q}	\downarrow	\downarrow	前	1 item selected

－■ ARCH 324001 WN 2024
－\square Beam Equations
－㠯 Concrete
－b course＿image
－\square Design Loads
－■ Engel＿Book
－■ Masonry
－㠯 Onouye＿Book＿4e
－\ddagger Schodek＿Book＿7e
－\square Steel
－\ddagger Uploaded Media
－b Videos
－b Wood

Name $\boldsymbol{\wedge}$
\＆AISC＿d831．pdf

AISC9＿BeamEquations．PDF
\＆AISC14＿BeamChart．pdf

So AlSC14＿Table4－22．pdf

4. Steel Beam Analysis

Analyze the given W-section for beam B1, to determine the maximum live load capacity the floor can carry. Determine the shear and bending forces and check the maximum deflection against an allowable of L/180. Assume the beam is fully braced, Lb < Lp (zone 1).

DATASET: 1	$-2-$	$-3-$	
W-section			W12X45
Fy			50 KSI
Span A			25 FT
Span B			12 FT
Floor DL			18 PSF

1. Find out LL, 2. Compare Shear, 3. Compare Deflection

Example - Analysis of Steel Beam - Capacity
Find applied live load capacity, w_{LL} in KLF

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{u}}=1.2 \mathrm{w}_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LL}} \\
& \mathrm{w}_{\mathrm{DL}}=\text { beam }+ \text { floor }=44 \mathrm{plf}+1500 \mathrm{plf}
\end{aligned}
$$

Fy = 50 si, Fully Braced

1. Find the Plastic Modulus $\left(Z_{x}\right)$ for the given section from the AISC table 1-1
2. Check that $L_{b}<L_{p}$ (fully braced -ok)
3. Determine $M_{n}=M_{p}=F_{y} Z_{x}$
4. Set $M_{u}=\phi_{b} M_{n}$
$\phi_{b}=0.90$

GIVEN: $F_{y}=50 \mathrm{ksi}$
W 21×44
Fumy Brace

Fora Wzix14 pron Thole $Z_{x}=95.4 \mathrm{~N}^{3}$

$$
\begin{aligned}
& M_{N}=F_{Y} Z_{x}=50_{\mathrm{mm}} \times 95.4=4.770 \mathrm{mN} \\
& M_{0}=\phi_{6} \cdot \mu_{N}=0.9 \times 4.770 \mathrm{kmaN} \\
& M_{0}=4.293 \mathrm{k} .4=357.75 \mathrm{kFT}
\end{aligned}
$$

Example - Analysis of Steel Beam - Capacity
6. Using the maximum moment equation, solve for the factored distributed loading, w_{u}

$$
\begin{aligned}
& M_{0}: \frac{\omega_{0} l^{2}}{8} \Rightarrow \omega_{0}: \frac{8 M_{0}}{l^{2}} \\
& \omega_{0}=\frac{8 \times 357.75 \mathrm{kFT}}{20 \mathrm{kr}^{2}} \\
& \omega_{0}=7.155 \mathrm{k} / \mathrm{FT}
\end{aligned}
$$

7. The applied (unfactored) load

$$
\begin{aligned}
& \mathrm{w}=\mathrm{w}_{\mathrm{u}} /(\gamma \text { factors }) \\
& \mathrm{w}_{\mathrm{u}}=1.2 \mathrm{wDL}+1.6 \mathrm{wLL}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{U}=7.155 \mathrm{kLF}=1.2(0.044+1.5)+1.6\left(\omega_{L L}\right) \\
& \omega_{0}=1.853+1.6 \omega_{L L}=7.155 \mathrm{kLF} \\
& \omega_{L L}=3.31 \mathrm{kLF}
\end{aligned}
$$

Q1: Plastic Modulus of the Section (Zx)
Check AISC 14, Table 1-1, for me p.8(PDF): For W $12 \times 45, \mathrm{Zx}=\underline{\mathbf{6 4 . 2}} \mathbf{i n}^{3}$

- Plastic Behavior (zone 1)

Q2: Nominal Bending Moment (Mn)

Since its full bracing (Zone 1):

$$
\mathrm{Mn}=(\mathrm{Zx}) \times(\mathrm{Fy})=64.2 \times 50=\underline{\mathbf{3 2 1 0} \mathrm{k}-\mathrm{in}}
$$

AISC 14, Table 1-1

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, b_{f}		Thickness, t_{f}		k		k_{1}	T	Workable Gage		
				$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$												
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W12×58	17.0	12.2	$12^{1 / 4}$	0.360	$3 / 8$	3/16	10.0	10	0.640	5/8	1.24	11/2	15/16	$91 / 4$	$51 / 2$		
$\times 53$	15.6	12.1	12	0.345	$3 / 8$	$3 / 16$	10.0	10	0.575	9/16	1.18	$13 / 8$	15/16	$91 / 4$	$51 / 2$		
W12×50	14.6	12.2	$12^{1 / 4}$	0.370	$3 / 8$	3/16	8.08	$81 / 8$	0.640	5/8	1.14	11/2	15/16	91/4	$51 / 2$		
$\times 45$	13.1	12.1	12	0.335	5/16	3/16	8.05	8	0.575	9/16	1.08	13/8	15/16				
$\times 40$	11.7	11.9	12	0.295	5/16	3/16	8.01	8	0.515	1/2	1.02	13/8	7/8				

$\begin{aligned} & \text { Table 1-1 (continued) } \\ & \text { W-Shapes } \\ & \text { Properties } \end{aligned}$														
Nominal	Compact Section Criteria		Axis X-X				Axis Y-Y				$r_{\text {ts }}$	h_{0}	Torsional Properties	
Wt.	b_{t}	h	I	S	r	Z	1	S	r	Z			J	C_{w}
lb/ft	$2 t_{f}$	$\overline{t_{w}}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{6}$
58	7.82	27.0	475	78.0	5.28	85.4	107	21.4	2.51	32.5	2.81	11.6	2.10	3570
53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
50	6.31	26.8	391	64.2	5.18	7.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440

Q3: The Factored Bending Resistance ($\Phi \mathbf{M n}$)
Ф $=0.9$
$\Phi \mathrm{Mn}=\mathrm{Mn} \times 0.9=3210 \times 0.9=\underline{\mathbf{2 8 8 9} \mathrm{k}-\mathrm{i}}$

Q4: The Factored Design Moment (Mu)

We assume $\mathrm{Mu}=\Phi \mathrm{Mn}$ in order to find our LL:
$\mathrm{Mu}=(\Phi \mathrm{Mn})=2889 / 12=\underline{\mathbf{2 4 0}} \mathbf{0 . 7 5 \mathrm { k } - \mathrm { ft }}$

Convert Unit

Q5: The Total Factored Design Load (wu)

Moment for uniformly distributed load $=\left(\mathrm{wx} \mathrm{L}{ }^{2} / 8\right)$
$\mathrm{wu}=\mathrm{Mux} 8 / \mathrm{L}^{2}=240.75 \times 8 / 25^{2}=\underline{\mathbf{3 . 0 8 1 6} \mathbf{k l f}}$

W-section
 W12X45
 $ø \mathrm{M}_{\mathrm{n}}=0.90 \mathrm{M}_{\mathrm{n}}$

Q6: The Total Unfactored Dead Load (w_DL)
Given from Question

Consider: Beam Self Weight + Dead Load

For Beam Self Weight:

Check AISC 14, Table 1-1 for Nominal Weight,
For my situation, self weight $=45 \mathrm{lb} / \mathrm{ft}$

W-section	W12X45
Fy	50 KSI
Span A	25 FT
Span B	12 FT
Floor DL	18 PSF

Span B

For Dead Load:

Floor DL x Tributary Area / Beam Length (Span A)
$=$ Floor DL x Span B = $18 \times 12=216 \mathrm{lb} / \mathrm{ft}$
Convert Unit (pounds to kips)

Total:

$$
(45+216) / 1000=\underline{0.261 \mathbf{k l f}}
$$

Q7: The Total Factored Dead Load (wu_DL)
wu_DL $=$ w_DL x $1.2=0.261 \times 1.2=\underline{\mathbf{0 . 3 1 3 2} \mathbf{k l f}}$

Q8: The Factored Live Load (wu_LL)
$w u _L L=w u-w u _D L=3.0816-0.03132=\underline{\mathbf{2 . 7 6 8 4} \mathbf{k l f}}$

Q9: The Actual Beam Live Load (w_LL)

$$
\mathrm{w}_{-} L L=\text { wu_LL } / 1.6=2.7684 / 1.6=\underline{\mathbf{1} .73025 \mathrm{klf}}
$$

W-section

W12X45
50 KSI
25 FT
12 FT
18 PSF

Q10: The Actual Floor Live Load (LL)

$$
\begin{aligned}
& \text { LL = w_LL / Span B } \\
& =(1.73025 / 12) \times 1000=\underline{\mathbf{1 4 4 . 1 8 7 5} \mathbf{p s f}}
\end{aligned}
$$

Convert Unit (kips to pounds)

Q11: The Maximum Factored Design Beam Shear Force (Vu_max):

Q12: The Web Area (Aw):

Formula: $A w=d x$ tw
Check AISC 14, Table 1-1 for d \& tw:

$$
A w=12.1 \times 0.335=\underline{4.0535 \mathrm{in}^{2}}
$$

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

$V_{x} \quad \ldots \ldots \ldots=w\left(\frac{l}{2}-x\right)$
$M_{\max }$ (at center) $=\frac{w l^{2}}{8}$
$M_{x} \quad \ldots$.
$\Delta_{\max }($ at center $) \ldots \ldots c=\frac{5 w l^{4}}{384 E I}$
$\Delta_{x} \quad \cdots \ldots \ldots$.

Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				$\boldsymbol{k}_{\text {des }}$	$\boldsymbol{k}_{\text {det }}$												
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W12×58	17.0	12.2	$12^{1 / 4}$	0.360	$3 / 8$	3/16	10.0	10	0.640	5/8	1.24	$11 / 2$	15/16	$91 / 4$	$51 / 2$		
$\times 53$	15.6	12.1	12	0.345	$3 / 8$	$3 / 16$	10.0	10	0.575	9/16	1.18	$13 / 8$	15/16	$91 / 4$	$51 / 2$		
W12×50	14.6	$1{ }^{12} 2$	$12^{1 / 4}$	0.370	$3 / 8$	3/16	8.08	$81 / 8$	0.640	$5 / 8$	1.14	$11 / 2$	15/16	$91 / 4$	$51 / 2$		
$\times 45$	13.1	12.1	12	0.335	5/16	3/16	8.05	8	0.575	9/16	1.08	$13 / 8$	15/16				
$\times 40$	11.7	11.9	12	0.295	3/16	3/16	8.01	8	0.515	1/2	1.02	13/8	7/8				

$\begin{gathered} \text { Nom- } \\ \text { inal } \\ \text { Wt. } \end{gathered}$	Compact Section Criteria		Axis X-X				Axis Y-Y				$r_{\text {ts }}$	h_{0}	Torsional Properties	
		h	I	S	r	Z	I	S	r	Z			J	C_{w}
lb/ft	$2 t_{f}$	$t_{\text {w }}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{6}$
58	7.82	27.0	475	78.0	5.28	86.4	107	21.4	2.51	32.5	2.81	11.6	2.10	3570
53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
50	6.31	26.8	391	64.2	5.18	71.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440

Q13: The Factored Shear Resistance (phi Vn)

W12X45

Q14: Is the section safe for shear?

From Q12

Check if $($ phi Vn $)>($ Vu_max $)$,
 From Q13 From Q11

If yes = Pass,
If no = Fail,

For my situation:
121.605 (phi Vn) >38.52 (Vu_max), It's a Pass!

Zone 2:

NELASTIC WEB BUCKLING

if $2.45 \sqrt{E / F_{y}}<\frac{h}{t_{x}} \leq 3.07 \sqrt{E F_{y}}=74$ (for 50 ksi steel)
then: $\quad V_{n}=0.6 F_{y} A_{\sim}(2.45 \sqrt{E / F}) / \frac{h}{t_{\sim}}$

ELASTIC WEB BUCKLING

Q15: The Actual (Unfactored) Deflection Due to Total DL+LL

Deflection $=\left(5 \times \mathrm{w} \times \mathrm{L}^{4}\right) /(384 \times \mathrm{Ex}$ I)
AISC 9, Beam Equations, p. 2 (PDF) ($\mathrm{E}=29000 \mathrm{ksi}$)
(I: Check AISC 14, Table 1-1, I = 348)
(L: Given from question (Span A))
$\left(\mathrm{w}=\mathrm{w} _\mathrm{LL}+\mathrm{w}_{\mathrm{L}} \mathrm{DL}=1.73025+0.261=1.991\right)$
Actual Deflection Unfactored Loads (Q9+Q6)
$=\left(5 \times 1.991 \times 25^{4}\right) /(384 \times 29000 \times 348) \times(12)^{3}$
$=1.734$ in

Q16: The Deflection Limit (L/180)

$\mathrm{L} / 180=25(\operatorname{Span} \mathrm{~A}) \times 12 / 180=\underline{\mathbf{1 . 6 6 7}} \mathrm{in}$

Convert Unit

$\mathrm{E} \quad=$ Modulus of Elasticity of steel at $29,000 \mathrm{ksi}$.

Beam Load and Support	
Actual Deflection	
(a) Uniform load, simple span	Δ

Nominal Wt.	Compact Section Criteria		Axis X-X				Axis Y-Y				$r_{\text {ts }}$	h_{0}	Torsional Properties	
			I	S	r	Z	1	S	r	Z			J	$c_{\text {w }}$
lb/ft	$\frac{D_{t}}{2 t_{f}}$	t_{w}	in ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{6}$
58	7.82	27.0	475	78.0	5.28	86.4	107	21.4	2.51	32.5	2.81	11.6	2.10	3570
53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
50	6.31	26.8	3.1	64.2	5.18	71.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440

Q17: Maximum Allowable Axial Load Capacity (Pmax)

AISC 14, Table 1-1
Check if the actual deflection (Q15) is smaller than the deflection limit (Q16), If yes = Pass, If no = Fail,
For my situation: $1.734>1.667$, It's a Fail!

Questions?

Boon
\qquad

Lab Session:

\qquad

Goals:

Compare the load capacity of a free edge member in different orientations.

Steps:

1. Record the total number of washers each orientation holds when it fails.
2. Compare which one carries more load.

Description
This project uses observation to understand how unbraced compression edges and lateral torsional buckling reduce the ultimate load capacity of steel beams.

Goals

To observe the behavior of unbraced section edges in compression vs tension. To measure capacity loss due to lateral torsional buckling.

Procedure

1. Position the U shaped section with the free edges on the upper side of the span
2. Test how many washers the section can support at mid span. Use a wood block to position the load. Observe the mode (how) it fails.
3. Repeat the procedure with the section inverted and the free edges downward.
4. Compare the load level carried by each orientation of the paper beam and describe the behavior under load.
5.
6.

