Structure II Recitation 2/16

Steel Beam Design

Before we start ...

Today's Tasks

- 1. Homework Example (Steel Beam Analysis) (14 Questions)
- 2. Tower Project Explanation (A little bit Dr. Frame)
- 3. Lab (Steel Column)

<u>Reminder</u>

- 1. <u>Submit the report no later than next Friday.</u>
- 2. Submit the report on canvas.
- 3. Scale beside Peter's office if needed.

Winter 2024	Î	ARCH 324 001 W	N 2024 \rightarrow Files	> Steel		
Home	ø				• •	
Assignments		Search for files	Q	\$ ₹		1 item selected
Files)24		N	lame 🔺
Announcements	ø	 Beam Equations Concrete 				AISC_d831.pdf
Discussions	ø	► course_image				
Grades		Design Loads				AISC9_BeamEquations.PDF
People		 Engel_Book Masonry 				
Pages		► Onouye_Book_4e				AISC14_BeamChart.pdf
Quizzes		<u>Chodek_Book_7e</u> Staal				AISC14 Table1 1 add
Collaborations		 D Uploaded Media 				AISC14 Table1-1.pdr
BigBlueButton		▶ 🖻 Videos				AISC14_Table3-2.pdf
Item Banks		► 🖻 Wood				
Canvas <mark>Cour</mark> se Manager						AISC14_Table4-22.pdf
Media Gallery						T MobileEngineerApp.txt
NameCoach Ros	ter					

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

Steps: Calculate wu, Mu, Mn (Neglect Self Weight) \rightarrow Get estimated Zx \rightarrow Find actual Zx \rightarrow Recalculate wu, Mu, Mn (Consider Self Weight)

Design of Steel Beam - Procedure (zone 1)

- 1. Use the maximum moment equation, and solve for the ultimate moment, M_u.
- 2. Set $\phi M_n = M_u$ and solve for M_n
- 3. Assume Zone 1 to determine Z_x required
- 4. Select the lightest beam with a Z_x greater than the Z_x required from AISC table
- Determine if h/tw < 59 (case 1, most common)
- 6. Determine A_w : Aw = d t_w
- 7. Calculate V_n : $V_n = 0.6 F_y A_w$
- 8. Calculate Vu for the given loading $V_u = w_u L / 2$ (e.g. unif. load)
- 9. Check $V_u < \phi V_n$ ϕ for V = 1.0
- 10. Check deflection

GINEL: Fy = 50 KS, FULLY BRACED
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
Mu: W. 12 2200 PUS. 30 M2
Mu: 247,500 # FT = 247.5 KET
MN = MU/06 = 247.5KFr = 275KFT

Q1: The Unfactored Floor Dead Load on the Beam (Neglecting Self Weight) (w_DL*) w_DL* = Floor DL x Tributary Area / Span A = Floor DL x Span B = 24 x 16 = <u>384 plf</u>

Q2: The Unfactored Floor Live Load on the Beam (w_LL) w_LL = Floor LL x Tributary Area / Span A = Floor LL x Span B = 95 x 16 = <u>1520 plf</u>

Q3: The Total Factored Design Load on the Beam (Neglecting Self Weight) (LL*) wu* = 1.2 x (w_DL*) + 1.6 x (w_LL) = (1.2 x 384 + 1.6 x 1520) / 1000 = <u>2.8928 klf</u>

Convert Unit (Pounds to Kips)

Given from Question

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

$$w_{u} = 1.2w_{DL} + 1.6w_{LL}$$

Q4: The Factored Design Moment (Neglecting Self Weight) (Mu*) $Mu^* = wu^* \ge L^2 / 8 = 2.8928 \ge 27^2 / 8 = 263.6064 \text{ k-ft}$ from Q3

Q5: The Nominal Bending Moment (Neglecting Self Weight) (Mn*) We assume $Mu^* = \Phi$ Mn in order to find Mn, Since $\Phi = 0.9$, $Mn^* = Mu^* / 0.9 = 263.6064 / 0.9 \text{ x } 12 = 3514.752 \text{ k-in}$ from Q4 Convert Unit

Q6: The Plastic Modulus of the Section (Neglecting Self Weight) (Zx*) Since the beam is fully braced (Lb < Lp): Zone 1, We can use the formula: $Mn = Fy \times Zx^*$

 $Zx^* = Mn / Fy = 3514.752 / 50 = 70.295 in^3$

Given from Question

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

øM_n = 0.90 M_n

 $Mn = F_y Z_x$

Q7: The Nominal Depth of the Lightest Passing W-Section from the Zx table (Include Self Weight)

Check AISC 14, Table 3-2, for me: p.5 (PDF), Find the smallest Zx that is bigger than the Zx* we calculated previously (Look at the ones with **bold stroke** and ignore the ones with a strikethrough)

For my situation: W18x40

Nominal Depth = $\underline{18in}$

Q8: The Weight of the Lightest Passing W-Section from Zx table (Include Self Weight)

Weight = 40 plf

Q9: The Weight of the Lightest Passing W-Section from Zx table (Include Self Weight)

 $Zx = 78.4 in^3$

Not 1	7	M_{px}/Ω_b	ф ь М рх	M_{rx}/Ω_b	ф bMrx	BF/Ω_b	ф _bBF	1 1 28	the later A	1.	V_{nx}/Ω_v	φ ν V ηχ
Shape	Zx	kip-ft	kip-ft LRFD	kip-ft ASD	kip-ft	kips	kips	4 L P -0	4	IX.	kips	kips
GREE - BAR	in.3	ASD			LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD
W21×55	126	314	473	192	289	10.8	16.3	6.11	17.4	1140	156	234
W14×74	126	314	473	196	294	5.31	8.05	8.76	31.0	795	128	192
W18×60	123	307	461	189	284	9.62	14.4	5.93	18.2	984	151	227
W12×79	119	297	446	187	281	3.78	5.67	10.8	39.9	662	117	175
W14×68	115	287	431	180	270	5.19	7.81	8.69	29.3	722	116	174
W10×88	113	282	424	172	259	2.62	3.94	9.29	51.2	534	131	196
W18×55	112	279	420	172	258	9.15	13.8	5.90	17.6	890	141	212
W21×50	110	274	413	165	248	12.1	18.3	4.59	13.6	984	158	237
W12×72	108	269	405	170	256	3.69	5.56	10.7	37.5	597	106	159
W21×48 ^f	107	265	398	162	244	9.89	14.8	6.09	16.5	959	144	216
W16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	212
W14×61	102	254	383	161	242	4.93	7.48	8.65	27.5	640	104	156
W18×50	101	252	379	155	233	8.76	13.2	5.83	16.9	800	128	192
W10×77	97.6	244	366	150	225	2.60	3.90	9.18	45.3	455	112	169
W12×65 ^t	96.8	237	356	154	231	3.58	5.39	11.9	35.1	533	94.4	142
W21×44	95.4	238	358	143	214	11.1	16.8	4.45	13.0	843	145	217
W16×50	92.0	230	345	141	213	7.69	11.4	5.62	17.2	659	124	186
W18×46	90.7	226	340	138	207	9.63	14.6	4.56	13.7	712	130	195
W14×53	87.1	217	327	136	204	5.22	7.93	6.78	22.3	541	103	154
W12×58	86.4	216	324	136	205	3.82	5.69	8.87	29.8	475	87.8	132
W10×68	85.3	213	320	132	199	2.58	3.85	9.15	40.6	394	97.8	147
W16×45	82.3	205	309	127	191	7.12	10.8	5.55	16.5	586	111	167
W18×40	78.4	196	294	119	180	8.94	13.2	4.49	13.1	612	113	169
W14×48	78.4	196	294	123	184	5.09	7.67	6.75	21.1	484	93.8	141
W12×53	77.9	194	292	123	185	3.65	5.50	8.76	28.2	425	83.5	125
W10×60	74.6	186	280	116	175	2.54	3.82	9.08	36.6	341	85.7	129
W16×40	73.0	182	274	113	170	6.67	10.0	5.55	15.9	518	97.6	146
W12×50	71.9	179	270	112	169	3.97	5.98	6.92	23.8	391	90.3	135
W8×67	70.1	175	263	105	159	1.75	2.59	7.49	47.6	272	103	154
W14×43	69.6	174	261	109	164	4.88	7.28	6.68	20.0	428	83.6	125
W10×54	66.6	166	250	105	158	2.48	3.75	9.04	33.6	303	74.7	112
	100	- has be	1 1 23	e little	1.08	Real Prover	W. Ala	1 C. C. C.	1366	16	1. La 17	2000

Q10: The Revised Unfactored Dead Load on the Beam (Including Self Weight) (w_DL)

w_DL = Dead Load + Self Weight =
$$384 + 40 = 424 \text{ plf}$$

From Q1 From Q8

Q11: The Total Factored Design Load on the Beam (Including Self Weight) (wu)

$$wu = 1.2 x (w_DL) + 1.6 x (w_LL)$$

= (1.2 x 424 + 1.6 x 1520) / 1000 = 2.9408 klf
from Q10 From Q2

Q12: The Factored Design Moment (Including Self Weight) (Mu) (in k-ft)

$$Mu = wu \ge L^2 / 8 = 2.9408 \ge 27^2 / 8 = 267.9804 \text{ k-ft}$$

Given from Question

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

$$w_u = 1.2w_{DL} + 1.6w_{LL}$$


```
Q13: The Factored Design Moment (Including Self Weight)
(Mu) (in k-in)
Mu (k-in) = Mu(k-ft) x 12 = 267.9804 x 12 = <u>3215.7648 k-in</u>
From Q12
```

Q14: The Nominal Factored Bending Moment for the chosen section (Φ Mn)

$$\Phi$$
 Mn = 0.9 x Fy x Zx = 0.9 x 50 x 78.4 = 3528 k-in
f
From Q9

Given from Question

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

 $\phi M_n = 0.90 M_n$

 $Mn = F_v Z_x$

H	File Edit View Modeling Options	Loads Envelopes Plots Help
	ጋ 🚅 🖬 🛍 🎒 💡 🖉 💆	▶ ឝ ឝ [Ϝμ Ͼμ 】 】 □ σ ℭ ℂ ℰ ሬ μ≇ μ ^ϭ
k	■ □ ×	Scratch Scratch oad V V Load Factor On Load Mgr
Q	🗆 Units	Educational License
sm	n 🖃 Units System U.S.	
× (Length ft	
60	Displacement in	Click Modeling – 2nd Order Analysis
2	Rotation rad	
13.7	Elastic Modulus ksi	
7	Moment of Inertia in^4	
+ ap	Force k	
	Momeni k'	Change Units
↓ ^µ	Distributed Load k/ft	
Wo	Area in^2	
CM	Section Modulus in^3	
G	Number	
JL	Areal oad pef	
777	Stress kei	
	Soring Stiffness k lin	
2	Bat Caring Stiffness Iv Brand	
	Orientation dea	
=0=	Castian Discussion in	
¥	Density It-2002	
୍ତ	Density IDS/It 3	
শ্ব	Warping Dimension in 6	
1	Displacement Scale 50 Use the I	hin-Ended Member Tool
*	Load Scale 1	
1+1	Dist Load Scale 200	
66	Moment Scale 0.025	
	Axial Color Scale 1	
	Stress Color Scale 1	
	Stress Glyph Scale 1	Change Grid Lengths
	Stress Threshold 0 ksi	1
	Arrow Head Scale 1	=====Support Reactions=======
	Grid Settings	$\begin{bmatrix} ID & R_x(k) & R_y(k) & M_z(k') \end{bmatrix}$
	<nx, ny=""> <20, 15></nx,>	1 2.1062 10.0000 0.0000
	<dx, dy=""> <2.0, 2.0> ft</dx,>	2 -2.1062 10.0000 0.0000
	Origin <-4.0, -4.0> ft	
	Model Summary	=====Joint Displacements======

🕂 Dr. Frame2D 3.0 - [DrFWin1]

H File Edit View Modeling Options Loads Envelopes Plots Help

□ 😅 🖬 🖶 😵 🖉 🕫 🕫 🐓 🏞 🎞 🖼 🖓 🕫 🖓 🧭 🖉 🖉 🗛 🖓

k	Casting Data		Scratch	▼ S	cratch Load	✓ Load Fac	tor On Load Mgr		
Ó	E Section Data	Custom			TO				
-	Section Type	Custom 1	Education	nal License Section	1 Type: Cu	stom			
Sub	Custom Sections	ClossSection 1		Section	Subturner	Destangul			
61	Depth	14 in		- Section	subtype:	Rectangui	al		
50	Width	12 in					R.		
+	Properties	Area = 168 in^2							
100	In-plane Axis	Strong Axis							
+ap	Lateral Bracing	No							
-	El Reduction	1	L						
+ ^P	Material Properti	es							
F	Elastic Modulus	1650 ksi		Materia	al Properti	es:			
CM	Yield Stress	4.745 ksi				neity based			
4	Density	20 lbs/ft^3		- Change	^z L, Py, De	lisity Dased			
₩	Shear Modulus	634.6 ksi		the valu	ies on the	brief			
0	End Conditions		ľ						
	End 1 Fixity	Hinged							
*	Rotational Stiffnes	s 0 k-ft/rad							
=⊙=	End 2 Fixity	Hinged							
Ł	Rotational Stiffnes	is 0 k-ft/rad							
1	🗆 Misfit								
Q	Length Misfit	0 in							
+/									
-									
1									
Ŧ									
							-	Properties of Basswood: (I	ike in the Media Center)
								Density (oven drv)	20 pcf *
								E (buckling)	1 650 000 pci **
								E (Ducking)	1,050,000 psi
				=====Support Re	actions=====			 F (Compression to grain) 	4745 psi *
			ID	R x (k)	R y (k)	M z (k')		F (Compression \perp to grain)	377 psi *
			1	1.5284	10.0000	0.0000		E (Tonsion to grain)	AEOO poi (potimente)
			2	-1.5284	10.0000	0.0000		r (rension to grain)	4500 psi (estimate)
				222 22 844				F (Tension ⊥ to grain)	348 psi *
				=====Joint Disp	lacements===			E (Shear to grain)	986 psi *
			ID	U_x (in)	U	y (in)	Theta_z (rad)		
			0	0.000000e+00	0.0000	000e+00	-3.134861e-07	F (Flexure)	5900 psi *

Place currer over a member for info

ñ	Dr. Frame2D 3.0 - [DrFWin1]			<u> </u>
HÌ	File Edit View Modeling Options	Loads Envelopes Plots Help		
D	🗃 🖬 🖶 💡 🖉 🕅 🏷	*) ឝ̃̃̃ μ 🖾 🕼 🖉 σ σ 🖉 🕑 🖉 🛦 🗚	A	
_		Scratch and V Load Fa	star On Load Mar	
R	Document Data			
9	⊞ Units	Educational License		
m				
~	Grid Settings			
rd .	Model Summary		7.0 k	
2	Member Count 10			
3.7	Wall Count 0		10.0 k	
ab	Joint Count 6			
	Support Count 2			
P	Active Load Count 2			
10	Total Weight 73.39 k			
*1				
-				
IL				-1 K
-		Comment Discular Channel Dama Wilson		
2	Options – Force & I	Moment Display – Show Force value		
0⊨				
ł	Options Member	Display Show Avial Force Value		
ହ	Options – Member	Display – Show Axial Police Value		
A				
	Ontions – Member	Display - Tension/Compression Coloring		
+î	Options - Member	Display - Tension, Compression Coloring		
-				
		Support Reactions		
		ID $R \times (k)$ $R \vee (k)$ $M \ge (k')$		
		1 1.5284 10.0000 0.0000		
		2 -1.5284 10.0000 0.0000		
		======Joint Displacements========		
		ID U_x (in) U_y (in)	Theta_z (rad)	
			-3.1340012-07	

Tower Preliminary Report

Explanation – describe how the design was developed, the basis of the structural concept, and how the principles of column behavior influenced the design decisions.

Illustration – include diagrams/drawings that describe the structure in its entirety. At least a horizontal crosssection and an elevation of the tower are required. Dimensions are to be included and the member sizes labeled.

Analysis - the report should include the following:

- Choose wood type and stress properties. Either use values below for typical model grade Basswood
 or use values in the NDS or find test values online. Indicate in the report which values you choose.
- Determine the cross-sectional area of each member. Find the axial force P and the allowable stress
 F'c. The force P can be determined either by a hand calculated truss analysis or as a second order
 analysis in Dr. Frame or STAAD.Pro. The stress F'c should be found using the NDS equations for CP
 and F'c. Other NDS stress adjustment factors (CD, CM, Ct, CF and Ci) can be taken equal to 1.0. Size
 members based on the predicted load, P and the allowable stress F'c. Target (or predict) some total
 capacity load for the tower. A minimum of 50 LBS is required. Then size the members based on the
 force in each member.
- Predict the total weight of the tower. Provide a table with each member type showing, length, section
 and weight for each. Make an estimate of the weight added by glue joints and/or gusset plates. The total
 weight should be under 4 OZ.
- Predict Capacity. Predict the ultimate capacity in pounds that the entire tower can carry based on the
 actual cross-sections chosen. Produce a utilization table to show for each member type (e.g. main
 vertical, horizontal tie, diagonal brace) the utilization ratio fc/F'c based on the predicted total capacity
 load. This ratio should be below 1.0 for all members.
- Calculate the buckling capacity of the tower as a whole. This is done by treating the tower as one
 column loaded at the top, made up in cross section of multiple columns. Show the moment of inertia of
 the tower cross-section, and use it to calculate the critical buckling load using the Euler equation. An
 example of this calculation is given in the slides from the class lecture. The ultimate capacity is the lower
 of the two capacities (critical member or tower as a whole).

Note: If an excel spreadsheet is used to make calculations, show the equations being used for each cell or column in the table. If STAAD.Pro or Dr. Frame is used to do any of the above, include print-outs showing the applied loads and resulting member forces.

Properties of Basswood:

Density (oven dry)	20 pcf *
E (buckling)	1,650,000 psi **
Compression to grain)	4745 psi *
(Compression \perp to grain)	377 psi *
(Tension to grain)	4500 psi (estimate)
(Tension \perp to grain)	348 psi *
(Shear 🛚 to grain)	986 psi *
F (Flexure)	5900 psi *

Determine the cross sectional area of each member

Method 1: Use predicted forces to find the cross sectional areas

1. Use Dr. Frame to find the predicted Ps (Axial Force) for each member.

2. Calculate Allowable Stress Fc' using Fc' = Fc (Given) x Cp (Calculated).

3. Use A = P / Fc' to find the estimated A.

4. Pick the dimension for your material that has the cross sectional area bigger than the estimated A.

5. Recalculate the capacities for each members (Buckling + Crushing) (for deciding the critical member, look at the <u>vertical member</u>)

Buckling Load:

$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

Crushing Load:

Allowable Stress:

						• •		• •		* *	
$F_c = F_c$	х	CD	C _M	Ct	-	CF	-	Ci	-	Ср	-

$C_{p} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}}{2c}}$	$\frac{E}{c}$ (3.7-1)
$Fc^* = Fc$ (Given)
where: Since all the factors except	ot $Cp = 1$
F _c = reference compression designed lel to grain multiplied by all ap justment factors except C _p (s	n value paral- plicable ad- ee 2.3), psi
$E_{\rm min}$ (0.822 $E_{\rm min}$) (Le =	= K x L
$\Gamma_{cE} = \frac{(\ell_e/d)^2}{(\ell_e/d)^2}$ Since K =	1 (Pin-Pin),
c = 0.8 for sawn lumber so]	Le = L
c = 0.85 for round timber poles a	nd piles
a 0.0 for structural divid lowing	at a d timber or

c = 0.9 for structural glued laminated timber or structural composite lumber

Method 2: Decide cross-sectional area first to calculate the maximum Ps, then compare the values with the predicted forces to make sure the decision

1. First design the cross sectional areas of your material.

2. Calculate maximum P using P = Fc' x A for each member.

2. Use Dr. Frame to find the predicted Ps (Axial Force) for each member.

4. Compare the predicted forces with calculated maximum Ps, make sure the predicted forces are not bigger than the calculated Ps.

5. If pass, calculate the buckling & crushing capacities to decide which one is the critical load.

Calculate the buckling capacity of the tower as a whole 1. After deciding the dimensions, look at the cross-section of your tower, calculate the moment of inertia.

2. Use the Euler Buckling Equation to calculate the buckling capacity of the whole tower.

Cross Sectional Area $I = \Sigma I + \Sigma A d^2$

Height

Total Cross Sectional

Predict the total weight of the tower

Limit = 4 oz !!!!!!!!!

- 1. Include the estimated glue weight in your predicted weight
- 2. Make a table that includes member weight, area, and length (label all the members)

	SIZE (in)	TOTAL LENGTH (in)	BASSWOOD PROPERTIES DENSITY (Ib/ft^3)	CROSS SECTIONAL AREA (in^2)	WEIGHT(oz)	VOLUME (in^3)
VERTICAL PILLARS	1/4 X 1/4	192	20	0.063	2.222	12
DIAGONAL BRACES	3/32 X 1/8	500	20	0.012	1.085	5.858
HORIZONTAL BRACE	1/8 X1/8	57	20	0.016	0.165	0.891
GLUE					0.3472	
TOTAL					3.891	18.748

WHEN YOUR TO-DO LIST IS DONE!!

Lab Session: Steel Columns

Goal: Find the load capacity

Steps:

1. Measure the dimensions of the column (d, bf, tf)

2. Use the dimensions to find the size (First Chart)

3. Use the size and length to find the capacity (Second Chart) (Assume K = 1)

Steel Columns

Description

This project gives the opportunity to identify steel sections and determine their properties and strength using the AISC tables.

Goals

To identify a steel section based on dimensions.

To determine the sectional properties using AISC table

To determine the load capacity based on AISC column table.

Procedure

- 1. Measure the steel column section shown below. (your GSI will tell you which one)
- 2. Based on the sectional dimensions find the shape in the steel table.
- Use the column table and the given height to find the load capacity. Both columns are A-36 steel (Fy = 36 ksi).

н.		t,	k.	1^k													Y										1	$F_y = 3$	6 ks
н.	1 7		P	ŧ														2			(COLI	UMN	S			1	$F_y = 5$	0 ks
н.				_											x X W shapes														
Ц.,	d	x—	⊢×	T	W SHAPES									Design axial strength in kips ($\phi = 0.85$)															
1	Î	$t_w \rightarrow$	-	+	Dimensions									Ý															
Ц.	<u>¥</u>			ŧ.											Designs	tion	-						A/Q					-	
н.			ľ.	'k												Wt./	t	6	7	5	68		48		40		35		31
1		-	$b_i \rightarrow$						Ass	ume	picki	ing V	W8X	67		Fy		36	50	36	50	36	50	36	50	36	50	36	50
F		T			Web Flance Dis				Distance	•		3	0	603	837	523	727	431	599	358	497	315	438	279	388				
	Desig- Area		Area Depth		Thickr	ness	t <u>r</u>	Wi	dth	Thick	ness	т	k	<i>k</i> ₁		gyration	7 8 9	555 541 526	746 721 693	492 481 469 455	647 624 599	405 396 386 374	549 532 513	335 327 319 309	454 439 423 405	295 288 280 272	399 386 372	261 255 248	354 342 329
1		A In ²		a 	Lw In		2		24		1	10	1-	1-		ls of	10	509	662	441	572	362	470	298	386	262	339	232	300
	0 0 07	10.7	0.00		0.570		5/	0.000	01/	0.025	1.	in.	in,	in.		t radi	11 12	492	631 598	425	544 515	349 335	446	287 275	366 345	252 242	321 303	223 214	284 268
- "	x 58	17.1	8.75	83/4	0.510	1/2	716	8.220	81/4	0.935	13/16	61/8	15/16	11/16	-	leas	14	453	504 529	391	485	306	397	263	324	231	284 265	204	251
н.	x 48	14.1	8.50	81/2	0.400	3/8	3/16	8.110	81/8	0.685	11/16	61/8	13/16	5/8		-2-	15	412	494	355	425	291	347	238	281	208	246	184	217
1	x 40	11.7	8.25	81/4	0.360	3/8	3/18	8.070	81/8	0.560	%16	61/8	11/16	5/8		spec	16	391 370	460	337	394	276	321	225	260	197	228	174	200
	x 31	9.13	8.00	8	0.285	5/16	3/18	7.995	8	0.495	72	6½	15/16	716 9/16		with re	18 19 20	349 328 307	392 3 \$ 9 328	300 281 263	335 307 279	245 229 214	272 249 226	198 186 173	219 200	174 162 151	191 174 157	153 143	168 153
W	8x 28	8.25	8.06	8	0.285	5/16	3/16	6.535	61/2	0.465	7/16	61/8	15/16	%16		I KT	22	267	271	228	231	185	187	148	149	129	130	114	114
	x 24	7.08	7.93	71/8	0.245	1/4	1/8	6.495	6½	0.400	%	6%	7∕8	%16		igth in	24 26 28	228 194	228 194	194 165	194 165	157 134	157 134	125 107	125 107	109 93	109 93	96 82	96 82
1	8x 21	6.16	8.28	181/4	0.250	1/4	1/8	5.270	51/4	0.400	3/8	6%	13/16	1/2		aler	30	146	146	124	124	100	100	80	80	70	70	61	61
	X 10	5.20	0.14	078	0.230	74	78 	5.250	51/4	0.330	716	0%8	9/4	716		flective	32 33	128 120	128 120	109 103	109 103	88 83	88 83	70 66	70 66	61 58	61 58	54 51	54 51
1	8 x15	4.44	8.11	81/8	0.245	1/4	1/8	4.015	4	0.315	9/16	6%	3/4	1/2		Ξ.	34	113	113	97 91	97	78	78	62	62		1		
1	x 10	2.96	7.89	71/8	0.170	3/16	1/8	3.940	4	0.205	3/16	6%	5/8	7/16				10.	101						10				
			0110000													11		1.22					erties	1.20	1.54	1 40	1.55		1.00
W	6x 25	7.34	6.38	6%	0.320	\$/16	3/16	6.080	61/8	0.455	7/16	43/4	13/16	7/16		P _{NO} (kips)	147	205	120	167	86	119	69	96	56	78	48	67
1	x 15	4.43	5.99	6	0.200	1/4	78 1/8	5.990	6	0.365	78 1/4	4%4	9/4 5/6	3/2		P _w (kips	in.)	21	29	18	26	14	20	13	18	11	16	10	14
			0.00	-		1.0		0.000	ľ	0.200			/0			P _{ib} (kips)	1	177	246	133	185	95	132	64	88	50	69	38	55
W	6x 16	4.74	6.28	61/4	0.260	1/4	1/8	4.030	4	0.405	3∕8	43/4	3/4	7/16		L_{p} (ft)		8.8	7.5	8.8	7.4	8.7	7.4	8.5	7.2	8.5	7.2	8.4	7.1
	x 12	3.55	6.03	6 57/-	0.230	34	1/8	4.000	4	0.280	3/	43/4	5/8	3/8		4 (in 2)	-	10	41.9	0.00	36.8	40./	31.1	39.1	26.4	35.1	24.1	32.0	12
	A 8	2.00	0.50	578	0.170	716	78	0.040	1	0.215	716	474	716	78		1/2 (in.4)		27	2	2	28	1	84	1	46	1	27	9.	10
W	/ 5x 19	5.54	5.15	51/8	0.270	1/4	1/8	5.030	5	0.430	7/18	31/2	13/16	7/16		4 (in.4)		88	88.6 75.1		.1	60.9		49.1		42.6		37	7.1
	x 16	4.68	5.01	5	0.240	1/4	1/8	5.000	5	0.360	3/8	31/2	3⁄4	7/16		Ratio r,/	;	1.7	75	1.	74	1.	.74	1.	73	1.	73	1.	.72
W	/ 4x 13	3.83	4.16	4½	0.280	1/4	1/8	4.060	4	0.345	3/8	23/4	11/16	7/16		⁺ Flange Note: H	e is ne leavy	oncom line ir	pact; s idicate	ee disc s <i>Kl/r</i> o	ussion f 200.	prece	ding co	lumn lo	ad tab	les.			-