Structure II Recitation 2/16

Steel Beam Design

Before we start ...

Today's Tasks

1. Homework Example (Steel Beam Analysis) (14 Questions)
2. Tower Project Explanation (A little bit Dr. Frame)
3. Lab (Steel Column)

Reminder

1. Submit the report no later than next Friday.
2. Submit the report on canvas.
3. Scale beside Peter's office if needed.

Winter 2024
Home
Modules

Assignments

 Files

Announcements \varnothing

Discussions ब
Grades
People
Pages
Quizzes
Collaborations
BigBlueButton
Item Banks
Canvas Course
Manager
Media Gallery
NameCoach Roster

三 ARCH 324001 WN 2024 > Files > Steel

| Search for files | Q | \downarrow \downarrow 而 1 item selected |
| :--- | :--- | :--- | :--- | :--- | :--- |

- \square ARCH 324001 WN 2024
- \square Beam Equations
- \square Concrete
- \square course_image
- \square Design Loads
- \square Engel_Book
- \square Masonry
- \boxminus Onouye_Book_4e
- \square Schodek_Book_7e
- \square Steel
- \square Uploaded Media
- \square Videos
- \quad Wood

Name $\boldsymbol{\wedge}$

\& AISC_d831.pdf

AISC9_BeamEquations.PDF
\& AISC14_BeamChart.pdf
\& AlSC14 Table1-1.pdf

5. Steel Beam Design

 Assume the beam is fully braced, Lb < Lp.DATASET: 1 -2- $-3-$
Fy
Span A
Span B
Floor Dead Load
Floor Live Load

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn.

Steps:
Calculate wu, Mu, Mn (Neglect Self Weight) \rightarrow Get estimated Zx \rightarrow Find actual Zx \rightarrow Recalculate wu, Mu, Mn (Consider Self Weight)

Design of Steel Beam - Procedure (zone 1)

1. Use the maximum moment equation, and solve for the ultimate moment, M_{u}.
2. Set $\phi M_{n}=M_{u}$ and solve for M_{n}
3. Assume Zone 1 to determine Z_{x} required
4. Select the lightest beam with a Z_{x} greater than the Z_{x} required from AISC table
5. Determine if $\mathrm{h} / \mathrm{tw}<59$ (case 1, most common)
6. Determine A_{w} :

$$
A w=d t_{w}
$$

7. Calculate V_{n} :

$$
V_{n}=0.6 F_{y} A_{w}
$$

8. Calculate Vu for the given loading

$$
V_{u}=w_{u} L / 2 \quad \text { (e.g. unif. load) }
$$

9. Check $\mathrm{V}_{\mathrm{u}}<\phi \mathrm{V}_{\mathrm{n}}$

$$
\phi \text { for } V=1.0
$$

10. Check deflection

Q1: The Unfactored Floor Dead Load on the Beam
(Neglecting Self Weight) (w_DL*)
w_DL*
= Floor DL x Tributary Area / Span A
= Floor DL x Span B
$=24 \times 16=\underline{\mathbf{3 8 4}}$ plf

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

Q2: The Unfactored Floor Live Load on the Beam (w_LL)
w_LL
= Floor LL x Tributary Area / Span A
= Floor LL x Span B
$=95 \times 16=\mathbf{1 5 2 0} \mathbf{~ p l f}$

Q3: The Total Factored Design Load on the Beam (Neglecting Self Weight) (LL*)
$\mathrm{wu}^{*}=1.2 \times\left(\mathrm{w}_{-} \mathrm{DL}^{*}\right)+1.6 \mathrm{x}\left(\mathrm{w}_{-} \mathrm{LL}\right)$
$=(1.2 \times 384+1.6 \times 1520) / 1000$
$=\underline{\mathbf{2 . 8 9 2 8} \mathrm{klf}}$

Span B

$$
\mathrm{w}_{\mathrm{u}}=1.2 \mathrm{w}_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LL}}
$$

Q4: The Factored Design Moment (Neglecting Self Weight) (Mu*)

$\mathrm{Mu}^{*}=\mathrm{wu}^{*} \times \mathrm{L}^{2} / 8=2.8928 \times 27^{2} / 8=\underline{\mathbf{2 6 3 . 6 0 6 4} \mathrm{k}-\mathrm{ft}}$

Q5: The Nominal Bending Moment (Neglecting Self Weight) (Mn*)
We assume $\mathrm{Mu}^{*}=\Phi \mathrm{Mn}$ in order to find Mn ,
Since $\Phi=0.9$,
$\mathrm{Mn}^{*}=\mathrm{Mu}^{*} / 0.9=263.6064 / 0.9 \times 12=\underline{3514.752 \mathrm{k}-\mathrm{in}}$

Q6: The Plastic Modulus of the Section (Neglecting Self Weight) ($\mathbf{Z x}^{*}$)

ø $\mathrm{M}_{\mathrm{n}}=0.90 \mathrm{M}_{\mathrm{n}}$

$M n=F_{y} Z_{x}$

Since the beam is fully braced ($\mathrm{Lb}<\mathrm{Lp}$): Zone 1 , We can use the formula: $\mathrm{Mn}=\mathrm{Fy} \times \mathrm{Zx}^{*}$
$\mathrm{Zx}^{*}=\mathrm{Mn} / \mathrm{Fy}=3514.752 / 50=\underline{\mathbf{7 0 . 2 9 5} \mathbf{i n}^{3}}$

Q7: The Nominal Depth of the Lightest Passing W-Section from the Zx table (Include Self Weight)
Check AISC 14, Table 3-2, for me: p. 5 (PDF), Find the smallest Zx that is bigger than the Zx^{*} we calculated previously (Look at the ones with bold stroke and ignore the ones with a strikethrough)

For my situation: W18x40
Nominal Depth $=\underline{18 i n}$
Q8: The Weight of the Lightest Passing W-Section from Zx table (Include Self Weight)

Weight $=\underline{40}$ plf
Q9: The Weight of the Lightest Passing W-Section from $\mathbf{Z x}$ table (Include Self Weight)

$$
\mathrm{Zx}=\underline{78.4 \mathrm{in}^{3}}
$$

Shape	z_{X}	$M_{p x} / \Omega_{b}$	$\phi_{b} M_{p x}$	$M_{p x} / \Omega_{b}$	${ }_{\phi t} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{ρ}	L_{r}	I_{x}	$V_{n x} / \Omega_{v}$	$\phi_{V} V_{n x}$
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD
W2 ${ }^{\text {¢ }}$-55-	126	314	473	192	289	10.8	16.3	6.11	17.4	1140	156	234
W14×74	126	314	473	196	294	5.31	8.05	8.76	31.0	795	128	192
W18×60	123	307	461	189	284	9.62	14.4	5.93	18.2	984	151	227
W12×79	119	297	446	187	281	3.78	5.67	10.8	39.9	662	117	175
W14×68	115	287	431	180	270	5.19	7.81	8.69	29.3	722	116	174
W10×88	113	282	424	172	259	2.62	3.94	9.29	51.2	534	131	196
W18×55	112	279	420	172	258	9.15	13.8	5.90	17.6	890	141	212
W 21×50	110	274	413	165	248	12.1	18.3	4.59	13.6	984	158	237
W12×72	108	269	405	170	256	3.69	5.56	10.7	37.5	597	106	159
W21 $\times 48^{\text {f }}$	107	265	398	162	244	9.89	14.8	6.09	16.5	959	144	216
W16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	212
W14×61	102	254	383	161	242	4.93	7.48	8.65	27.5	640	104	156
W18×50	101	252	379	155	233	8.76	13.2	5.83	16.9	800	128	192
W10×77	97.6	244	366	150	225	2.60	3.90	9.18	45.3	455	112	169
W12×65t	96.8	237	356	154	231	3.58	5.39	11.9	35.1	533	94.4	142
W21×44	95.4	238	358	143	214	11.1	16.8	4.45	13.0	843	145	217
W16×50	92.0	230	345	141	213	7.69	11.4	5.62	17.2	659	124	186
W18×46	90.7	226	340	138	207	9.63	14.6	4.56	13.7	712	130	195
W14×53	87.1	217	327	136	204	5.22	7.93	6.78	22.3	541	103	154
W12×58	86.4	216	324	136	205	3.82	5.69	8.87	29.8	475	87.8	132
W10×68	85.3	213	320	132	199	2.58	3.85	9.15	40.6	394	97.8	147
W16×45	82.3	205	309	127	191	7.12	10.8	5.55	16.5	586	111	167
W18×40	78.4	196	294	119	180	8.94	13.2	4.49	13.1	612	113	169
W14×48	78.4	196	294	123	184	5.09	7.67	6.75	21.1	484	93.8	141
W12×53	77.9	194	292	123	185	3.65	5.50	8.76	28.2	425	83.5	125
W10×60	74.6	186	280	116	175	2.54	3.82	9.08	36.6	341	85.7	129
W $\mathbf{1 6} \times 40$	73.0	182	274	113	170	6.67	10.0	5.55	15.9	518	97.6	146
W12×50	71.9	179	270	112	169	3.97	5.98	6.92	23.8	391	90.3	135
W8×67	70.1	175	263	105	159	1.75	2.59	7.49	47.6	272	103	154
W14×43	69.6	174	261	109	164	4.88	7.28	6.68	20.0	428	83.6	125
W10 $\times 54$	66.6	166	250	105	158	2.48	3.75	9.04	33.6	303	74.7	112

Q10: The Revised Unfactored
Dead Load on the Beam (Including Self Weight) (w_DL)
w_DL $=$ Dead Load + Self Weight $=384+40=\underline{424} \underline{\text { plf }}$ From Q1 From Q8

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

Q11: The Total Factored Design Load on the Beam

 (Including Self Weight) (wu)

Q12: The Factored Design Moment (Including Self Weight) (Mu) (in k-ft)
$\mathrm{Mu}=\mathrm{wu} \times \mathrm{L}^{2} / 8=2.9408 \times 27^{2} / 8=\underline{\mathbf{2 6} 7.9804} \mathbf{k}-\mathrm{ft}$

$$
\mathrm{w}_{\mathrm{u}}=1.2 \mathrm{w}_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LL}}
$$

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

Q13: The Factored Design Moment (Including Self Weight) (Mu) (in k-in)
$\mathrm{Mu}(\mathrm{k}$-in) $=\mathrm{Mu}(\mathrm{k}$-ft) $\times 12=267.9804 \times 12=\underline{3215.7648 \mathrm{k} \text {-in }}$

Fy	50 KSI
Span A	27 FT
Span B	16 FT
Floor Dead Load	24 PSF
Floor Live Load	95 PSF

Q14: The Nominal Factored Bending Moment for the chosen section ($\Phi \mathbf{M n}$)
$\Phi \mathrm{Mn}=0.9 \times \mathrm{Fy} \times \mathrm{Zx}=0.9 \times 50 \times 78.4=\underline{\mathbf{3 5 2 8} \mathrm{k}-\mathrm{in}}$

$$
ø \mathrm{M}_{\mathrm{n}}=0.90 \mathrm{M}_{\mathrm{n}}
$$

Dr. Frame2D 3.0 - [DrFWin1]

\&' Dr. Frame2D 3.0 - [DrFWin1]
H File Edit View Modeling Options Loads Envelopes Plots Help

$============$ Support	Reactions $============$		
ID	R_x (k)	R_y (k)	M_z $\left(\mathrm{k}^{\prime}\right)$
1	1.5284	10.0000	0.0000
2	-1.5284	10.0000	0.0000

Tower Preliminary Report

Explanation - describe how the design was developed, the basis of the structural concept, and how the principles of column behavior influenced the design decisions.

Illustration - include diagrams/drawings that describe the structure in its entirety. At least a horizontal crosssection and an elevation of the tower are required. Dimensions are to be included and the member sizes labeled.

Analysis - the report should include the following:

- Choose wood type and stress properties. Either use values below for typical model grade Basswood or use values in the NDS or find test values online. Indicate in the report which values you choose.
- Determine the cross-sectional area of each member. Find the axial force P and the allowable stress F 'c. The force P can be determined either by a hand calculated truss analysis or as a second order analysis in Dr. Frame or STAAD.Pro. The stress F'c should be found using the NDS equations for Cp and $\mathrm{F}^{\prime} \mathrm{c}$. Other NDS stress adjustment factors ($\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{m}}, \mathrm{C}_{\mathrm{t}}, \mathrm{C}_{\mathrm{F}}$ and C_{i}) can be taken equal to 1.0. Size members based on the predicted load, P and the allowable stress F'c. Target (or predict) some total capacity load for the tower. A minimum of 50 LBS is required. Then size the members based on the force in each member.
- Predict the total weight of the tower. Provide a table with each member type showing, length, section and weight for each. Make an estimate of the weight added by glue joints and/or gusset plates. The total weight should be under 4 OZ .
- Predict Capacity. Predict the ultimate capacity in pounds that the entire tower can carry based on the actual cross-sections chosen. Produce a utilization table to show for each member type (e.g. main vertical, horizontal tie, diagonal brace) the utilization ratio fc / F 'c based on the predicted total capacity load. This ratio should be below 1.0 for all members.
- Calculate the buckling capacity of the tower as a whole. This is done by treating the tower as one column loaded at the top, made up in cross section of multiple columns. Show the moment of inertia of the tower cross-section, and use it to calculate the critical buckling load using the Euler equation. An example of this calculation is given in the slides from the class lecture. The ultimate capacity is the lower of the two capacities (critical member or tower as a whole).
Note: If an excel spreadsheet is used to make calculations, show the equations being used for each cell or column in the table. If STAAD. Pro or Dr. Frame is used to do any of the above, include print-outs showing the applied loads and resulting member forces.

Density (oven dry)	20 pcf	
E (buckling)	$1,650,000 \mathrm{psi} * *$	
F (Compression $\\|$ to grain)	$4745 \mathrm{psi}{ }^{*}$	
F (Compression \perp to grain)	$377 \mathrm{psi}^{*}$	
F (Tension $\\|$ to grain)	4500 psi (estimate)	
F (Tension \perp to grain)	348 psi	
F (Shear $\\|$ to grain)	986 psi	
F (Flexure)	$5900 \mathrm{psi}^{*}$	

Determine the cross sectional area of each member

Method 1: Use predicted forces to find the cross sectional areas

1. Use Dr. Frame to find the predicted Ps (Axial Force) for each member.
2. Calculate Allowable Stress Fc^{\prime} using $\mathrm{Fc}^{\prime}=\mathrm{Fc}$ (Given) $\times \mathrm{Cp}$ (Calculated).
3. Use $\mathrm{A}=\mathrm{P} / \mathrm{Fc}$ ' to find the estimated A .
4. Pick the dimension for your material that has the cross sectional area bigger than the estimated A.
5. Recalculate the capacities for each members (Buckling + Crushing) (for deciding the critical member, look at the vertical member)

$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	C_{D}	C_{M}	C_{t}	-	C_{F}	-	C_{i}	-	C_{P}	-

$$
\begin{gather*}
\mathrm{C}_{\mathrm{p}}=\frac{1+\left(\mathrm{F}_{\mathrm{cc}} / F_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cc}} / F_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cc}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}} \tag{3.7-1}\\
\mathrm{Fc}^{*}=\mathrm{Fc}(\text { Given })
\end{gather*}
$$

where: \quad Since all the factors except $\mathrm{Cp}=1$ $\mathrm{F}_{\mathrm{c}}^{*}=$ reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\text {min }}^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}} \quad \text { Since } \mathrm{K}=1 \text { (Pin-Pin), } \\
& \mathrm{c}=0.8 \text { for sawn lumber } \quad \text { so } \mathrm{Le}=\mathrm{L} \\
& \mathrm{c}==0.85 \text { for round timber poles and piles } \\
& \mathrm{c}= 0.9 \text { for structural glued laminated timber or } \\
& \text { structural composite lumber }
\end{aligned}
$$

Buckling Load:

$$
P_{C r}=\frac{\pi^{2} A E}{\left(\frac{K L}{r}\right)^{2}}=\frac{\pi^{2} I E}{(K L)^{2}}
$$

Crushing Load:

$$
\mathrm{P}_{\max }=\mathrm{F}_{\mathrm{c}} \times \mathrm{A}
$$

Analysis
Capacity
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{P}}{\mathrm{A}} \leq \mathrm{F}_{\mathrm{c}}^{\prime} \quad \mathrm{P}=\mathrm{F}_{\mathrm{c}}^{\prime} \mathrm{A}$

Design
$A=\frac{P}{F_{c}^{\prime}}$

Method 2: Decide cross-sectional area first to calculate the maximum Ps, then compare the values with the predicted forces to make sure the decision

1. First design the cross sectional areas of your material.
2. Calculate maximum P using $P=F c^{\prime} \times A$ for each member.
3. Use Dr. Frame to find the predicted Ps (Axial Force) for each member.
4. Compare the predicted forces with calculated maximum Ps, make sure the predicted forces are not bigger than the calculated Ps.
5. If pass, calculate the buckling \& crushing capacities to decide which one is the critical load.

$$
\begin{array}{ll}
\text { Analysis } & \begin{array}{l}
\text { Capacity } \\
f_{c}=\frac{P}{A} \leq F_{c}^{\prime}
\end{array} \quad P=F_{c}^{\prime} A
\end{array}
$$

Design

$A=\frac{P}{F_{c}^{\prime}}$

Calculate the buckling capacity of the tower as a whole 1. After deciding the dimensions, look at the cross-section of your tower, calculate the moment of inertia.
2. Use the Euler Buckling Equation to calculate the buckling capacity of the whole tower.

$$
\begin{aligned}
& r=\sqrt{\frac{I}{A}} \\
& I=A r^{2}
\end{aligned}
$$

Predict the total weight of the tower

Limit $=4 \mathrm{oz}$!!!!!!!!!!
Member Weight $=$ Volume \times Density $=\underline{\text { Cross Sectional Area } \times \text { Length } \times \text { Density }}$
Reminders:

1. Include the estimated glue weight in your predicted weight
2. Make a table that includes member weight, area, and length (label all the members)

	SIZE (in)	TOTAL LENGTH (in)	$\begin{aligned} & \text { BASSWOOD } \\ & \text { PROPERTIES } \\ & \text { DENSITY (lb/ff^3) } \end{aligned}$	CROSS SECTIONAL AREA (in^2)	WEIGHT(oz)	VOLUME (in^3)
VERTICAL PILLARS	$1 / 4 \times 1 / 4$	192	20	0.063	2.222	12
DIAGONAL BRACES	$3 / 32 \times 1 / 8$	500	20	0.012	1.085	5.858
HORIZONTAL BRACE	$1 / 8 \times 1 / 8$	57	20	0.016	0.165	0.891
glue					0.3472	
TOTAL					3.891	18.748

Lab Session: Steel Columns

Goal: Find the load capacity

Steps:

1. Measure the dimensions of the column (d, bf, $\mathbf{t f}$)
2. Use the dimensions to find the size (First Chart)
3. Use the size and length to find the capacity (Second Chart) (Assume $\mathrm{K}=1$)
4. Measure the steel column section shown below. (your GSI will tell you which one)
5. Based on the sectional dimensions find the shape in the steel table.
6. Use the column table and the given height to find the load capacity. Both columns are A-36 steel (Fy = 36 ksi).

\qquad x_ Design Strength \qquad kips

