Steel Beam Design 2/16

HW - Steel Beam Design

Tower Project
Lab - Steel Columns

Structure II
 Section 004

Yifan Ma
yifanma@umich.edu

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfiweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, $\mathrm{Lb}<\mathrm{Lp}$.

DATASET: 1	$-2-$	$-3-$	
Fy			50 KSI
Span A			25 FT
Span B	17 FT		
Floor Dead Load		14 PSF	
Floor Live Load		90 PSF	

$\mathrm{M}_{\mathrm{u}}=$ maximum moment from factored loads $\phi_{b}=$ resistance factor for bending $=0.9$
$\mathrm{M}_{\mathrm{n}}=$ nominal moment (ultimate capacity)
$\mathrm{F}_{\mathrm{y}}=$ yield strength of the steel
$\mathrm{Z}=$ plastic section modulus

HW - Steel Beam Design

Given:

bracing type (Lb < Lp zone 1) load

Goal:
Member Size?

1. Calculate Required Moment Determine Mn
$\mathrm{Mu}=\phi_{\mathrm{b}} \mathrm{Mn}$
$\mathrm{Mn}=\mathrm{Mu} / \phi_{\mathrm{b}}$
2. Determine the Minimum Zx required $M n=F y^{*} Z x=M p$ $\mathrm{Zx}>\mathrm{Mn} / \mathrm{Fy}$
3. Choose a section based on Z from the AISC table.
Bold-faced sections are lighter

```
DATASET: }
Fy
Span A
Span B
Floor Dead Load
Floor Live Load
```


1. The total unfactored floor dead load on the beam B1 (neglecting selfweight), w_DL*

$$
\mathrm{w}_{\mathrm{L}} \mathrm{DL}^{*}=\mathrm{DL} * \text { SpanB }=14 * 17=238 \text { plf }
$$

2. The total unfactored floor live load on the beam, w_LL

w_LL= LL * SpanB = 90*17 = 1530 plf

3. The total factored design load on the beam

 (neglecting selfweight), wu*$$
\begin{aligned}
& w^{*}=1.2^{*} w_{2} \text { DL* }^{*}+1.6^{*} w=\text { LL } \\
& =\left(1.2^{*} 238+1.6^{*} 1530\right) / 1000 \\
& =2.73 \mathrm{klf}
\end{aligned}
$$

LRFD Analysis

Load \& Resistance Factored Design (LRFD)

$$
\text { Use loads with safely factor } \gamma
$$

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb $<\mathrm{Lp}$.

```
DATASET: 1 -2- -3-

\section*{4. The factored design moment (neglecting selfweight), Mu*}
\(M u^{*}=1 / 8 \times w u^{*} \times\) SpanA \(^{2}\)
\(=1 / 8^{*} 2.73^{*} 25^{2}\)
\(=213.28 \mathrm{k}-\mathrm{ft}\)

5. The nominal bending moment (neglecting selfweight), Mn*
\[
\begin{aligned}
& \mathrm{Mn}^{*}=\mathrm{Mu}^{*} / \phi \\
& =213.28^{*} 12 / 0.0 .9 \\
& =2843.73 \mathrm{k}-\mathrm{in}
\end{aligned}
\]
Load \& Resistance Factored Design (LRFD)
\[
\begin{aligned}
& \text { Use loads with safety factor } \gamma \\
& \text { Use factor on ultimate strength } \phi
\end{aligned}
\]
\[
P_{\text {load }}=\boldsymbol{\gamma} \cdot P_{\text {applied_load }}
\]
\[
P_{\text {load }} \leq P_{\text {resisting }}
\]
\[
P_{\text {resisting }}=\phi \cdot P_{\text {material_strength }}
\]
6. The Plastic modulus of the section (neglecting selfweight), \(\mathbf{Z x}\) *
\(\mathrm{Zx}=\mathrm{Mn} * / F y\)
\(=2843.73 / 50\)
\(=56.87 \mathrm{in}^{3}\) steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with \({ }^{*}\) ). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, \(\mathrm{Lb}<L \mathrm{p}\).
\begin{tabular}{llll}
\hline DATASET: 1 & \(-2-\) & \(-3-\) & \\
Fy & & & 50 KSI \\
Span A & & & 25 FT \\
Span B & 17 FT \\
Floor Dead Load & & 14 PSF \\
Floor Live Load & & 90 PSF
\end{tabular}


\section*{7. The nominal depth of the lightestpassing W-section from \(\mathbf{Z x}\) table}

Minimum Zx required \(=56.87 \mathrm{in}^{3}\)
Choose a section based on Zx
from the AISC table 3-2.
Bold-faced sections are lighter
(Most efficient one_strongest and lightest)
W 18*35, Zx=66.5 \(\mathrm{in}^{3}>56.87 \mathrm{in}^{3}\)

\section*{8. The weight of the lightest passing W-section from Zx table}
W 18*35, Zx=66.5 in

\section*{9. The Plastic modulus of the section,} Zx
W 18*35, Zx=66.5 in

3-26 DESIGN OF FLEXURAL MEMBERS


10. The revised unfactored floor dead load on the beam (including selfweight), w_DL
\(w_{-}\)DL \(=w_{-}\)DL**BeamWeight \(=238+35=273\) plf
11. The total factored design load on the beam (including selfweight), wu
\[
w u=1.2 * \text { w_DL+ } 1.6 \text { * w_LL }=(1.2 * 273+1.6 * 1530) / 1000=2.7756 \mathrm{klf}
\]
12. The factored design moment (including selfweight), Mu in KIP-FT
\(\mathrm{Mu}=1 / 8^{*} \mathrm{wu}^{*}\) SpanA \(^{2}=1 / 8^{*} 2.7756 * 25^{2}=216.84 \mathrm{k}-\mathrm{ft}\)
13. The factored design moment (including selfweight), Mu in KIP-IN
\(M u=216.84^{*} 12=2602.08 \mathrm{k}-\mathrm{in}\)
14. The nominal factored bending moment for the chosen, phi Mn
\(\phi^{*} \mathrm{Mn}=\phi^{*}(\mathrm{Zx}\) Fy \()=0.9^{*} 66.5^{*} 50=2992.5 \mathrm{k}\)-in \(>\mathrm{Mu}=2602.08\) Pass!

\section*{Tower Project}

\section*{Timeline}

Due until break - Feb 23


\section*{Tower Project}

\section*{Dr.Frame}
take this as one panel

2 panels totally
loadlweight


\section*{2nd order Analysis}
\begin{tabular}{|c|c|c|c|c|}
\hline Modeling & Options & Loads & Envelopes & Plots \\
\hline \multicolumn{5}{|c|}{Auto Beam...} \\
\hline \multicolumn{5}{|c|}{Auto Truss...} \\
\hline \multicolumn{5}{|c|}{Auto Frame...} \\
\hline \multicolumn{5}{|l|}{Transform Selected...} \\
\hline \multicolumn{5}{|c|}{Split Selected Members} \\
\hline \multicolumn{5}{|l|}{Default Member Properties...} \\
\hline Isolat & Joints & & & Ctri+J \\
\hline Isolat & Member & & & Ctrl + M \\
\hline \multicolumn{5}{|l|}{2nd Order Analysis} \\
\hline \multicolumn{5}{|l|}{Load-Dependent EI} \\
\hline nth-Orc & Order step & & & i \\
\hline Plast & Hinges & & & , \\
\hline Norm & alize Value & & & [ \\
\hline \(\checkmark\) Resis & ance Fact & ors On & & ] \\
\hline
\end{tabular}
\(\checkmark\) Realtime Solution

\section*{Tower Project}

\section*{Dr.Frame}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Properties of Basswood: (like in the Media Center)} \\
\hline Density (oven dry) & 20 pcf * \\
\hline E (buckling) & 1,650,000 psi ** \\
\hline F (Compression || to grain) & 4745 psi * \\
\hline F (Compression \(\perp\) to grain) & 377 psi * \\
\hline F (Tension || to grain) & 4500 psi (estimate) \\
\hline F (Tension \(\perp\) to grain) & 348 psi * \\
\hline F (Shear || to grain) & 986 psi * \\
\hline F (Flexure) & 5900 psi * \\
\hline * from http://www.matweb.com/ & ** tested by PvB (small pieces in compression) \\
\hline
\end{tabular}
\(\boxminus\) Section Data

\section*{Section Type Custom}

Custom Sections 1/4"
Section Subtype Rectangular
Depth 0.25 in
width 0.25 in

Properties Area \(=0.0625 \mathrm{in}\)
In plane Axis Strong Axis
Lateral Bracing No
EI Reduction 1
■ Laterial Properties
\(\rightarrow\) Elastic Modulus \(1.65 \mathrm{e}+06 \mathrm{psi}\)
Yield Stress 4745 psi
\({ }^{4}\) Density \(\quad 28 \mathrm{lbs} / \mathrm{ft}^{\wedge} 3\)
Shear Modulus \(6.346 \mathrm{e}+05 \mathrm{psi}\)
\(\square\) End Conditions
End 1 Fixity Hinged
Rotational Stif \(0 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
End 2 Fixity Hinged
Rotational Stif \(0 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)Iisfit
Length Misfit 0 in

\section*{Tower Project}

\section*{Tips}
overweight
glue and plates take approximately \(10 \%\) of total members weight
smaller section
less force on the smaller sectional member; and vice versa
narrower spacing
width spacing, more steady; narrow spacing saves weight; if it is too narrow_ tilted
balsa wood: less weight but less strength
use it as plates
use it as connection members in tension (find its material properties online)
think about the handcraft ahead
how to limit the difficulty when building it? less joint? joint detailing?
1. Measure the steel column section shown below. (your GSI will tell you which one)
2. Based on the sectional dimensions find the shape in the steel table.
3. Use the column table and the given height to find the load capacity. Both columns are A-36 steel (Fy \(=36 \mathrm{ksi}\) ).

\(\mathrm{L}=15 \mathrm{ft} .-4 \mathrm{in}\).

\(\qquad\) x \(\qquad\) Design Strength \(\qquad\) kips



Any Questions?
yifanma@umich.edu

Thank You!
```

