Steel Beam Design 2/16

HW - Steel Beam Design

Tower Project

Lab – Steel Columns

Structure II Section 004

Yifan Ma yifanma@umich.edu

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	25 FT
Span B	17 FT
Floor Dead Load	14 PSF
Floor Live Load	90 PSF

HW - Steel Beam Design

Given: bracing type (Lb < Lp zone 1) load

Goal: Member Size?

1. Calculate Required Moment Determine Mn

```
Mu = \phi_{\mathsf{b}} MnMn = Mu / \phi_{\mathsf{b}}
```

- M_u = maximum moment from factored loads ϕ_b = resistance factor for bending = 0.9 M_n = nominal moment (ultimate capacity) F_y = yield strength of the steel Z = plastic section modulus
- 2. Determine the Minimum Zx required Mn = Fy*Zx = Mp Zx > Mn / Fy
- 3. Choose a section based on Z from the AISC table. Bold-faced sections are lighter

Shape N21×44 N16×50 N18×46 N14×53 N12×58 N10×68 N10×65 N18×40	Z _x in. ³ 95.4 92.0 90.7 87.1 86.4 85.3 82.3	M _{px} /Ω _b kip-ft ASD 238 230 226 217	φ _b M _{px} kip-ft LRFD 358 345	Se M _{rx} /Ω _b kip-ft ASD 143		on b BF/Ω _b kips	y Z _X	Lp	Lr	I _X	V _{nx} /Ω _v kips	¢ <i>vV_{nx}</i> kips
N21×44 N16×50 N18×46 N14×53 N12×58 N10×68 N10×68 N16×45	in. ³ 95.4 92.0 90.7 87.1 86.4 85.3	kip-ft ASD 238 230 226	kip-ft LRFD 358	kip-ft ASD	kip-ft	~	1-	Lp	L _r	I _x		
N21×44 N16×50 N18×46 N14×53 N12×58 N10×68 N10×68 N16×45	in. ³ 95.4 92.0 90.7 87.1 86.4 85.3	ASD 238 230 226	LRFD 358	ASD		kips	kips	P		~	kine	kinc
N16×50 N18×46 N14×53 N12×58 N10×68 N16×45	95.4 92.0 90.7 87.1 86.4 85.3	238 230 226	358			ASD	LRFD	ft	ft	in.4	ASD	LRFD
V16×50 V18×46 V14×53 V12×58 V12×68 V10×68 V16×45	92.0 90.7 87.1 86.4 85.3	230 226			214	11.1	16.8	4.45	13.0	843	145	217
V18×46 V14×53 V12×58 V10×68 V16×45	90.7 87.1 86.4 85.3	226	010	141	213	7.69	11.4	5.62	17.2	659	124	186
V14×53 V12×58 V10×68 V16×45	87.1 86.4 85.3	and the second se	340	138	207	9.63	14.6	4.56	13.7	712	130	195
/12×58 /10×68 /16×45	86.4 85.3		327	136	204	5.22	7.93	6.78	22.3	541	103	154
/16×45		216	324	136	205	3.82	5.69	8.87	29.8	475	87.8	132
	82.2	213	320	132	199	2.58	3.85	9.15	40.6	394	97.8	147
/18~40	02.0	205	309	127	191	7.12	10.8	5.55	16.5	586	111	167
	78.4	196	294	119	180	8.94	13.2	4.49	13.1	612	113	169
V14×48	78.4	196	294	123	184	5.09	7.67	6.75	21.1	484	93.8	141
V12×53	77.9	194	292	123	185	3.65	5.50	8.76	28.2	425	83.5	125
/10×60	74.6	186	280	116	175	2.54	3.82	9.08	36.6	341	85.7	129
/16×40	73.0	182	274	113	170	6.67	10.0	5.55	15.9	518	97.6	146
V12×50	71.9	179	270	112	169	3.97	5.98	6.92	23.8	391	90.3	135
W8×67	70.1	175	263	105	159	1.75	2.59	7.49	47.6	272	103	154
/14×43	69.6	174	261	109	164	4.88	7.28	6.68	20.0	428	83.6	125
/10×54	66.6	166	250	105	158	2.48	3.75	9.04	33.6	303	74.7	112
V18×35	66.5	166	249	101	151	8.14	12.3	4.31	12.3	510	106	159
V12×45	64.2	160	249	101	151	3.80	5.80	6.89	22.4	348	81.1	122
V16×36	64.0	160	240	98.7	148	6.24	9.36	5.37	15.2	448	93.8	141
V14×38	61.5	153	231	95.4	143	5.37	8.20	5.47	16.2	385	87.4	131
/10×49	60.4	151	227	95.4	143	2.46	3.71	8.97	31.6	272	68.0	102
W8×58	59.8	149	224	90.8	137	1.70	2.55	7.42	41.6	228	89.3	134
/12×40	57.0	142	214	89.9	135	3.66	5.54	6.85	21.1	307	70.2	105
V10×45	54.9	137	206	85.8	129	2.59	3.89	7.10	26.9	248	70.7	106
V14×34	54.6	136	205	84.9	128	5.01	7.55	5.40	15.6	340	79.8	120
/16×31	54.0	135	203	82.4	124	6.86	10.3	4.13	11.8	375	87.5	131
V12×35	51.2	128	192	79.6	120	4.34	6.45	5.44	16.6	285	75.0	113
W8×48	49.0	122	184	75.4	113	1.67	2.55	7.35	35.2	184	68.0	102
V14×30 V10×39	47.3 46.8	118	177	73.4	110	4.63 2.53	6.95	5.26 6.99	14.9 24.2	291 209	74.5 62.5	112
10×39		117	176	73.5	111	2.03	3.78	0.99	24.2	209		93.7
V16×26 ^v	44.2	110	166	67.1	101	5.93	8.98	3.96	11.2	301	70.5	106
/12×30	43.1	108	162	67.4	101	3.97	5.96	5.37	15.6	238	64.0	95.9
				18 8 4								
											15.00	
ASD	LRFD	V Ch	doog =='	meet the <i>I</i>	1+ 11-11	or ob	ALCO C	adificatio	Contine	0.1(c)	th E = E0	kolu

DESIGN OF FLEXURAL MEMBERS

3-26

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	25 FT
Span B	17 FT
Floor Dead Load	14 PSF
Floor Live Load	90 PSF

1. The total unfactored floor dead load on the beam B1 (neglecting selfweight), w_DL*

w_DL* = DL * SpanB = 14*17 = 238 plf

2. The total unfactored floor live load on the beam, w_LL

w_LL= LL * SpanB = 90*17 = 1530 plf

3. The total factored design load on the beam (neglecting selfweight), wu*

wu*= 1.2*w_DL* + 1.6*w_LL = (1.2*238+1.6*1530)/1000 = 2.73 klf

LRFD Analysis	
Load & Resistance Factored Design (LRFD)	
• Use loads with safety factor γ	
- Use forces with strength factor ϕ	
$P_{load} = \gamma \cdot P_{applied}$ $P_{load} \le P_{resisting}$ $P_{resisting} = \phi \cdot P_{matter}$	•ia
Design Strength $P_{\mathcal{U}} \leq \phi P_{\mathcal{N}}$ Required (Nominal) Strength	ng
2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN	
1. $1.4D$ 2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$ 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$ 4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$ 5. $0.9D + 1.0W$	

-2-

DATASET: 1

Floor Dead Load

Floor Live Load

Fy

Span A

Span B

-3-

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

50 KSI

25 FT 17 FT

14 PSF 90 PSF

4. The factored design moment (neglecting selfweight), Mu*

Mu* = 1/8 x wu* x SpanA² = 1/8*2.73*25² = 213.28 k-ft

5. The nominal bending moment (neglecting selfweight), Mn*

6. The Plastic modulus of the section (neglecting selfweight), Zx*

Zx= Mn* / Fy = 2843.73/50 = 56.87 in³

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

50 KSI
25 FT
17 FT
14 PSF
90 PSF

7. The nominal depth of the lightestpassing W-section from Zx table

Minimum Zx required = 56.87 in^3

Choose a section based on Zx from the AISC table 3-2. Bold-faced sections are lighter (Most efficient one_strongest and lightest)

W 18*35, Zx=66.5 in³ > 56.87 in³

8. The weight of the lightest passing W-section from Zx table

W 18*35, Zx=66.5 in

9. The Plastic modulus of the section, Zx

W 18*35, Zx=66.5 in

						-	tinue	,		_		
Z_{x}						hap ion b				Fy	= 50	ks
Shape	Zx	M _{px} /Ω _b kip-ft	¢ <i>bM_{px}</i> kip-ft	<i>M_{rx}/Ω_b</i> kip-ft	¢ <i>bMrx</i> kip-ft	<i>BF/Ωb</i> kips	¢ <i>bBF</i> kips	Lp	L _r	I _x	V _{nx} /Ω _v kips	φ, ki
	in. ³	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LR
W21×44	95.4	238	358	143	214	11.1	16.8	4.45	13.0	843	145	21
W16×50	92.0	230	345	141	213	7.69	11.4	5.62	17.2	659	124	18
W18×46	90.7	226	340	138	207	9.63	14.6	4.56	13.7	712	130	19
W14×53	87.1	217	327	136	204	5.22	7.93	6.78	22.3	541	103	15
W12×58	86.4	216	324	136	205	3.82	5.69	8.87	29.8	475	87.8	13
W10×68	85.3	213	320	132	199	2.58	3.85	9.15	40.6	394	97.8	14
W16×45	82.3	205	309	127	191	7.12	10.8	5.55	16.5	586	111	16
W18×40	78.4	196	294	119	180	8.94	13.2	4.49	13.1	612	113	16
W14×48	78.4	196	294	123	184	5.09	7.67	6.75	21.1	484	93.8	14
W12×53	77.9	194	292	123	185	3.65	5.50	8.76	28.2	425	83.5	12
W10×60	74.6	186	280	116	175	2.54	3.82	9.08	36.6	341	85.7	12
W16×40	73.0	182	274	113	170	6.67	10.0	5.55	15.9	518	97.6	14
W12×50	71.9	179	270	112	169	3.97	5.98	6.92	23.8	391	90.3	13
W8×67	70.1	175	263	105	159	1.75	2.59	7.49	47.6	272	103	15
W14×43	69.6	174	261	109	164	4.88	7.28	6.68	20.0	428	83.6	12
W10×54	66.6		250	105	158	2.48	3.75	9.04	33.6	303	74.7	11
W18×35	66.5	166	249	101	151	8.14	12.3	4.31	12.3	510	106	15
W12×45	64.2	160	241	101	151	3.80	5.80	6.89	22.4	348	81.1	12
W16×36	64.0	160	240	98.7	148	6.24	9.36	5.37	15.2	448	93.8	14
W14×38	61.5	153	231	95.4	143	5.37	8.20	5.47	16.2	385	87.4	13
W10×49	60.4	151	227	95.4	143	2.46	3.71	8.97	31.6	272	68.0	10
W8×58	59.8	149	224	90.8	137	1.70	2.55	7.42	41.6	228	89.3	13
W12×40	57.0	142	214	89.9	135	3.66	5.54	6.85	21.1	307	70.2	10
W10×45	54.9	137	206	85.8	129	2.59	3.89	7.10	26.9	248	70.7	10
W14×34	54.6	136	205	84.9	128	5.01	7.55	5.40	15.6	340	79.8	12
W16×31	54.0	135	203	82.4	124	6.86	10.3	4.13	11.8	375	87.5	13
W12×35	51.2	128	192	79.6	120	4.34	6.45	5.44	16.6	285	75.0	11
W8×48	49.0	120	184	75.4	113	1.67	2.55	7.35	35.2	184	68.0	10
W14×30	47.3	118	177	73.4	110	4.63	6.95	5.26	14.9	291	74.5	11
W14×30 W10×39	47.3	117	176	73.5	111	2.53	3.78	6.99	24.2	209	62.5	g
		Aliance.		Riff State								
W16×26 ^v	44.2	110	166	67.1	101	5.93	8.98	3.96	11.2	301	70.5	10
W12×30	43.1	108	162	67.4	101	3.97	5.96	5.37	15.6	238	64.0	5
											- Aller	

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	25 FT
Span B	17 FT
Floor Dead Load	14 PSF
Floor Live Load	90 PSF

10. The revised unfactored floor dead load on the beam (including selfweight), w_DL

w_DL= w_DL*+BeamWeight = 238+35 = 273 plf

11. The total factored design load on the beam (including selfweight), wu wu= $1.2 * w_DL+ 1.6 * w_LL = (1.2*273+1.6*1530)/1000 = 2.7756$ klf

12. The factored design moment (including selfweight), Mu in KIP-FT

Mu = 1/8 * wu* SpanA² = 1/8*2.7756*25² = 216.84 k-ft

13. The factored design moment (including selfweight), Mu in KIP-IN

Mu = 216.84*12 = 2602.08 k-in

14. The nominal factored bending moment for the chosen, phi Mn

 ϕ *Mn = ϕ *(Zx* Fy) = 0.9*66.5*50 = 2992.5 k-in > Mu = 2602.08 Pass!

Timeline

Due until break - Feb 23

	DATE	TOPIC	Text Reading	PROBLEMS (due dates online)
	JAN 10 JAN 12	Course Intro Wood Properties	Onouye, Schodek NDS	
	JAN 15 JAN 17 JAN 19	Martin Luther King Day **** No Wood Beam Analysis Recitation [1-Wood Beams]	Class **** Martin Luther King Schodek 6.4.2	Day **** No Class
	JAN 22	Wood Beam Design	Onouye 8	1. Wood Beam Analysis
	JAN 24 JAN 26	Column Buckling Recitation	Onouye 9.1-9.2 & 9.4, Scho	
	JAN 29	Wood Columns - Tower Intro	NDS	2. Wood Beam Design
	JAN 31 FEB 2	Cross Laminated Timbers Recitation [2-Wood Columns]	CLT Handbook	2 Wood Column Applying
	FEB 5 FEB 7 FEB 9	Steel Properties Steel Beam Analysis Recitation [3-Steel Beams]	AISC, Onouye 8.7 Schodek 6.4.3	3. Wood Column Analysis
	FEB 12	Steel Beam Design	Schodek 6.4.3	4 Steel Beam Analysis
	FEB 14	Steel Column Analysis	Onouye 9.3, Schodek 7.4.4	
l	FEB 16	Recitation [4-Steel Columns]		Prelim. Tower Report Due 5. Steel Beam Design
	FEB 32	Steel Column Design "Skysorapers" David Macaulay a Recitation		6. Steel Column Analysis
	FEB 26 FEB 27 MAR 1	WINTER RECESS **** NO CLA WINTER RECESS **** NO CLA WINTER RECESS **** NO CLA	ASS **** WINTER RECESS *	*** NO CLASS ****
	MAR 4 MAR 6 MAR 8	Continuous Beams Gerber Beams Recitation [5-Continuous Beam	I. Engel Ch. 17, Schodek 8 Schodek 8.4.4 ns]	7. Three Moment Theorem
	MAR 11 MAR 13 MAR 15	Intro to Concrete – PCA video. Concrete Beams Recitation	Schodek 6.4.4 – 6.4.6	7. Thee Mohen Theorem
	MAR 18 MAR 20	Tower Testing **** Tower Test		Tower Testing ****
	MAR 22	Concrete Beams Recitation [6-Stress vs Strain]		8. Concrete Beam Analysis
	MAR 25 MAR 27 MAR 29	Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor	Schodek 7.4.5 cing]	
	APR 1 APR 3 APR 5	Composite Sections Masonry Walls Recitation [8-Composite Section	TMS 402 TMS 402 onsl	9. Concrete Beam Design
		Manager	- TMC 400	10. Composite Sections
	APR 8 APR 10	Masonry Walls Shells and Vaults	TMS 402 Schodek 12	
l	APR 12	Recitation [9-Lateral Stability]	Final Tower Report Due	11. Masonry Walls
	APR 15 APR 17	Combined Stress Combined Stress	I. Engel Ch. 19 I. Engel Ch. 19	
	APR 19	Recitation [10-Combined Stress		12. Combined Stress
	APR 22	Prestress & Post Tension		

Dr.Frame

take this as one panel

2 panels totally

load\weight

3044	_	_	3047	-	_
	0.3	b {		_	1
	N			-	L
-125.0	BIb	-125.	The second se		L
30418	0.5	ib {	304	8	L
		1		-	L
-125.0	BIb	-125.	0 15		
3039	0.5	b {	305	0	L
	N			_	L
-125.0	BID	-125.	0 Ib		L
3037	0.6	Ib (305		
		//		2	
-125.0	BIb	-124.	9 Ib		
3035	0.5	ib (305	4	
	V				
-125.	BIb	-124.	9 Ib		
30335	0.6	b (305	6	
		1	ſ.		
-125.6	B Ib	-124.	9 Ib		
3031	0.0	b 6	305	8	
	N			-	
-125.0	BIb	-124.	9 Ib		
3029	0.0	b lb	306		
		1	306		
-125.0	B Ib	-124.	9 Ib		
3028.	0.3				

2nd order Analysis

Mod	deling	Options	Loads	Envelopes	Plots	1
3	Auto	Beam				
	Auto	Truss				
	Auto	Frame				
	Trans	form Selec	ted			
	Split	Selected N	lembers			
	Defa	ult Membe	r Propert	ties		
	Isolat	e Joints			Ctrl+J	
	Isolat	te Member	5	C	trl+M	
	2nd (Order Anal	ysis)
	Load	-Depender	nt El			
	nth-(Order step			î.	
	Plast	ic Hinges			>	
	Norm	nalize Value	es		[
~	Resis	tance Fact	ors On]	
~	Realt	ime Solutio	on			

Dr.Frame

Properties of Basswood: (like	in the Media Center)
Density (oven dry)	20 pcf *
E (buckling)	1,650,000 psi **
F (Compression to grain)	4745 psi *
F (Compression \perp to grain)	377 psi *
F (Tension to grain)	4500 psi (estimate)
F (Tension [⊥] to grain)	348 psi *
F (Shear 📗 to grain)	986 psi *
F (Flexure)	5900 psi *
* from http://www.matweb.com/	** tested by PvB (small pieces in compre

🖃 Section Data	
Section Type	Custom
Custom Sections	1/4″
Section Subtype	Rectangular
Depth	0.25 in
Width	0.25 in
Properties	Area = 0.0625 in'
In-plane Axis	Strong Axis
Lateral Bracing	No
EI Reduction	1
🖃 🛙 🖬 aterial Prope	rties
Elastic Modulus	1.65e+06 psi
🛶 Yield Stress	4745 psi
Density	28 lbs/ft [^] 3
Shear Modulus	6.346e+05 psi
🖃 End Conditions	
End 1 Fixity	Hinged
Rotational Stif	0 k-ft/rad
End 2 Fixity	Hinged
Rotational Stif	0 k-ft/rad
🖃 🖬 isfit	
Length Misfit	0 in

Tips

overweight glue and plates take approximately 10% of total members weight

smaller section

less force on the smaller sectional member; and vice versa

narrower spacing width spacing, more steady; narrow spacing saves weight; if it is too narrow_ tilted

balsa wood: less weight but less strength use it as plates use it as connection members in tension (find its material properties online)

think about the handcraft ahead

how to limit the difficulty when building it? less joint? joint detailing?

LAB - Steel Columns

Description

This project gives the opportunity to identify steel sections and determine their properties and strength using the AISC tables.

Goals

To identify a steel section based on dimensions.

To determine the sectional properties using AISC table

To determine the load capacity based on AISC column table.

Procedure

- 1. Measure the steel column section shown below. (your GSI will tell you which one)
- 2. Based on the sectional dimensions find the shape in the steel table.
- Use the column table and the given height to find the load capacity. Both columns are A-36 steel (Fy = 36 ksi).

Section: W ____ x ____ Design Strength _____ kips

d d		\mathbf{x} \mathbf{x}													Y	$F_y = 36 \text{ ks}$ COLUMNS $F_y = 50 \text{ ks}$ $F_y = 50 \text{ ks}$ Design axial strength in kips ($\phi = 0.85$)																				
		′ →												Desig Wt			67		58 48			V8 40 <u>3</u> 5			35	3	81	For Example:								
				Web			Flang			ge Distance				ŀ	y	36	36 50		36 50		36 50 36		50			36	50									
Desig- nation	Area A	Depth d	1 	Thickness t _w		<u> </u>		dth Thicknes		ness	Т	ĸ	<i>k</i> ₁	ν u έλ	0	603 567	7 770	523 492	727 667	431 405	599 549	1321	497 454	315 295	103127-024		388 354 342		if W	8*67	7					
W 8x 67 x 58 x 48 x 40 x 35 x 31 W 8x 28 x 24 W 8x 21 x 18 W 8x 12 x 13 x 10 W 6x 25 x 20 x 15 W 6x 16	14.1 11.7 10.3 9.13 8.25 7.08 6.16 5.26 4.44 3.84 2.96 7.34 5.87 4.43 4.74	8.75 8.50 8.25 8.12 8.00 8.06 7.93 8.28 8.14 8.11 7.99 7.89 6.38 6.20 5.99 6.28	8 ³ / ₄ 8 ¹ / ₂ 8 ¹ / ₈ 8 7 ⁷ / ₈ 8 ¹ / ₄ 8 ¹ / ₈ 8 ¹ / ₈ 6 ³ / ₈ 6 ³ / ₈ 6 ¹ / ₄ 6	0.285 0.245 0.250 0.230 0.230 0.230 0.170 0.320 0.260 0.230	3%8 3%8 5%16 5%16 5%16 1%4 1%4 1%4 1%4 1%4 1%4 3%16 5%16 1%4 1%4	1/4 3/15 3/16 3/16 3/16 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/6 1/6 1/8	In 8.280 8.220 8.110 8.020 7.995 6.535 6.495 5.270 5.250 4.015 4.000 3.940 6.080 6.020 5.990 4.030	81/4 81/4 81/6 81/8 81/8 81/8 81/8 81/8 81/8 61/2 51/4 51/4 4 4 4 4 6 6 6 6	0.935 0.810 0.685 0.560 0.495 0.435 0.465 0.400 0.330 0.315 0.255 0.205 0.455 0.205 0.455 0.260 0.405	7/16 3/8 5/16 5/16 1/4 3/16 3/8 1/4 3/8 1/4 3/8	In. 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 65% 65% 65% 65% 65% 65% 65% 43% 43% 43%	17/16 15/16 13/16 11/16 1 15/16 7/6 13/16 3/4 13/16 3/4 13/16 3/4 5/8 3/4	In. 11/16 11/16 5% 5% 9/16 9/16 9/16 9/16 1/2 7/16 7/16 7/16 7/16 7/16	Effective length in ft AL with respect to least radius of gyration	, 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 33 34	555 541 526 509 492 473 433 443 443 443 443 443 391 370 349 328 307 267 228 194 167 146 128 120 113	746 721 693 662 631 598 564 529 494 460 425 392 3\$9 328 271 228 194 167 146 128 120 113	481 469 455 441 425 409 374 355 337 318 300 281 263 228 194 165 143 124 109 103 97	647 624 599 572 544 455 455 455 394 365 335 307 279 231 194 165 143 124 109 397	396 386 374 362 335 321 276 260 245 229 214 185 157 134 115 100 88 83 78	549 532 513 492 470 446 422 397 372 347 321 297 272 249 226 187 157 134 115 100 88 83 78	329 319 309 298 275 263 251 238 225 212 198 186 173 148 125 107 92 80 70 66 62	454 439 423 386 366 345 324 303 281 260 239 219 200 180 149 125 107 92 80 70 66 62	252 242 231 220 208 197	321 303 284 265 246 228 209 191 174 157 130 109 93 80 70 61	261 255 248 240 232 223 214 204 194 184 174 163 153 143 133 143 133 114 96 82 70 61 51	329 315 300 284 268 251 234 217	wh wh	en L en L <u>13 <i>ft</i></u> 14	.=14 ⁻ .=13 ⁻	ft, c ft 4 13 ft ft	in,	acity cap	y=453 /=433 acity= kips -23	8 kips = <mark>x</mark> kij	s ps?
x 12 x 9			6 5%	0.230 0.170	1/4 1/4 3/16	1/8 1/8	4.000 3.940	4 4	0.280 0.215	1/4 3/16	43⁄4 43⁄4		3/8 3/8		35	107		97 91	97 91	- 10	78	02	02						<u> </u>	20						
W 5x 19 x 16 W 4x 13	4.68		5	0.270 0.240 0.280		1/8	5.030 5.000 4.060	554	0.430 0.360 0.345	3⁄8	31/2 31/2 23/4		7/18 7/18 7/18		ps/in,) ips) os)))) r _x /r _y nge is i	1: 2 8: 2 1. noncor	9.7 272 8.6 .12 .75	17 2 75 2. 1. see dis	167 26 547 185 7.4 36.8 7.1 228 5.1 10 74 cussion	14 224 95 8.7 46.7 14 1 60 - 2.	1.51 119 20 264 132 7.4 31.1 4.1 84 0.9 08 74	39.1 1 4 2 1	192 88 7.2 26.4 1.7 46 9.1 .04 .73	104 50 8.5 35.1 1 4 2 1	78 16 123 69	9. ⁻ 1 ⁻ 37 2.0	13 10 7.1		x = .	446.3	33 k	kips	5			

Any Questions?

yifanma@umich.edu

Thank You!

