Structure II Recitation 2/23

Steel Column Analysis

Before we start ...

Today's Tasks

Homework Example (Steel Column Analysis) (9 Questions)

6. Steel Column Analysis

For the given axially loaded steel W-section, determine the maximum floor live load capacity, P LL. Assume the column is pinned top and bottom: K = 1.0. and there is no intermediate bracing. Use AISC-LRFD steel equations to determine phi Pn and the load. E = 29000 ksi.

DATASET: 1 -23-	
W-section	W8X31
Fy	50 KSI
Span A	34 FT
Span B	43 FT
Height L	13 FT
Floor Dead Load	44 PSF

Analysis of Steel Columns pass / fail by LRFD

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_v
- Factored load P.,

Required:

P₁₁ ≤ Ø P_n (pass)

- 1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 5. Determine $\emptyset P_n$ and compare to P_n $P_n = F_{cr} A_a \qquad \emptyset = 0.9$
- 6. If $P_u \leq \emptyset P_n$, then OK

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y \quad \text{Short}$$

$$F_{cr} = 0.877 F_e \qquad \qquad \text{Long}$$

Given from Question

Q1: The Unfactored Floor Dead Load on the Column

- = Floor DL x Tributary Area
- $= 44 \times (34 \times 43) / 1000$

1 - 28

= <u>64.328 kips</u> Convert Unit

W-section W8X31 Fy 50 KSI Span A 34 FT Span B 43 FT Height L 13 FT Floor Dead Load 44 PSF

Q2: Controlling Slenderness Ratio

Look at Table 1-1 for the radius of gyration r, search for the weak axis (smaller one),

We choose 2.02 in for my situation

Slenderness Ratio = $K \times L / r = 1 \times 13 \times 12 / 2.02 = 77.228$

DIMENSIONS AND PROPERTIES

Convert Unit

Q3: Transition Slenderness Value

 $4.71 \times (E/Fy)^{0.5} = 4.71 \times (29000/50)^{0.5} = 113.432$

Tw.	Y bj	r			,	W-	Sha	ар		-,					
Area, Depth,			Web			Flange			Distance						
10 <u>11</u> 111111111111111	Area,	Dep	1000	Thick	iess,	t _w	Wie	dth,	Thick	ness,		k	k 1	T	Work- able
Shape															
Shape		a		t _u		2	1)f	t	,	k _{des}	K _{det}	A)	,	Gage
Shape	in. ²	in		t _e	10	in.		n.	in		k _{des}	k _{det}	in.	in.	
W8×67	in. ²	in. 9.00	9	in 0.570	10	in. 5/16		n.	-		in.		10.234	in.	Gage
W8×67 ×58	in. ²	in	9	in		in.	i	n.	in		in. 1.33	in.	in.	in.	Gage in.
W8×67 ×58 ×48	in. ²	in. 9.00	9 8 ³ / ₄ 8 ¹ / ₂	0.570 0.510 0.400	9/16	in. 5/16	8.28	n. 8½	0.935	15/16	in. 1.33 1.20	in. 15/8	in.	in.	Gage in.
W8×67 ×58	in. ² 19.7 17.1	9.00 8.75	9 8 ³ / ₄ 8 ¹ / ₂	0.570 0.510	9/ ₁₆	in. 5/16 1/4	8.28 8.22	8 ¹ / ₄ 8 ¹ / ₄	0.935 0.810	15/ ₁₆ 13/ ₁₆	in. 1.33 1.20	in. 1 ⁵ /8 1 ¹ / ₂ 1 ³ / ₈	in. 15/16 7/8	in.	Gage in.
W8×67 ×58 ×48	in. ² 19.7 17.1 14.1	9.00 8.75 8.50	9 8 ³ / ₄ 8 ¹ / ₂ 8 ¹ / ₄	0.570 0.510 0.400	9/16 1/2 3/8	in. 5/16 1/4 3/16	8.28 8.22 8.11	8 ¹ / ₄ 8 ¹ / ₄ 8 ¹ / ₈	0.935 0.810 0.685	15/ ₁₆ 13/ ₁₆ 11/ ₁₆	in. 1.33 1.20 1.08	in. 15/8 11/2 13/8 11/4	in. 15/16 7/8 13/16	in.	Gage in.

$4.71\sqrt{E/Fy}$

Given from Question

Q4: Euler Stress (Fe)

$$\pi^2 \times E / (K \times L / r)^2$$
 From Q2
 $= \pi^2 \times 29000 / (77.228)^2$
 $= \pi^2 \times 29000 / (77.228)^2$
 $= 47.99 \text{ ksi}$

Q5: Critical Stress (Fcr)

Compare the controlling slenderness ratio to the transition slenderness value to see which formula to use:

77.228 (Q2) < 113.432 (Q3), use short column formula

Fcr =
$$0.658^{(Fy/Fe)}$$
 x Fy = $0.658^{(50/47.99)}$ x $50 = 32.3283$ kips

E	_	$\pi^2 E$
F_e	_	$\overline{(KL)^2}$
		(r)

Short & Intermediate Columns:

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
Q2 < Q3
Equation E3-2

Long Columns:

$$F_{cr} = 0.877 F_e$$

$$Q^2 > Q^3$$

Equation E3-3

Q6: Nominal Strength (Pn)

$$Pn = Fcr \times Ag = 32.3283 \times 9.13 = 295.157 \text{ kips}$$

Q7: Factored Nominal Strength (Φ Pn) Φ Pn = 0.9 x 295.157 = 265.6416 kips

$P_n = F_n$	$_{cr}A_{g}$
$\phi_c P_n =$	$\phi_c F_{cr} A_g$
	$(\phi_c = 0.90)$

Q8: Unfactored Live Load on Column (LL)

Assume Φ Pn = Pu, Φ Pn = 1.2 DL + 1.6 LL \uparrow From Q7 From Q1

Q9: Actual Unfactored Floor Live Load (Floor LL)

Floor LL = LL / Tributary Area = 117.78 x 1000 / (34 x 43) = <u>80.5608 psf</u>

$w_u = 1.2w_{DL} + 1.6w_{LL}$

Given from Question

 W-section
 W8X31

 Fy
 50 KSI

 Span A
 34 FT

 Span B
 43 FT

 Height L
 13 FT

 Floor Dead Load
 44 PSF

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

- 1. 1.4D2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- 2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$ 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- 4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. 0.9D + 1.0W

