# Structure II Recitation 2/23 

Steel Column Analysis

## Before we start ...

Today's Tasks
Homework Example (Steel Column Analysis) (9 Questions)

## 6. Steel Column Analysis

For the given axially loaded steel W-section, determine the maximum floor live load capacity. P LL. Assume the column is pinned top and bottom: $\mathrm{K}=1.0$. and there is no intermediate bracing. Use AISC-LRFD steel equations to determine phi Pn and the load. $\mathrm{E}=29000$ ksi.

| DATASET: 1 | $-2-$ | $-3-$ |
| :--- | :---: | :---: |
| W-section |  |  |
| Fy |  | W8X31 |
| Span A |  | 50 KSI |
| Span B |  | 34 FT |
| Height L | 43 FT |  |
| Floor Dead Load | 13 FT |  |
|  |  | 44 PSF |



Get Slenderness Ratio - Get Transition Slenderness - Decide Long or Short Column - Get ФPn - Decide LL

## Analysis of Steel Columns <br> pass / fail by LRFD

Data:

- Column - size, length
- Support conditions
- Material properties - $\mathrm{F}_{\mathrm{y}}$
- Factored load - $\mathrm{P}_{\mathrm{u}}$


## Required:

- $\mathrm{P}_{\mathrm{u}} \leqq \varnothing \mathrm{P}_{\mathrm{n}}$ (pass)

1. Calculate slenderness ratios: $L_{c} / r_{x}$ and $L_{c} / r_{y}\left(L_{c}=K L\right)$ The largest ratio governs.
2. Check slenderness ratio against upper limit of 200 (recommended)
3. Calculate transition slenderness $4.71 \sqrt{E / F y}$ and determine column type (short or long)
4. Calculate $F_{c r}$ based on slenderness
5. Determine $ø P_{n}$ and compare to $P_{u}$

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{F}_{\mathrm{cr}} \mathrm{~A}_{\mathrm{g}} \quad \varnothing=0.9
$$

6. If $P_{u} \leqq \varnothing P_{n}$, then $O K$

$$
\begin{aligned}
& F_{c r}=\left[0.658^{F_{y}} F_{r}\right] F_{y} \quad \text { Short } \\
& F_{c r}=0.877 F_{e} \quad \text { Long }
\end{aligned}
$$

Q1: The Unfactored Floor Dead Load on the Column
Given from Question
= Floor DL x Tributary Area

| W-section | W8X31 |
| :--- | :---: |
| Fy | 50 KSI |
| Span A | 34 FT |
| Span B | 43 FT |
| Height L | 13 FT |
| Floor Dead Load | 44 PSF |

## Q2: Controlling Slenderness Ratio

Look at Table 1-1 for the radius of gyration r , search for the weak axis (smaller one), We choose 2.02 in for my situation
Slenderness Ratio $=K \times L / r=1 \times 13 \times 12 / 2.02=\underline{77.228}$


## Q3: Transition Slenderness Value

$4.71 \times(\mathrm{E} / \mathrm{Fy})^{0.5}=4.71 \times(29000 / 50)^{0.5}=\underline{\mathbf{1 1 3 . 4 3 2}}$


| Table 1-1 (continued) W-Shapes Properties |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  | w8-W4 |  |
| $\begin{gathered} \text { Nor } \\ \substack{\text { inf } \\ \text { in } \\ \text { w }} \\ \hline \text { lb } \end{gathered}$ | Compact Section Criteria |  | Axis X - X |  |  |  | Axis $\mathrm{Y}^{-}$- |  |  |  | $r_{\text {IS }}$ | $h_{0}$ | Torsional Properties |  |
|  | $\mathrm{b}_{t}$ | h | 1 | $s$ | $r$ | $z$ | 1 | $s$ | , | $z$ |  |  | $J$ | $c_{w}$ |
|  | $\frac{b_{1}}{2 t_{t}}$ | $t_{10}$ | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. | in. | in. ${ }^{4}$ | in. ${ }^{6}$ |
| 67 | 4.43 | 11.1 | 272 | 60.4 | 372 | 70.1 | 88.6 | 21.4 | 2.2 | 32.7 | 2.43 | 8.07 | 5.05 | 1440 |
| 58 | 5.07 | 12.4 | 228 | 52.0 | 365 | 59.8 | 75.1 | 18.3 | 2. 0 | 27.9 | 2.39 | 7.94 | 3.33 | 1180 |
| 48 | 5.92 | 15.9 | 184 | 43.2 | 361 | 49.0 | 60.9 | 15.0 | 2.8 | 22.9 | 2.35 | 7.82 | 1.96 | 931 |
| 40 | 7.21 | 17.6 | 146 | 35.5 | 353 | 39.8 | 49.1 | 12.2 | 2.4 | 18.5 | 2.31 | 7.69 | 1.12 | 726 |
| 35 | 8.10 | 20.5 | 127 | 31.2 | 351 | 34.7 | 42.6 | 10.6 | $2{ }^{\text {2 }}$ | 16.1 | 2.28 | 7.63 | 0.769 | 619 |
| 31 |  |  | 110 | 27.5 | 3.47 | 30.4 | 37.1 | 9.27 | 2.02 | 14.1 | 2.26 | 7.57 | 0.536 | 530 |

# Given from Question 

```
Q4: Euler Stress (Fe)
\(\pi^{2} \times \mathrm{E} /{\mathrm{K} \times \mathrm{K} / \mathrm{r})^{2}}^{2}\)
```

$\qquad$

$$
=\pi^{2} \times 29000 /(77.228)^{2}
$$

$$
=\pi^{2} \times 29000 /(77.228)^{2}
$$

$$
=47.99 \mathrm{ksi}
$$

```
\begin{tabular}{lc} 
W-section & W8X31 \\
Fy & 50 KSI \\
\hline Span A & 34 FT \\
Span B & 43 FT \\
Height L & 13 FT \\
Floor Dead Load & 44 PSF
\end{tabular}

\section*{Q5: Critical Stress (Fcr)}

Compare the controlling slenderness ratio to the transition slenderness value to see which formula to use:
\(77.228(\mathrm{Q} 2)<113.432(\mathrm{Q} 3)\), use short column formula
\[
\mathrm{Fcr}=\left.0.658^{(\mathrm{Fy} / \mathrm{Fe})}\right|_{\text {From Q4 }} ^{4} \mathrm{Fy}=0.658^{(50 / 47.99)} \times 50=\underline{\mathbf{3 2 . 3 2 8 3} \text { kips }}
\]
\[
F_{e}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}
\]

Short \& Intermediate Columns:
\[
\begin{aligned}
& F_{c r}=\left[0.658^{F_{v}}{ }^{F_{c}}\right] \\
& \mathrm{Q} 2^{F_{y}} \mathrm{Q}^{2} 3 \\
& \text { Equation E3-2 }
\end{aligned}
\]

Long Columns:
\[
\begin{aligned}
& F_{c r}=0.877 F_{e} \\
& \mathrm{Q}^{2}>\mathrm{Q} 3
\end{aligned}
\]

\section*{Q6: Nominal Strength (Pn)}
\(\operatorname{Pn}=\operatorname{Fcr} \times \mathrm{Ag}=32.3283 \times 9.13=\underline{295.157 \text { kips }}\)

\section*{From Q5}

Q7: Factored Nominal Strength ( \(\Phi \mathbf{P n}\) ) \(\Phi P n=0.9 \times 295.157=\underline{\mathbf{2 6 5} .6416 \mathrm{kips}}\)
\[
\begin{aligned}
& P_{n}=F_{c r} A_{g} \\
& \phi_{c} P_{n}=\phi_{c} F_{c r} A_{g} \\
& \quad\left(\phi_{c}=0.90\right)
\end{aligned}
\]

Q8: Unfactored Live Load on Column (LL)
Assume \(\Phi\) Pn \(=\mathrm{Pu}\),
\(\Phi \mathrm{Pn}=1.2 \mathrm{DL}+1.6 \mathrm{LL}\)



Fy
Span A
Span B
Height L Floor Dead Load

W8×31
50 KSI
34 FT
43 FT
13 FT
44 PSF
\(265.6416=1.2 \times 64.328+1.6 \times\) LL
\(\mathrm{LL}=(265.6416-1.2 \times 64.328) / 1.6=117.78\) kips

\section*{Q9: Actual Unfactored Floor Live Load (Floor LL)}

Floor LL = LL / Tributary Area
\(=117.78 \times 1000 /(34 \times 43)=\underline{80.5608} \mathbf{p s f}\)
\[
\mathrm{w}_{\mathrm{u}}=1.2 \mathrm{w}_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LL}}
\]
1. \(1.4 D\)
2. \(1.2 D+1.6 L+0.5\left(L_{r}\right.\) or \(S\) or \(\left.R\right)\)
3. \(1.2 D+1.6\left(L_{r}\right.\) or \(S\) or \(\left.R\right)+(L\) or \(0.5 W)\)
4. \(1.2 D+1.0 W+L+0.5\left(L_{r}\right.\) or \(S\) or \(\left.R\right)\)
5. \(0.9 D+1.0 W\)

TMOUNAWERE```

