Structure II Recitation 1/26

Wood Beam Design

Before We Start..

1. Homework (Due Sunday)
2. Weekly quiz (Due Sunday)
3. Lab sheet (Due Friday during recitation)
4. Notes will be uploaded on the structure website on Friday (Check the "Recitation" tab)
5. Remember to do the on topic quiz on canvas if you miss the lectures
6. My email: tyling@umich.edu

Analysis Procedure (capacity)

Given: member size, material and span.
Req'd: Max. Safe Load (capacity)

1. Determine F_{b} and F_{b}^{\prime}
2. Assume $f_{b}=F_{b}^{\prime}$

- Maximum actual = allowable stress

3. Solve stress equations for force

- $M=f_{b} S$
- $V=0.66 f_{v} A$

4. Use maximum moment to find loads

- Back calculate a load from moment
- Assumes moment controls

5. Check Shear

- Use load found is step 4 to check shear stress.
- If it fails ($f_{v}>F_{v}^{\prime}$), then find load based on shear.

6. Check deflection
7. Check bearing

Design Procedure

Given: load, wood and grade, span, other usage conditions
Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Determine allowable stresses, F_{b}

- Apply usage factors to get F_{b}^{\prime}

3. Solve $S=M / F_{b}$,
4. Choose a section from Table 1B

- Revise DL and F_{b} '
- Check step 3 and revise.

5. Check shear stress

- First for V max (easier)
- If that fails, try V at d distance from support.
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}{ }^{\prime}$

6. Check deflection
7. Check bearing

University of Michigan, TCAUP

2. Wood Beam Design

Design a $2 x$ dimensioned lumber floor joist to carry the given deau + live floor load (neglect joist seliweight). Assume the floor meets conditions of 4.4 .1 so CL=1.0. Also $\mathrm{Ct}, \mathrm{Cfu}$, and $\mathrm{Ci}=1.0$. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

DATASET: $1 \quad-2-\quad-3$

Wood Species
EASTERN
HEMLOCKTAMARACK

Select Structural

Span
16 FT
Joist Spacing, o.c. $\quad 19.2$ IN
Moisture Content, m.c. 25 \%

Floor DL
6 PSF
Floor LL
40 PSF

Q1: Tabulated Allowable Bending Stress (Fb) Q2: Tabulated Allowable Shear Stress (Fv) Q3: Tabulated Modulus of Elasticity (E)

Wood Species

Wood Grade

EASTERN
HEMLOCKTAMARACK

Check Table 4A:

$$
\mathrm{Fb}=\underline{\mathbf{1 2 5 0}} \mathrm{psi}, \mathrm{Fv}=\underline{\mathbf{1 7 0}} \mathbf{p s i}, \mathrm{E}=\underline{\mathbf{1 2 0 0 0 0 0 0}} \mathbf{~ p s i}
$$

NDS Supplement, Table 4A, P.41~(PDF)
USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		BendingF_{b}	Tension parallel to grain\qquad F_{t}	Shear parallel to grainF_{v}	Compression perpendicular to grain $F_{c \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$E_{\text {min }}$		

Q4: Total Applied Floor Load (DL+LL)

Calculation:
$(\mathrm{DL}+\mathrm{LL})=40+6=\underline{46} \mathbf{P S F}$

Q5: Load on Joist (w)

The unit of our answer is PLF

Calculation:

W

Q6: Actual Beam Bending Moment (M)

Look for the maximum moment, use the equation method:
For uniformly distributed load on a simple beam,

the maximum moment $\mathrm{M}=\mathrm{wx} \mathrm{L}{ }^{2} / 8$

R
R

$\mathrm{M}=\underset{\substack{\mathrm{w} \\ \text { from Q5 }}}{\mathrm{w}} \times \mathrm{L}^{2} / 8=73.6 \times 16^{2} / 8=\underline{\mathbf{2 3 5 5 . 2} \mathrm{FT}^{*} \mathbf{L B}}$

Q7: Actual Maximum Shear Force (At Reaction) (V)

Since the system is symmetrical, the two reaction forces are the same
For uniformly distributed load on a simple beam, the maximum shear force $V=R$

$$
\begin{aligned}
& \sum \mathrm{Fy}=0: \\
& \mathrm{w} \times \mathrm{L}=\mathrm{R}+\mathrm{R} \\
& \mathrm{R}=\mathrm{w} \times \mathrm{L} / 2=588.8 \\
& \mathrm{~V}=\mathrm{R}=\mathbf{5 8 8 . 8} \mathbf{L B S}
\end{aligned}
$$

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Q8: Nominal Depth of the Final Joist Use (2 x ?)

Step 1: Estimate Allowable Stresses:

Given from Question:

$$
C_{L}=C_{f u}=C_{t}=C_{i}=1
$$

C_{r} : Look at slide 12 (Q10)
C_{M} : Look at slide 13 (Q11\&12)
C_{D} : Look at Table 2.3.2, $C_{D}=1$ (for Occupancy Live Load)
Since we are not able know C_{F} yet, we estimate $C_{F}=1$

$$
\begin{aligned}
\mathrm{F}^{\prime} \mathrm{b} & =\mathrm{Fb} \times\left(\mathrm{C}_{\mathrm{D}} \times \mathrm{C}_{\mathrm{M}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{L}} \times \mathrm{C}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{fu}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{r}}\right) \\
& =\mathrm{Fb} \times\left(\mathrm{C}_{\mathrm{D}} \times \mathrm{C}_{\mathrm{M}} \times \mathrm{C}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{r}}\right) \\
& =1250 \times(1 \times 0.85 \times 1 \times 1.15) \\
& =1221.875 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
F_{v}^{\prime} & =F v \times\left(C_{D} \times C_{M} \times C_{t} \times C_{i}\right) \\
& =170 \times(1 \times 0.97 \times 1 \times 1) \\
& =164.9 \mathrm{psi}
\end{aligned}
$$

Design a $2 x$ dimensioned lumber floor joist to carry the given dead + live floor load (neglect joist selfweight). Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct , Cfu, and $\mathrm{Ci}=1.0$. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

Table 2.3.2	$\begin{array}{l}\text { Frequently Used Load } \\ \text { Duration Factors, } \mathbf{C}_{\mathrm{D}}{ }^{1}\end{array}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Iwo months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact 2	2.0	Impact Load

Step 2: Search for the possible answers with $\mathbf{S x}$

Assume the estimated F'b (allowable) $=\mathrm{fb}$ (actual)
Use $F^{\prime} b=M / S x$ to find $S x$

For my situation:

$$
\begin{gathered}
\mathrm{Sx}=\underset{\uparrow}{\mathrm{M}} / \mathrm{F} \mathrm{~b}=2355.2 / 1221.875 \times 12=23.136 \\
\text { from } \mathrm{Q}^{6} \quad \text { Convert Unit }
\end{gathered}
$$

$f_{b}=M / S$

Look at Table 1B, find the sizes that have the $S x$ closest to 23.126,
NDS Supplement, Table 1B, P. 22 (PDF) for me will be $\underline{2 \times 10}$ and $\underline{2 \times 12}$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

Nominal Size bxd	Standard Dressed Size (S4S) bxd in. x in.	$\begin{array}{\|c} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }^{2} \end{array}$	X-X AXIS		Y-Y AXIS		Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:					
			$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ S_{x x} \\ \text { in! }{ }^{3} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{xx}} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	Section Modulus$\begin{aligned} & \mathrm{S}_{\mathrm{yy}} \\ & \text { in. }{ }^{3} \end{aligned}$	Moment of Inertia I_{yy} in. ${ }^{4}$						
							$25 \mathrm{lbs} / \mathrm{ft}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}^{3}$	$35 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$45 \mathrm{lbs} / \mathrm{ft}^{3}$	$50 \mathrm{lbs} / \mathrm{ft}^{3}$

1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930

Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2×3	$1-1 / 2 \times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2×4	$1-1 / 2 \times 3-1 / 2$	5.250	$3 . \phi 6$	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2×5	$1-1 / 2 \times 4-1 / 2$	6.750	$5 . \phi 6$	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2×6	$1-1 / 2 \times 5-1 / 2$	8.250	$7 . \phi 6$	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2×8	$1-1 / 2 \times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2×10	$1-1 / 2 \times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2×12	$1-1 / 2 \times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2×14	$1-1 / 2 \times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901
3×4	$2-1 / 2 \times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557	1.519	1.823	2.127	2.431	2.734	3.038

Step 3: Check if allowable stresses are bigger than actual stresses for the chosen sizes: First Test 2×10 (the smaller one):

Bending Stress: Check Slide 11

$\mathrm{Fb}=\mathrm{Fb} \times\left(\mathrm{C}_{\mathrm{D}} \times \mathrm{C}_{\mathrm{M}} \times \mathrm{C}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{r}}\right)=1250 \times(1 \times 0.85 \times 1.1 \times 1.15)=\mathbf{1 3 4 4 . 0 6 3 \mathrm { psi }}$ Q13 $\mathrm{fb}=\mathrm{M} / \mathrm{S}=2355.2 / 21.39 \times 12=1321.29 \mathrm{psi} \mathrm{Q} 15$

> from Q6

Convert Unit
F'b (allowable) $>\mathrm{fb}$ (actual), It's a pass!

Shear Stress:

$F{ }^{\prime} v=F v \times\left(C_{D} \times C_{M} \times C_{t} \times C_{i}\right)=170 \times(1 \times 0.97 \times 1 \times 1)=164.9$ psi Q14

$$
\mathrm{fv}=1.5 \mathrm{~V} / \mathrm{A}=1.5 \times 588.8 / 13.88=63.6 \text { psi } \mathrm{Q} 16
$$ from Q7

F'v (allowable) $>\mathrm{fv}$ (actual), It's another pass!
Nominal Depth $=\underline{10 i n}$

Q9: Size Factor $\left(C_{F}\right)$
Look at Table 4A
$\mathrm{C}_{\mathrm{F}}=\mathbf{1 . 1}$

Given from Question

	EASTERN
Wood Species	HEMLOCK-
TAMARACK	
Wood Grade	Select
	Structural

EASTERN
HEMLOCK-
TAMARACK
Select
Structural

NDS Supplement, Table 4A, P. 40 (PDF)
Size Factors, C_{F}

Grades	from Q8 Width (depth)	F_{b}		F_{t}	F_{c}
		Thickness (breadth)			
		$2^{\prime} \& 3^{\prime \prime}$	$4 "$		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", 3', \& 4"	1.5	1.5	1.5	1.15
	\$"	1.4	1.4	1.4	1.1
	$6 "$	1.3	1.3	1.3	1.1
	\&"	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	$12^{\prime \prime}$	1.0	1.1	1.0	1.0
	$14^{\prime \prime}$ \& wider	0.9	1.0	0.9	0.9
Stud	2", 3", \& 4"	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	$8^{\prime \prime}$ \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4{ }^{\prime \prime}$	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" \& 3"	0.4	-	0.4	0.6

Q10: Repetitive Factor (C_{r})

Check if your spacing bigger than 24 in

$$
\text { If bigger, } C_{r}=1
$$

$$
\text { If smaller or equal, } C_{r}=1.15
$$

Since my spacing $=19.2 \mathrm{in}<24$ in

$$
C_{r}=1.15
$$

Repetitive Member Factor, \mathbf{C}_{r}

Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than $24^{\prime \prime}$ on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Q11. Wet Service Factor for $\mathbf{F b}\left(\mathrm{C}_{\mathrm{m}_{-} \mathrm{b}}\right)$:

1. Check if Moisture Content < 19\%

If bigger, go to next step
If smaller, $\mathrm{C}_{\mathrm{M} _\mathrm{b}}=1$

Given from Question
Moisture Content, m.c.
25 \%

NDS Supplement, Table 4A, P. 40 (PDF)

Wet Service Factor, C_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{M}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85^{*}	1.0	0.97	0.67	$0.8^{* *}$	0.9

[^0]
Formula:

$E^{\prime}=E x\left(C_{M} \times C_{t} \times C_{i}\right)(E$ from Q3)
Given from Question:
$C_{t}=C_{i}=1$
For C_{M}, Check if M.C. > 19\%
If yes, $\mathrm{C}_{\mathrm{M}}=0.9$
If not, $C_{M}=1$
Since my M.C. $=25 \%>19 \%, C_{M_{-E}}=0.9$
Calculation:
$\mathrm{E}^{\prime}=\mathrm{Ex} \mathrm{C}_{\mathrm{M}_{-} \mathrm{E}}=1200000 \times 0.9=\underline{\mathbf{1 0 8 0 0 0 0}} \mathbf{~ p s i}$

Moisture Content, m.c.

| $\mathrm{F}_{\mathrm{c} \perp}=\mathrm{F}_{\mathrm{c} \perp}$ | x | - | C_{M} | C_{t} | - | - | - | C_{i} | - | - | - | C_{b} | K_{F} | ϕ_{c} | λ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{F}_{\mathrm{C}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$ | x | C_{D} | C_{M} | C_{t} | - | C_{F} | - | C_{i} | - | C_{P} | - | - | K_{F} | ϕ_{c} | λ |
| $\mathrm{E}^{\prime}=\mathrm{E}$ | x | - | C_{M} | C_{t} | - | - | - | C_{i} | - | - | - | - | - | - | - |
| $\mathrm{E}_{\min }{ }^{\prime}=\mathrm{E}_{\min }$ | x | - | C_{M} | C_{t} | - | - | - | C_{i} | - | - | C_{T} | - | K_{F} | ϕ_{s} | - |

NDS Supplement, Table 4A, P. 40 (PDF)
Wet Service Factor, C_{M}
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85*	1.0	0.97	0.67	0.8**	0.9
** when $\left(\mathrm{F}_{\mathrm{c}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$					

Q18. Short Term Deflection for 100\% LL

Formula:

Deflection $=\left(5 \times \mathrm{w} \times \mathrm{L}^{4}\right) /(384 \times \mathrm{Ex}$ I)
(E: Use E' from Q17)
(I: Look at Table 1B)

Beam Load and Support	
Actual Deflection	
(a) Uniform load, simple span	$\Delta_{\max }=\frac{5 \omega L^{4}}{384 E I}$

(L: Given from question)
Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber
Since we are looking at 100% LL, We need to recalculate w with only LL

Nominal Size bxd	Standard Dressed Size (S4S) b \times d in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS		Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:					
			$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathrm{S}_{\mathrm{xx}} \\ \mathrm{in} .^{3} \\ \hline \end{array}$	Moment of Inertia $I_{x x}$ ir\|.	$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathrm{S}_{\mathrm{yy}} \\ \mathrm{in}^{3}{ }^{3} \\ \hline \end{array}$	Moment of Inertia $I_{y y}$ in. ${ }^{4}$						
							$25 \mathrm{lbs} / \mathrm{ft}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}^{3}$	$35 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$45 \mathrm{lbs} / \mathrm{ft}^{3}$	$50 \mathrm{lbs} / \mathrm{ft}^{3}$

$$
\mathrm{w}=40 \times 19.2 / 12=64 \text { PLF }
$$

Calculation:

1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	8899	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2930

Deflection
$=\left(5 \times 64 \times 16^{4}\right) /(384 \times 1080000 \times 98.93) \times(12)^{3}$
$=\underline{0.883} \mathrm{in}$

Q19. Short Term Deflection Limit for L/360

Span

16 FT

Calculation:
$\mathrm{L} / 360=16 / 360 \times 12=\underline{0.533}$ in
Convert Unit

Q20. Deflection Passing

Check if Deflection (Q18) < Deflection Limit (Q19) If bigger, the answer is "Fail" If smaller, the answer is "Pass"

For my situation:
Since $0.883>0.533$, the answer is Fail

[^0]: * when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150$ psi, $\mathrm{C}_{\mathrm{M}}=1.0$
 ** when $\left(\mathrm{F}_{\mathrm{c}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$

