Structure II Recitation 1/26

Wood Beam Design

Before We Start..

- 1. Homework (Due Sunday)
- 2. Weekly quiz (Due Sunday)
- 3. Lab sheet (Due Friday during recitation)
- 4. Notes will be uploaded on the structure website on Friday (Check the "Recitation" tab)
- 5. Remember to do the on topic quiz on canvas if you miss the lectures
- 6. My email: tyling@umich.edu

Analysis Procedure (capacity)

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Determine F_b and F'_b
- 2. Assume f_b = F'_b
 - Maximum actual = allowable stress
- 3. Solve stress equations for force
 - M = f_b S
 - V = 0.66 f_v A
- 4. Use maximum moment to find loads
 - Back calculate a load from moment
 - Assumes moment controls
- 5. Check Shear
 - Use load found is step 4 to check shear stress.
 - If it fails (f_v > F'_v), then find load based on shear.
- 6. Check deflection
- 7. Check bearing

Design Procedure

Given: load, wood and grade, span, other usage conditions

Req'd: member size

1. Find Max Shear & Moment

- Simple case equations
- Complex case diagrams
- 2. Determine allowable stresses, F_b
 - Apply usage factors to get F'_b
- 3. Solve S = M/F_b'
- 4. Choose a section from Table 1B
 - Revise DL and F_b'
 - · Check step 3 and revise.

5. Check shear stress

- First for V max (easier)
- If that fails, try V at d distance from support.
- If the section still fails, choose a new section with A=1.5V/F_v'
- 6. Check deflection
- 7. Check bearing

University of Michigan, TCAUP

2. Wood Beam Design

Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load (neglect joist selfweight). Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

DATASET: 1 -23-	
Wood Species	EASTERN HEMLOCK- TAMARACK
Wood Grade	Select Structural
Span	16 FT
Joist Spacing, o.c.	19.2 IN
Moisture Content, m.c.	25 %
Floor DL	6 PSF
Floor LL	40 PSF

Q1: Tabulated Allowable Bending Stress (Fb)Q2: Tabulated Allowable Shear Stress (Fv)Q3: Tabulated Modulus of Elasticity (E)

Check Table 4A: Fb = <u>1250 psi</u>, Fv = <u>170 psi</u>, E = <u>12000000 psi</u>

	Given from Question
	EASTERN
Wood Species	HEMLOCK-
	TAMARACK
	Select
wood Grade	Structural

NDS Supplement, Table 4A, P.41~(PDF)

USE WITH TABLE 4A ADJUSTMENT FACTORS

			Design values in pounds per square inch (psi)									
Species and commercial Size grade classification		TensionShearparallelparallelBendingto grainto grainto grain		Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency			
		Fb	F _t	Fv	F _{c⊥}	F _c	E	Emin	G			
EASTERN HEMLOCK-TAMAR	ACK					100-000						
Select Structural		1,250	575	170	555	1,200	1,200,000	440,000				
No. 1	O" & wider	775	350	170	555	1,000	1,100,000	400,000				
No. 2	2 a wider	575	275	170	555	825	1,100,000	400,000				
No. 3		350	150	170	555	475	900,000	330,000	0.44	NELMA		
Stud	2" & wider	450	200	170	555	525	900,000	900,000 330,000		NSLB		
Construction		675	300	170	555	1,050	1,000,000	370,000				
Standard	2" - 4" wide	375	175	170	555	850	900,000	330,000				
Utility		175	75	170	555	550	800,000	290,000				
EASTERN SOFTWOODS												

Q4: Total Applied Floor Load (DL+LL)

Calculation: (DL + LL) = 40 + 6 = 46 PSF

Q5: Load on Joist (w) The unit of our answer is PLF

Floor DL6 PSFFloor LL40 PSFSpan16 FTJoist Spacing, o.c.19.2 IN

Given from Question

Q6: Actual Beam Bending Moment (M)

Look for the maximum moment, use the equation method: For uniformly distributed load on a simple beam, the maximum moment $M = w \ge L^2/8$

$$M = w \ge \frac{L^2}{8} = 73.6 \ge \frac{16^2}{8} = \frac{2355.2 \text{ FT*LB}}{1600}$$

Q7: Actual Maximum Shear Force (At Reaction) (V) Since the system is symmetrical, the two reaction forces are the same For uniformly distributed load on a simple beam, the maximum shear force V = R

$$\Sigma Fy = 0:$$

w x L = R + R
R = w x L / 2 = 588.8
V = R = 588.8 LBS

R

R

Q8: Nominal Depth of the Final Joist Use (2 x ?) Step 1: Estimate Allowable Stresses: Given from Question: $C_L = C_{fu} = C_t = C_i = 1$

C_r: Look at slide 12 (Q10) C_M: Look at slide 13 (Q11&12) C_D: Look at Table 2.3.2, C_D = 1 (for Occupancy Live Load)

Since we are not able know C_F yet, we estimate $C_F = 1$

$$F'b = Fb x (C_D x C_M x C_t x C_L x C_F x C_{fu} x C_i x C_r)$$

= Fb x (C_D x C_M x C_F x C_r)
= 1250 x (1 x 0.85 x 1 x 1.15)
= 1221.875 psi

$$F'v = Fv x (C_D x C_M x C_t x C_i) = 170 x (1 x 0.97 x 1 x 1) = 164.9 psi$$

Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load (neglect joist selfweight). Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only				AS	SD an	d LR	FD					LRFI only)
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	CL	CF	C _{fu}	Ci	Cr	-	-	-	K _F	фъ	λ
$\mathbf{F}_{t} = \mathbf{F}_{t}$	x	CD	См	Ct	-	C _F	-	Ci		-	-	-	K _F	φ _t	λ
$F_v = F_v$	x	CD	См	Ct	-	-	-	Ci		-	-	-	K _F	φ _v	λ
			~	-				-				~		-	

Table 2.3.2Frequently Used Load
Duration Factors, C_{p}^{-1}

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Step 2: Search for the possible answers with Sx

Assume the estimated F'b (allowable) = fb (actual) Use F'b = M/Sx to find Sx

For my situation:

$$Sx = M/F'b = 2355.2 / 1221.875 \times 12 = 23.136$$

from Q6 Convert Unit

Look at Table 1B, find the sizes that have the Sx closest to 23.126,

NDS Supplement, Table 1B, P.22 (PDF)

for me will be 2×10 and 2×12

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

			X-)	X AXIS	Y-1	AXIS			0.001			Material
Nominal	Standard Dressed	Area of	Section	Moment of	Section	Moment of	Appro	oximate w of pie	eight in po ce when d	ounds per ensity of	linear foo wood equ	ot (Ibs/ft) als:
Size b x d	Size (S4S) b x d in. x in.	Section A in. ²	Modulus S _{xx} inl. ³	Inertia I _{xx} in. ⁴	Modulus S _{yy} in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
Roarde ¹		•		•	•							
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimensio	n Lumber (see N	DS 4.1.3.	2) and Dec	king (see	NDS 4.1.3	.5)						
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	1.519	1.823	2.127	2.431	2.734	3.038
2.5	0 1/0 - 1 1/0	11.05	0 4 4	10.00	4 000	E 050	1 050	0.244	0 704	2 405	2 540	2 000

Step 3: Check if allowable stresses are bigger than actual stresses for the chosen sizes: First Test 2 x 10 (the smaller one):

Bending Stress:
 Check Slide 11

 F'b = Fb x (
$$C_D x C_M x C_F x C_r$$
) = 1250 x (1 x 0.85 x 1.1 x 1.15) = 1344.063 psi
 Q13

 fb = M/S = 2355.2 / 21.39 x 12 = 1321.29 psi
 Q15

 from Q6
 Convert Unit

 F'b (allowable) > fb (actual), It's a pass!

Shear Stress:

$$F'v = Fv \times (C_D \times C_M \times C_t \times C_i) = 170 \times (1 \times 0.97 \times 1 \times 1) = 164.9 \text{ psi} Q14$$

$$fv = 1.5 V A = 1.5 \times 588.8/13.88 = 63.6 \text{ psi} Q16$$

$$F'w (allowable) > fv (actual) It's another pase!$$

$$Table 18 \text{ Section Properties of Standard Dressed (S4S) Sawn Lumber}$$

$$Table 18 \text{ Section Properties of Standard Dressed (S4S) Sawn Lumber}$$

$$Table 18 \text{ Section Properties of Standard Dressed (S4S) Sawn Lumber}$$

$$Table 18 \text{ Section Properties of Standard Dressed (S4S) Sawn Lumber}$$

$$Table 18 \text{ Section Properties of Standard Dressed (S4S) Sawn Lumber}$$

F'v (allowable) > fv (actual), It's another pass! Nominal Depth = <u>10in</u>

Nominal	Standard Dressed	Area of	Section	Moment of	Section	Moment of	Appro	oximate wo	eight in po ce when d	ounds per ensity of	linear foo wood equ	ot (Ibs/ft) als:
Size b x d	Size (S4S) b x d in. x in.	Section A in ²	Modulus S _{xx} in. ³	Inertia I _{xx} in. ⁴	Modulus S _{yy} in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
Roarde ¹					•							
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimensio	n Lumber (see N	IDS 4.1.3.	2) and Dec	king (see	NDS 4.1.3	3.5)						
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	1.519	1.823	2.127	2.431	2.734	3.038
0 5	0 4 10 4 4 10	44.05	0.44	10.00	1 000	5 050	1 050	0.044	0.704	0 405	0 540	0.000

Q9: Size Factor (C_F) Look at Table 4A C_F = 1.1

Given from Question

	EASTERN
Wood Species	HEMLOCK-
	TAMARACK
Mand Orada	Select
wood Grade	Structural

NDS Supplement, Table 4A, P.40 (PDF)

		F		Ft	Fc	
	from O8	Thickness	(breadth)			
Grades	Width (depth)	2" & 3"	4"			
	2", 3", & 4"	1.5	1.5	1.5	1.15	
Select	5"	1. <mark>4</mark>	1.4	1.4	1.1	
Structural,	6"	1.3	1.3	1.3	1.1	
No.1 & Btr,	\$ "	1.2	1.3	1.2	1.05	
No.1, No.2,	10"	1.1	1.2	1.1	1.0	
No.3	12"	1.0	1.1	1.0	1.0	
	14" & wider	0.9	1.0	0.9	0.9	
	2", 3", & 4"	1.1	1.1	1.1	1.05	
Stud	5" & 6"	1.0	1.0	1.0 1.0	1.0	
	8" & wider	Use No.3 Grade	tabulated design v	alues and size facto	rs	
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0	
Utility	4"	1.0	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6	

Q10: Repetitive Factor (C_r)

```
Check if your spacing bigger than 24 in
If bigger, C_r = 1
If smaller or equal, C_r = 1.15
```

Since my spacing = 19.2in < 24 in $C_r = 1.15$

Given from Question

Joist Spacing, o.c.

19.2 IN

NDS Supplement, Table 4A, P.41~(PDF)

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load. Q11. Wet Service Factor for Fb (C_{M_b}): 1. Check if Moisture Content < 19% If bigger, go to next step If smaller, $C_{M_b} = 1$

2. Check if Fb x $C_F < 1150$ If bigger, $C_{M_b} = 0.85$ If smaller, $C_{M_b} = 1$

(We don't know C_F yet, but in my case Fb is bigger than 1150, so we estimate $C_{M_b} = 0.85$) After knowing my $C_F = 1.1$, $C_{M_b} = 0.85$

Q12. Wet Service Factor for Fv (C_{M_v}): 1. Check if Moisture Content < 19% If bigger, $C_{M_v} = 0.97$ If smaller, $C_{M_v} = 1$

For my case 25%>19%, $C_{M_v} = 0.97$

Given from Question

	Moisture	Content, m.c.	25 %
--	----------	---------------	------

NDS Supplement, Table 4A, P.40 (PDF)

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

	F _b	F _t	F _v	$F_{c\perp}$	F _c	E and E_{min}
	0.85*	1.0	0.97	0.67	0.8**	0.9
_	* when (F_b)	$(C_F) \leq 1,1$	50 psi, $C_{\rm M} = 1.0$)		
	** when (F _c)	$(C_F) \leq 75$	0			

Q17. Factored Allowable Modulus of Elasticity (E')

Formula:

 $E' = E \times (C_M \times C_t \times C_i) \text{ (E from Q3)}$

Given from Question: $C_t = C_i = 1$

For
$$C_M$$
, Check if M.C. > 19%
If yes, $C_M = 0.9$
If not, $C_M = 1$
Since my M.C. = 25% > 19%, $C_{M_E} = 0.9$

Calculation:

E' = E x C_{M_E} = 1200000 x 0.9 = <u>1080000 psi</u>

Given from Question

Moisture Content, m.c.

25 %

	$F_{c\perp} = F_{c\perp}$	x	-	C_{M}	C_t	-	-	-	C_i	-	•	-	C _b	K _F	ф _с	λ
	$F_c = F_c$	x	CD	См	Ct		CF	-	Ci	-	Cp	-	-	K _F	ф.	λ
	E'=E	x	-	См	Ct	-		-	Ci	-		-	-	-	-	-
-	$E_{min} = E_{min}$	x	-	См	Ct	-	-	-	Ci	-	-	CT	-	K _F	φ _s	-

NDS Supplement, Table 4A, P.40 (PDF)

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

F_{b}	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\tiny min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when (F_b)	$(C_F) \leq 1,15$	0 psi, $C_M = 1$.0		
** when (F.)	$(C_{\rm F}) \le 750$	$p_{si}, C_{M} = 1.0$	0		

Q18. Short Term Deflection for 100% LL Formula:

Deflection = (5 x w x L⁴) / (384 x E x I) (E: Use E' from Q17) (I: Look at Table 1B) (L: Given from question)

Since we are looking at 100% LL, We need to recalculate w with only LL

w = 40 x 19.2 / 12 = 64 PLF

Calculation:

Deflection

 $= (5 \times 64 \times 16^4) / (384 \times 1080000 \times 98.93) \times (12)^3$

= <u>0.883 in</u>

Nominal Size b x d in. x in.	Standard Dressed	Area of	X-X AXIS		Y-1	Y-Y AXIS			1000	0.90		AM STORES
			Section	Moment of	Section	Moment of	Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:					
	Section A in. ²	Modulus S _{xx} in. ³	s Inertia Modulus I _{xx} S _{yy} in. ⁴ in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³		
Roarde ¹				_								
1 x 12	3/4 x 11-1/4	8.438	15.82	88 99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimension	n Lumber (see N	DS 4.1.3.	2) and Dec	king (see	NDS 4.1.3	3.5)						
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11 39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20 80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47 63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	1.519	1.823	2.127	2.431	2.734	3.038
245	0 1/0 v / 1/0	11 05	0 4 4	10 00	1 000	E 0E0	1 052	2 244	0 704	2 105	2 546	2006

Section Properties of Standard Dressed (S4S) Sawn Lumber

NDS Supplement, Table 1B, P.22 (PDF)

Convert Unit

Table 1B

Q19. Short Term Deflection Limit for L/360

16 FT

Calculation: L / 360 = 16 / 360 x 12 = <u>0.533 in</u>

Convert Unit

Q20. Deflection Passing

Span

Check if Deflection (Q18) < Deflection Limit (Q19) If bigger, the answer is "Fail" If smaller, the answer is "Pass"

For my situation: Since 0.883 > 0.533, the answer is **Fail**

