

# Arch324 STRUCTURES II

Winter 2024 Recitation

FACULTY: Prof. Peter von Bülow

**GSI: Mohsen Vatandoost** 

#### Arch324: STRUCTURES II

## Welcome to Recitation session 01/26 Mohsen Vatandoost {Ph.D., M.Sc., M. Arch}

mohsenv@umich.edu

Office: Room 3104

hours:

Fri: 11:30 - 14:30

Mon, Wed: 11:00 - 12:00

walk-ins welcome!

Please feel free to ask questions.



#### Arch324: STRUCTURES II

## Welcome to Recitation session 01/26

#### Outline:

- Quick Recap of the week
- Provide the solution for the assignment (Homework 2)

Contact:

- Answering student's questions
- Lab: ---

Please feel free to ask questions.



## Recap of the week

#### Wood Beam Analysis / Design

#### Analysis Procedure (capacity)

Given: member size, material and span.

Req'd: Max. Safe Load (capacity)

- Determine F<sub>b</sub> and F'<sub>b</sub>
- 2. Assume f<sub>b</sub> = F'<sub>b</sub>
  - Maximum actual = allowable stress
- 3. Solve stress equations for force
  - M = f<sub>b</sub> S
  - V = 0.66 f<sub>v</sub> A
- 4. Use maximum moment to find loads
  - · Back calculate a load from moment
  - · Assumes moment controls
- Check Shear
  - Use load found is step 4 to check shear stress.
  - If it fails (f<sub>v</sub> > F'<sub>v</sub>), then find load based on shear.
- 6. Check deflection
- 7. Check bearing

#### **Design Procedure**

**Given:** load, wood and grade, span, other usage conditions

Req'd: member size

- 1. Find Max Shear & Moment
  - · Simple case equations
  - · Complex case diagrams
- 2. Determine allowable stresses, F<sub>b</sub>
  - · Apply usage factors to get F'b
- 3. Solve  $S = M/F_b$
- 4. Choose a section from Table 1B
  - Revise DL and F<sub>b</sub>'
  - · Check step 3 and revise.
- Check shear stress
  - First for V max (easier)
  - If that fails, try V at d distance from support.
  - If the section still fails, choose a new section with A=1.5V/F<sub>v</sub>'
- Check deflection
- Check bearing



## Recap of the week

#### **Wood Column Analysis**

**AXIAL** 

Short Columns – fail by crushing

Long Columns - fail by buckling

$$f_c = \frac{P}{A}$$

$$f_c = \frac{P}{A} \le F'_c$$

$$A = \frac{P}{F'_c}$$

- f<sub>c</sub> = Actual compressive stress
- A = Cross-sectional area of column (in²)
- P = Load on the column
- F'<sub>c</sub> = Allowable compressive stress per codes

#### NDS Equation

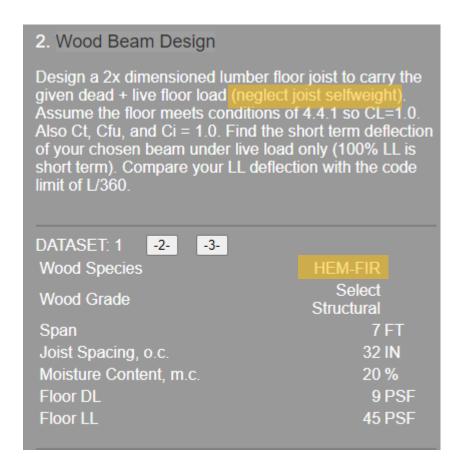


$$F_{cE} = \frac{l_e}{\left(\frac{l_e}{d}\right)^2}$$

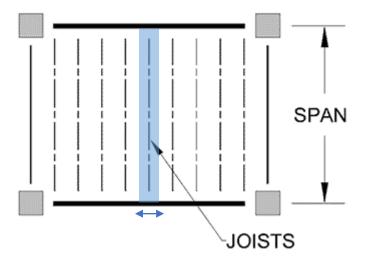
- E'min = reduced E modulus (psi)
- le = Ke I<sub>u</sub> (inches)
- d (inches)
- 0.822 =  $\pi^2/12$

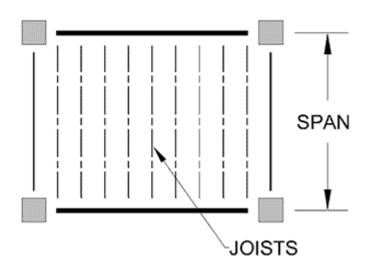
Bearing (crushing limit)

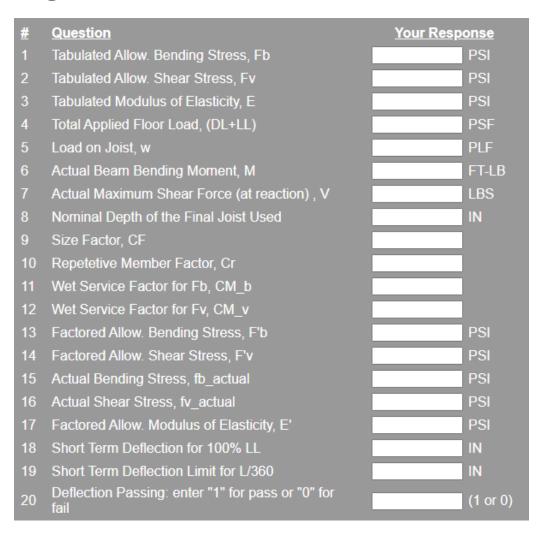



## Recap of the week

Adjustment Factors


Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber


|                                                      |   | ASD<br>only          |                    |                    |                       | AS               | SD an           | d LRI           | FD                       |                         |                           |                     |                          | LRFI<br>only      | )                  |
|------------------------------------------------------|---|----------------------|--------------------|--------------------|-----------------------|------------------|-----------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|-------------------|--------------------|
|                                                      |   | Load Duration Factor | Wet Service Factor | Temperature Factor | Beam Stability Factor | Size Factor      | Flat Use Factor | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor | Time Effect Factor |
| $F_b = F_b$                                          | х | CD                   | См                 | Ct                 | $C_L$                 | $C_{\mathbf{F}}$ | $C_{fu}$        | Ci              | Cr                       | -                       | -                         | -                   | K <sub>F</sub>           | фь                | λ                  |
| $F_t^{\raisebox{3.5pt}{\text{\circle*{1.5}}}} = F_t$ | x | CD                   | См                 | $C_{t}$            | -                     | $C_{\mathbf{F}}$ | -               | $C_{i}$         | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\phi_{t}$        | λ                  |
| $\mathbf{F_v} = \mathbf{F_v}$                        | x | CD                   | $C_{\mathbf{M}}$   | $C_{t}$            | -                     | -                | -               | $C_{i}$         | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\varphi_{v}$     | λ                  |
| $F_{c\perp} = F_{c\perp}$                            | x | -                    | См                 | $C_{t}$            | -                     | -                | -               | Ci              | -                        | -                       | -                         | Сь                  | K <sub>F</sub>           | фс                | λ                  |
| $F_c = F_c$                                          | x | CD                   | См                 | $C_{t}$            | -                     | $C_{\mathbf{F}}$ | -               | Ci              | -                        | $C_{\mathbb{P}}$        | -                         | -                   | K <sub>F</sub>           | ф                 | λ                  |
| E = E                                                | x | -                    | См                 | Ct                 | -                     | -                | -               | Ci              | -                        | -                       | -                         | -                   | -                        | -                 | -                  |
| $E_{\min} = E_{\min}$                                | x | -                    | См                 | Ct                 | -                     | -                | -               | Ci              | -                        | -                       | $C_{T}$                   | -                   | K <sub>F</sub>           | ф                 | -                  |






#### · Problem:

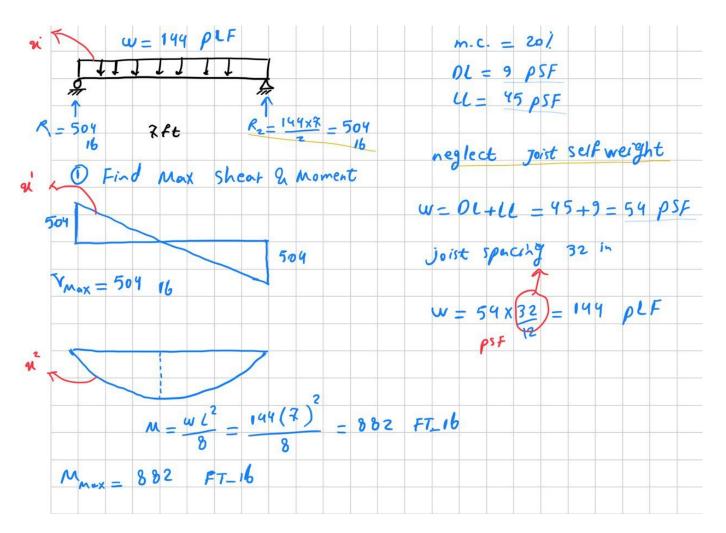


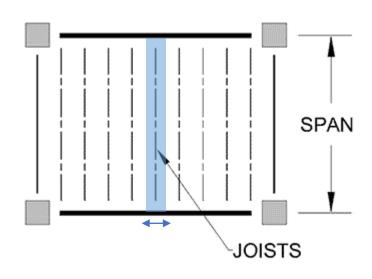






#### **Design Procedure**


**Given:** load, wood and grade, span, other usage conditions


Req'd: member size

- 1. Find Max Shear & Moment
  - · Simple case equations
  - · Complex case diagrams
- 2. Determine allowable stresses, F<sub>h</sub>
  - · Apply usage factors to get F'b
- 3. Solve  $S = M/F_b$
- 4. Choose a section from Table 1B
  - Revise DL and F<sub>b</sub>'
  - · Check step 3 and revise.
- 5. Check shear stress
  - First for V max (easier)
  - If that fails, try V at d distance from support.
  - If the section still fails, choose a new section with A=1.5V/F<sub>y</sub>'

- 6. Check deflection
- Check bearing







**NDS Supplement** 

Wood Species → HEM-FIR
Wood Grade → SELECT Structural

## Table 4A Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)<sup>1,2,3</sup>

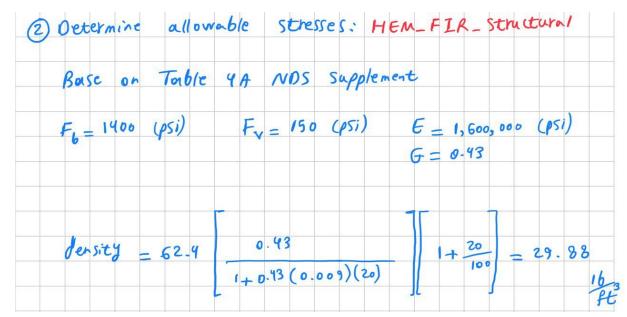
(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

#### **USE WITH TABLE 4A ADJUSTMENT FACTORS**

|                              |                        |                |                                 | Design va                     | alues in pounds p                        | er square inch (p                   | si)       |                  |                                  |                            |
|------------------------------|------------------------|----------------|---------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-----------|------------------|----------------------------------|----------------------------|
| Species and commercial grade | Size<br>classification | Bending        | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus o | f Elasticity     | Specific<br>Gravity <sup>4</sup> | Grading<br>Rules<br>Agency |
| HEM-FIR                      |                        | F <sub>b</sub> | F <sub>t</sub>                  | F <sub>v</sub>                | F <sub>c.L</sub>                         | F <sub>c</sub>                      | E         | E <sub>min</sub> | G                                |                            |
| Select Structural            |                        | 1,400          | 925                             | 150                           | 405                                      | 1,500                               | 1,600,000 | 580,000          |                                  |                            |
| No. 1 & Btr                  |                        | 1,100          | 725                             | 150                           | 405                                      | 1,350                               | 1,500,000 | 550,000          |                                  |                            |
| No. 1                        | 2" & wider             | 975            | 625                             | 150                           | 405                                      | 1,350                               | 1,500,000 | 550,000          |                                  |                            |
| No. 2                        |                        | 850            | 525                             | 150                           | 405                                      | 1,300                               | 1,300,000 | 470,000          |                                  | WOLID                      |
| No. 3                        |                        | 500            | 300                             | 150                           | 405                                      | 725                                 | 1,200,000 | 440,000          | 0.43                             | WCLIB<br>WWPA              |
| Stud                         | 2" & wider             | 675            | 400                             | 150                           | 405                                      | 800                                 | 1,200,000 | 440,000          |                                  | VVVVPA                     |
| Construction                 |                        | 975            | 600                             | 150                           | 405                                      | 1,550                               | 1,300,000 | 470,000          |                                  |                            |
| Standard                     | 2" - 4" wide           | 550            | 325                             | 150                           | 405                                      | 1,300                               | 1,200,000 | 440,000          |                                  |                            |
| Utility                      |                        | 250            | 150                             | 150                           | 405                                      | 850                                 | 1,100,000 | 400,000          |                                  |                            |



The following formula shall be used to determine the density in lbs/ft<sup>3</sup> of wood:


[NDS- Supplement- p 12]

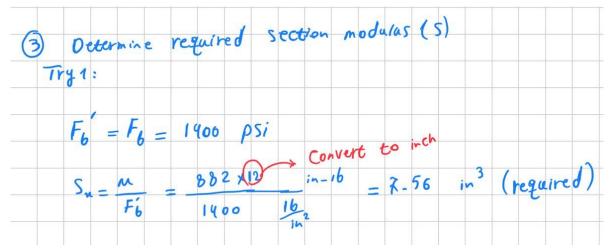
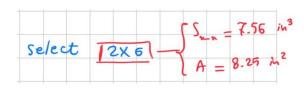
density = 
$$62.4 \left[ \frac{G}{1 + G(0.009)(m.c.)} \right] \left[ 1 + \frac{m.c.}{100} \right]$$

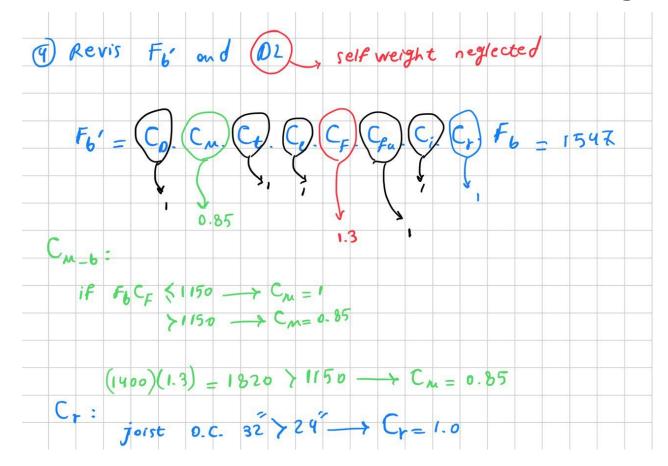
where:

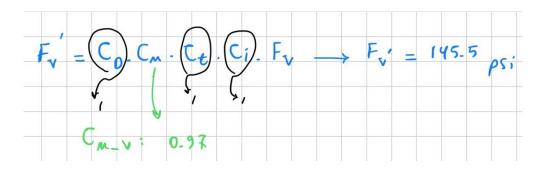
G = specific gravity of wood

m.c. = moisture content of wood, %





Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber


|           |                                                                  |                  | X-)             | ( AXIS          | Y-Y     | / AXIS  |                        |                        |                        |                        |                        |                        |
|-----------|------------------------------------------------------------------|------------------|-----------------|-----------------|---------|---------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|           | Standard                                                         | Area             |                 | Moment          |         | Moment  | Appro                  | ximate w               | eight in po            | ounds per              | linear foo             | t (lbs/ft)             |
| Nominal   | Dressed                                                          | of               | Section         | of              | Section | of      |                        | of pied                | ce when d              | ensity of              | wood equ               | als:                   |
| Size      | Size (S4S)                                                       | Section          | Modulus         | Inertia         | Modulus | Inertia |                        | _                      | _                      | _                      | _                      |                        |
| b x d     | b x d                                                            | Α                | S <sub>xx</sub> | I <sub>xx</sub> | Syy     | lyy     | 25 lbs/ft <sup>3</sup> | 30 lbs/ft <sup>3</sup> | 35 lbs/ft <sup>3</sup> | 40 lbs/ft <sup>3</sup> | 45 lbs/ft <sup>3</sup> | 50 lbs/ft <sup>3</sup> |
|           | in. x in.                                                        | in. <sup>2</sup> | in.3            | in.4            | in.3    | in.4    |                        |                        |                        |                        |                        |                        |
| Dimension | Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5) |                  |                 |                 |         |         |                        |                        |                        |                        |                        |                        |
| 2 x 3     | 1-1/2 x 2-1/2                                                    | 3.750            | 1.56            | 1.953           | 0.938   | 0.703   | 0.651                  | 0.781                  | 0.911                  | 1.042                  | 1.172                  | 1.302                  |
| 2 x 4     | 1-1/2 x 3-1/2                                                    | 5.250            | 3.06            | 5.359           | 1.313   | 0.984   | 0.911                  | 1.094                  | 1.276                  | 1.458                  | 1.641                  | 1.823                  |
| 2 x 5     | 1-1/2 x 4-1/2                                                    | 6.750            | 5.06            | 11.39           | 1.688   | 1.266   | 1.172                  | 1.406                  | 1.641                  | 1.875                  | 2.109                  | 2.344                  |
| 2 x 6     | 1-1/2 x 5-1/2                                                    | 8.250            | 7.56            | 20.80           | 2.063   | 1.547   | 1.432                  | 1.719                  | 2.005                  | 2.292                  | 2.578                  | 2.865                  |
| 2 x 8     | 1-1/2 x 7-1/4                                                    | 10.88            | 13.14           | 47.63           | 2.719   | 2.039   | 1.888                  | 2.266                  | 2.643                  | 3.021                  | 3.398                  | 3.776                  |
| 2 x 10    | 1-1/2 x 9-1/4                                                    | 13.88            | 21.39           | 98.93           | 3.469   | 2.602   | 2.409                  | 2.891                  | 3.372                  | 3.854                  | 4.336                  | 4.818                  |
| 2 x 12    | 1-1/2 x 11-1/4                                                   | 16.88            | 31.64           | 178.0           | 4.219   | 3.164   | 2.930                  | 3.516                  | 4.102                  | 4.688                  | 5.273                  | 5.859                  |
| 2 x 14    | 1-1/2 x 13-1/4                                                   | 19.88            | 43.89           | 290.8           | 4.969   | 3.727   | 3.451                  | 4.141                  | 4.831                  | 5.521                  | 6.211                  | 6.901                  |



[NDS- Supplement]







| <b>Table 2.3.2</b> | Frequently Used Load Duration |
|--------------------|-------------------------------|
|                    | Factors, C <sub>D</sub> 1     |

| Load Duration       | $C_{\mathbf{D}}$ | Typical Design Loads |
|---------------------|------------------|----------------------|
| Permanent           | 0.9              | Dead Load            |
| Ten years           | 1.0              | Occupancy Live Load  |
| Two months          | 1.15             | Snow Load            |
| Seven days          | 1.25             | Construction Load    |
| Ten minutes         | 1.6              | Wind/Earthquake Load |
| Impact <sup>2</sup> | 2.0              | Impact Load          |

Load duration is based on the live load (CD = 1.0)



| Table 2.3.3                          | Temperature Fa          | ctor, Ct |                                                                            |                                   |
|--------------------------------------|-------------------------|----------|----------------------------------------------------------------------------|-----------------------------------|
| Reference Design<br>Values           | In-Service<br>Moisture  |          | $C_t$                                                                      |                                   |
| values                               | Conditions <sup>1</sup> | T≤100°F  | 100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<> | 125°F <t≤150°f< th=""></t≤150°f<> |
| F <sub>t</sub> , E, E <sub>min</sub> | Wet or Dry              | 1.0      | 0.9                                                                        | 0.9                               |
| E E E 1E                             | Dry                     | 1.0      | 0.8                                                                        | 0.7                               |

<sup>1.</sup> Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

1.0

0.7

0.5

normal temperature, Ct = 1.0



 $F_b$ ,  $F_v$ ,  $F_c$ , and  $F_{c\perp}$ 

|               |               | Size Factors,  | $C_F$            |                       |                |
|---------------|---------------|----------------|------------------|-----------------------|----------------|
|               |               | F              | ь                | F <sub>t</sub>        | F <sub>c</sub> |
|               |               | Thickness      | (breadth)        |                       |                |
| Grades        | Width (depth) | 2" & 3"        | 4"               |                       |                |
|               | 2", 3", & 4"  | 1.5            | 1.5              | 1.5                   | 1.15           |
| Select        | 5"            | 1.4            | 1.4              | 1.4                   | 1.1            |
| Structural,   | 6"            | 1.3            | 1.3              | 1.3                   | 1.1            |
| No.1 & Btr,   | 8"            | 1.2            | 1.3              | 1.2                   | 1.05           |
| No.1, No.2,   | 10"           | 1.1            | 1.2              | 1.1                   | 1.0            |
| No.3          | 12"           | 1.0            | 1.1              | 1.0                   | 1.0            |
|               | 14" & wider   | 0.9            | 1.0              | 0.9                   | 0.9            |
|               | 2", 3", & 4"  | 1.1            | 1.1              | 1.1                   | 1.05           |
| Stud          | 5" & 6"       | 1.0            | 1.0              | 1.0                   | 1.0            |
|               | 8" & wider    | Use No.3 Grade | tabulated design | values and size facto | ors            |
| Construction, | 2", 3", & 4"  | 1.0            | 1.0              | 1.0                   | 1.0            |
| Standard      |               |                |                  |                       |                |
| Utility       | 4"            | 1.0            | 1.0              | 1.0                   | 1.0            |
|               | 2" & 3"       | 0.4            | _                | 0.4                   | 0.6            |

Size Factors, C<sub>F</sub> = 1.3



| Table 4.3.8          | Incising Factors, Ci |
|----------------------|----------------------|
| Design Value         | $C_{\mathbf{i}}$     |
| E, E <sub>min</sub>  | 0.95                 |
| $F_b, F_t, F_c, F_v$ | 0.80                 |
| $F_{c\perp}$         | 1.00                 |

#### Wet Service Factor, C<sub>M</sub>

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

|                    | We            | t Service   | e Factors,       | $C_{M}$ |                                                    |
|--------------------|---------------|-------------|------------------|---------|----------------------------------------------------|
| $F_{\mathfrak{b}}$ | $F_{t}$       | $F_{\rm v}$ | $F_{\rm c\perp}$ | $F_{c}$ | $\boldsymbol{E}$ and $\boldsymbol{E}_{\text{min}}$ |
| 0.85*              | 1.0           | 0.97        | 0.67             | 0.8**   | 0.9                                                |
| * when /E          | C)(C) < 1.150 | asi C -     | 1.0              |         |                                                    |

<sup>\*</sup> when  $(F_b)(C_F) \le 1,150 \text{ psi, } C_M = 1.0$ 

no incising,  $C_i = 1.0$ 

Wet Service Factors, CM



<sup>\*\*</sup> when  $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$ 

3.3.3.6 The slenderness ratio, R<sub>B</sub>, for bending members shall be calculated as follows:

$$R_{B} = \sqrt{\frac{\ell_{e}d}{b^{2}}}$$
 (3.3-5)

- 3.3.3.7 The slenderness ratio for bending members, R<sub>B</sub>, shall not exceed 50.
- 3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

Beam stability factor, CL

| Cantilever <sup>1</sup>                                                                                   | where $\ell_u/d < 7$                     |                                     | where $\ell_u/d \ge 7$                             |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------------|
| Uniformly distributed load                                                                                | $\ell_{\rm e}$ =1.33 $\ell_{\rm u}$      | •                                   | $\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3d$         |
| Concentrated load at unsupported end                                                                      | $\ell_{\rm e}\!\!=\!\!1.87~\ell_{\rm u}$ | •                                   | $\ell_{\rm e} = 1.44 \; \ell_{\rm u} + 3  {\rm d}$ |
| Single Span Beam <sup>1,2</sup>                                                                           | where $\ell_{\rm u}/{\rm d} < 7$         |                                     | where $\ell_{\rm u}/{\rm d} \ge 7$                 |
| Uniformly distributed load                                                                                | $\ell_{\rm e}$ =2.06 $\ell_{\rm u}$      | •                                   | $\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d           |
| Concentrated load at center with no intermediate lateral support                                          | ℓ <sub>e</sub> =1.80 ℓ <sub>u</sub>      | •                                   | $\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d           |
| Concentrated load at center with lateral support at center                                                |                                          | $\ell_{\rm e}$ =1.11 $\ell_{\rm u}$ |                                                    |
| Two equal concentrated loads at 1/3 points with lateral support at 1/3 points                             |                                          | ℓ <sub>e</sub> =1.68 ℓ <sub>u</sub> |                                                    |
| Three equal concentrated loads at 1/4 points with lateral support at 1/4 points                           |                                          | $\ell_{\rm e}$ =1.54 $\ell_{\rm u}$ |                                                    |
| Four equal concentrated loads at 1/5 points with lateral support at 1/5 points                            |                                          | $\ell_{\rm e}$ =1.68 $\ell_{\rm u}$ | •                                                  |
| Five equal concentrated loads at 1/6 points with lateral support at 1/6 points                            |                                          | $\ell_{\rm e}$ =1.73 $\ell_{\rm u}$ |                                                    |
| Six equal concentrated loads at 1/7 points with lateral support at 1/7 points                             |                                          | $\ell_{\rm e}$ =1.78 $\ell_{\rm u}$ |                                                    |
| Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application |                                          | $\ell_{\rm e}$ =1.84 $\ell_{\rm u}$ |                                                    |
| Equal end moments                                                                                         |                                          | $\ell_{\rm e}$ =1.84 $\ell_{\rm u}$ | •                                                  |

The beam is braced at the ends and the C.L. (meets criteria in 4.4.1) so  $C_L = 1.0$ .



 $C_L$ 

C<sub>L</sub> = 1.0 when bracing meets 4.4.1 for the depth/width ratio

Otherwise

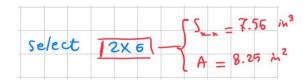
C<sub>L</sub> < 1.0 calculate factor using section 3.3.3

| Beam Depth/<br>Width Ratio                   | Type of Lateral Bracing Required              | Example                                  |
|----------------------------------------------|-----------------------------------------------|------------------------------------------|
| 2 to 1                                       | None                                          |                                          |
| 3 to 1  2x6  2x8                             |                                               | END BLOCKING  JOIST OF BRAM              |
| 5 to 1  2x10                                 | Hold compression edge in line (continuously)  | JOIST OF BEAM                            |
| 6 to 1 Diagonal bridging should be used 2x12 |                                               | SHEATHING/ DEOKING  JOIST  BRIDGING      |
| <sup>7 to 1</sup> 2x14                       | Both edges of the beam should be held in line | HALLED SHEATHING OR DECINE TO THE BOTTOM |



#### Repetitive Member Factor, C<sub>r</sub>

Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_r = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.


#### Flat Use Factor, C<sub>fu</sub>


Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value,  $F_b$ , shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C<sub>fu</sub>

| Width       | Thickness ( | (breadth) |
|-------------|-------------|-----------|
| (depth)     | 2" & 3"     | 4"        |
| 2" & 3"     | 1.0         | _         |
| 4"          | 1.1         | 1.0       |
| 5"          | 1.1         | 1.05      |
| 6"          | 1.15        | 1.05      |
| 8"          | 1.15        | 1.05      |
| 10" & wider | 1.2         | 1.1       |







#### 3.5 Bending Members - Deflection

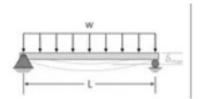
#### 3.5.1 Deflection Calculations

If deflection is a factor in design, it shall be calculated by standard methods of engineering mechanics considering bending deflections and, when applicable, shear deflections. Consideration for shear deflection is required when the reference modulus of elasticity has not been adjusted to include the effects of shear deflection (see Appendix F).

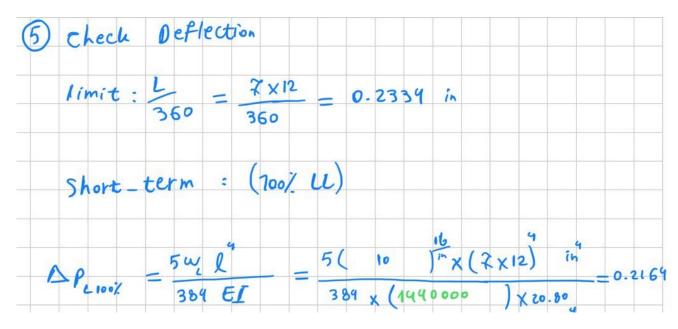
#### 3.5.2 Long-Term Loading

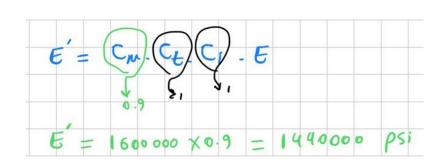
Where total deflection under long-term loading must be limited, increasing member size is one way to provide extra stiffness to allow for this time dependent deformation (see Appendix F). Total deflection,  $\Delta_T$ , shall be calculated as follows:

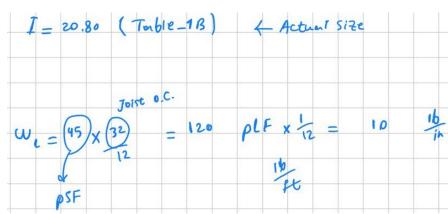
$$\Delta_{T} = K_{cr} \Delta_{LT} + \Delta_{ST}$$
 (3.5-1)


#### where:

Kar = time dependent deformation (creep) factor


= 1.5 for seasoned lumber, structural glued laminated timber, prefabricated wood I-joists, or structural composite lumber used in dry service conditions as defined in 4.1.4, 5.1.4, 7.1.4, and 8.1.4, respectively.


#### TABLE 1604.3 DEFLECTION LIMITS a, b, c, h, i


| CONSTRUCTION                                                                                                                  | L                       | S or W f                | $D + L^{d,g}$           |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Roof members: <sup>e</sup><br>Supporting plaster or stucco ceiling<br>Supporting nonplaster ceiling<br>Not supporting ceiling | //360<br>//240<br>//180 | //360<br>//240<br>//180 | //240<br>//180<br>//120 |
| Floor members                                                                                                                 | //360                   | _                       | //240                   |
| Exterior walls:<br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes                   |                         | //360<br>//240<br>//120 | 111                     |
| Interior partitions: b<br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes            | //360<br>//240<br>//120 | =                       | 111                     |
| Farm buildings                                                                                                                | _                       | _                       | //180                   |
| Greenhouses                                                                                                                   | _                       | -                       | //120                   |



$$\delta_{max} = \frac{5wL^4}{384EI}$$









Arch324: STRUCTURES II

## Thank you.

## Any question?

Please feel free to ask questions.

