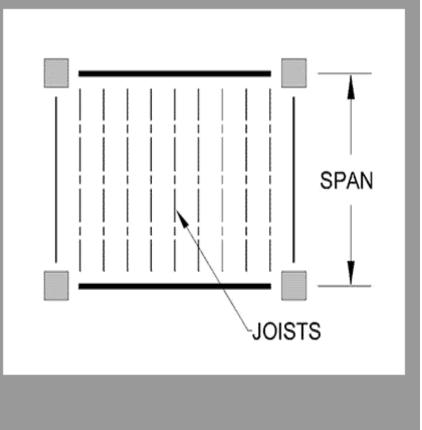
Wood Beam Design 1/26

HW2 Wood Beam Design

Structure II Section 004

Yifan Ma yifanma@umich.edu



HW2 - Wood Beam Design

2. Wood Beam Design

Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load (neglect joist selfweight). Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

DATASET: 1 -23-	
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSF
Floor LL	40 PSF

Given: certain wood type beam span loading

Goal:

member size? deflection?

Allowable Stress Design by NDS Flexure

C_r Repetitive Member Factor

F_v' F_b' **f**_b \geq >Allowable Shear Stress Fv' Actual Shear Stress fv Allowable Flexure Stress F_b' Actual Flexure Stress f_b \geq \geq F_b from NDS Supplement tables determined $f_{\rm b} = Mc/I = M/S$ f_v = VQ / | b = 1.5 V/A F_v from tables determined by species by species and grade and grade $S = 1/c = bd^{2}/6$ F_{b} ' = F_{b} (usage factors) F_{v} = F_{v} (usage factors) usage factors for flexure: usage factors for shear: C_D Load Duration Factor C_D Load Duration Factor C_M Moisture Factor C_M Moisture Factor Ct Temperature Factor Ct Temperature Factor C₁ Beam Stability Factor C_i Incising Factor C_F Size Factor C_{fu} Flat Use C_i Incising Factor

Allowable Stress Design by NDS Shear

 \mathbf{f}_{v}

Can use V at d from support as

Loads to the left of the dotted line shall be permitted to be ignored

Shear at Supports

maximum

Winter 2024

ARCH 324 001 WN 2024 > Files > Wood

Home

Home									
Modules	Ø	Search for files	Q	0 items selected					+ Folder
Assignments Files		 ► ARCH 324 001 WN 2024 ► Beam Equations 			Name 🔺	Date Created	Date Modified	Modified By	Size
Announcements		► Concrete			AWC_NDS-Code-2015_web-viewonly_1411.	pdf Jan 4, 2018	Jan 4, 2018		6 MB
Discussions Grades People	Ø	 ► course_image ► Design Loads ► Engel_Book 			AWC_NDS-Supplement-2015_web- viewonly_1411.pdf	Jan 4, 2018	Jan 4, 2018		2.5 MB
Pages		► Masonry► Onouye_Book_4e			CLT_Design_Guide_Ver6.pdf	Dec 30, 2016	Dec 30, 2016		466 KB
Quizzes Collaborations		 ► Schodek_Book_7e ► Steel ► Uploaded Media 			CLT_Handbook.pdf	Dec 30, 2016	Dec 30, 2016		34.9 MB
BigBlueButton Rubrics	Ø	 ► Videos ► Wood 			CLT-100-UK-Projects_Final.pdf	Jan 23, 2023	Jan 23, 2023		34 MB
Outcomes	Ø				PRG-320_2017.pdf	Jan 22, 2018	Jan 22, 2018		1.3 MB
Syllabus	Ø								
Item Banks					thinkwood-wood-evolving-codes-2.pdf	Jan 23, 2023	Jan 23, 2023		628 KB
Canvas Course Manager					WoodHandbook.pdf	Dec 30, 2016	Dec 30, 2016		14.6 MB
Media Gallery									
NameCoach Rost	ter	0% of 12.6 GB use	d						

Settings

1. Tabulated Allow. Bending Stress, Fb = 725 psi

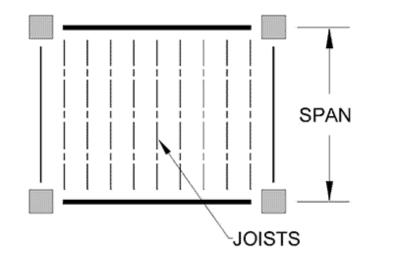
2. Tabulated Allow. Shear Stress, Fv = 155 psi

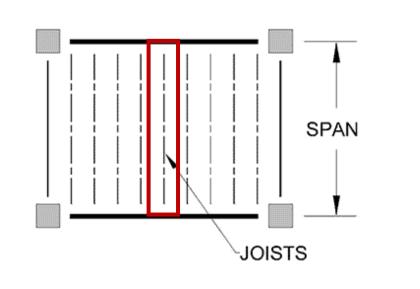
3. Tabulated Modulus of Elasticity, E = 1000000 psi

NDS Supplement table 4A

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}


(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)


USE WITH TABLE 4A ADJUSTMENT FACTORS

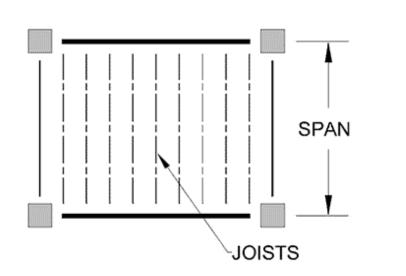
	Size classification		Design values in pounds per square inch (psi)								
Species and commercial grade		Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain			Specific Gravity ⁴		
		Fb	Ft	Fv	Fc⊥	Fc	E	Emin	G		

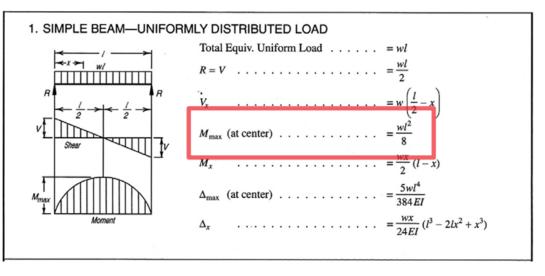
WESTERN CEDARS										
Select Structural		1,000	600	155	425	1,000	1,100,000	400,000		
No. 1	2" & wider	725	425	155	425	825	1,000,000	370,000		
No. 2		700	425	155	425	650	1,000,000	370,000		
No. 3		400	250	155	425	375	900,000	330,000	0.20	WCLIB
Stud	2" & wider	550	325	155	425	400	900,000	330,000	0.36	WWPA
Construction		800	475	155	425	850	900,000	330,000		
Standard	2" - 4" wide	450	275	155	425	650	800,000	290,000		
Utility		225	125	155	425	425	800,000	290,000		

Wood Species	WESTERN
	CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSI
Floor LL	40 PS

4.	Total	Applied	Floor	Load,	(DL+LL)
----	-------	---------	-------	-------	---------

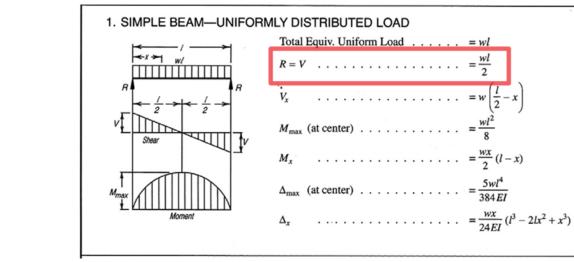
7+40=47 PSF

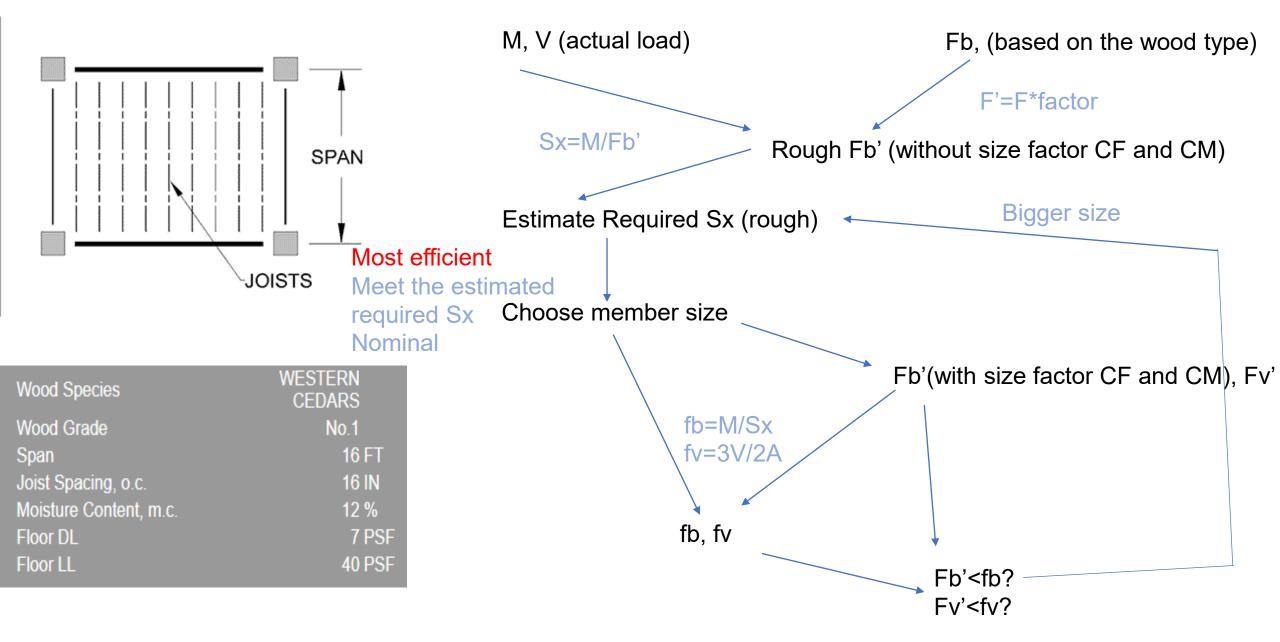

5. Load on Joist, w


W=(DL+LL)*o.c.= 47*16/12 = 62.6 plf

Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSF
Floor LL	40 PSF

6. Actual Beam Bending Moment, M


Arch 314 Shear Bending


 $M = w^* span^2/8 = 62.66^* 16^2/8 = 2005.12$ lbs-ft

7. Actual Maximum Shear Force (at reaction), V

V = w*span/2 = 62.66*16/2 = 501.28 lbs

Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSF
Floor LL	40 PSF

table 4.3.1 from the MAIN NDS book

		ASD only				AS	SD an	d LR	FD					LRFI only)		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	4	t V f
											H		K _F	¢	_	Ś	<u>ـ</u>
$F_b = F_b$	х	CD	C _M	Ct	C _L	C _F	C_{fu}	Ci	Cr	-	-	-	2.54	0.85	λ	AWN	_
$F_t = F_t$	X	CD	C_M	Ct	-	$C_{\rm F}$	-	Ci	-	-	-	-	2.70	0.80	λ	SAWN LUMBER	-
$\mathbf{F_v} = \mathbf{F_v}$	x	CD	C_M	C_t	-	-	-	C_i	-	-	-	-	2.88	0.75	λ	IBER	4
$F_c = F_c$	x	CD	C_M	C_t	-	$C_{\rm F}$	-	C_i	-	C_{P}	-	-	2.40	0.90	λ		
$\mathbf{F}_{\mathbf{c}\perp} = \mathbf{F}_{\mathbf{c}\perp}$	x	-	C _M	Ct	-	-	-	Ci	-	-	-	C_{b}	1.67	0.90	-		
E' = E	x	-	C_M	Ct	-	-	-	C_i	-	-	т	'a t	JŪ	at	ed	Allow.	Be
$E_{min}' = E_{min}$	x	-	C _M	Ct	-	-	-	C_i	-	-	CT	-		0.85	-		

8. Nominal Depth of the Final Joist Used

NDS Supplement table 4A

Moisture Content

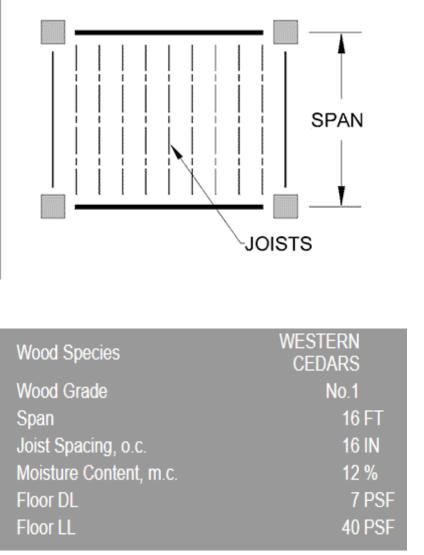
CM b = CM v = 1

= 12%.

12%<19%,

Wet Service Factor, C_M

29


When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service I	Factors,	См	
F _b	F_t	$F_{\rm v}$	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\tiny min}}$
2. 0.85*	1.0	0.97	0.67	0.8**	0.9
* when (F_b)	$(C_{\rm F}) \le 1,15$	0 psi, C _м = 1.0			
ending S		CF: S	ize ⁻	facto	or?

Table 4A Adjustment Factors

Repetitive Member Factor, C,

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Fb'_rough= Fb x(CD x CM_b x Ct x CL x CF x Cfu x Ci x Cr) = 725*1*1.15 = 833.75 psi

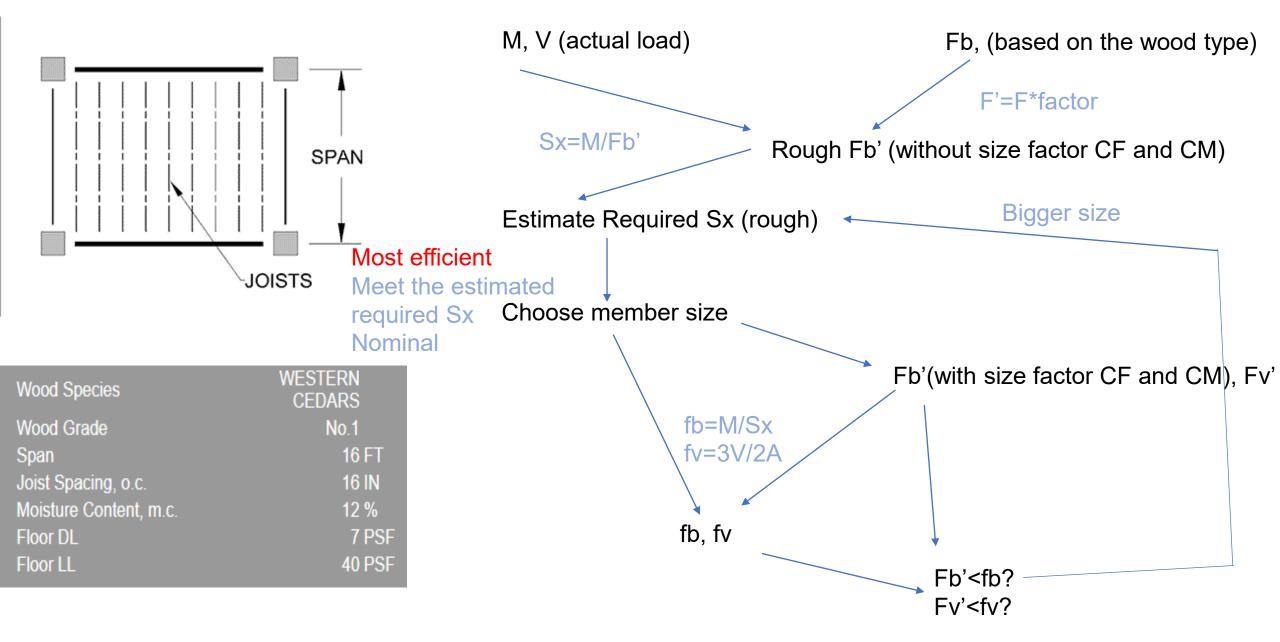

Sx_rough= M/Fb'_rough= 2005.12*12/833.75 = 28.86 in³

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber NDS Supplement table 1B

			X-)	(AXIS	Y-1	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate we	eight in po	ounds per	linear foo	t (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of v	vood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
bxd	bxd	A	Sxx	I _{xx}	S _{yy}	l _{yy}	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in.2	in. ³	in.4	in. ³	in.4						
Boards ¹												
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	0.326	0.391	0.456	0.521	0.586	0.651
1x4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	0.456	0.547	0.638	0.729	0.820	0.911
1x6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	0.716	0.859	1.003	1.146	1.289	1.432
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	0.944	1.133	1.322	1.510	1.699	1.888
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	1.204	1.445	1.686	1.927	2.168	2.409
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3							
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

Choose 2" * 12" Sx = 31.64 in³ > 28.86 in³

 $A = 16.88 \text{ in}^2$

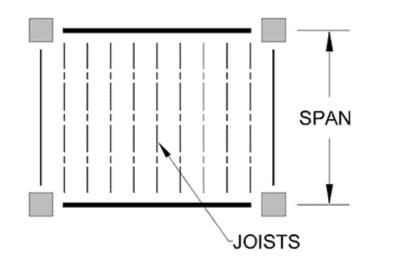
NDS Supplement table 4A

Size Factor, C_F

Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		Fb		Ft	Fe
		Thickness (breadth)	10	
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade t	abulated design v	alues and alle laco	ated Allow
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

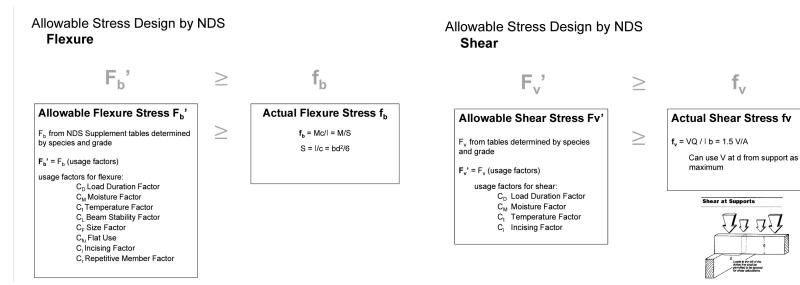
Size Factors, CF

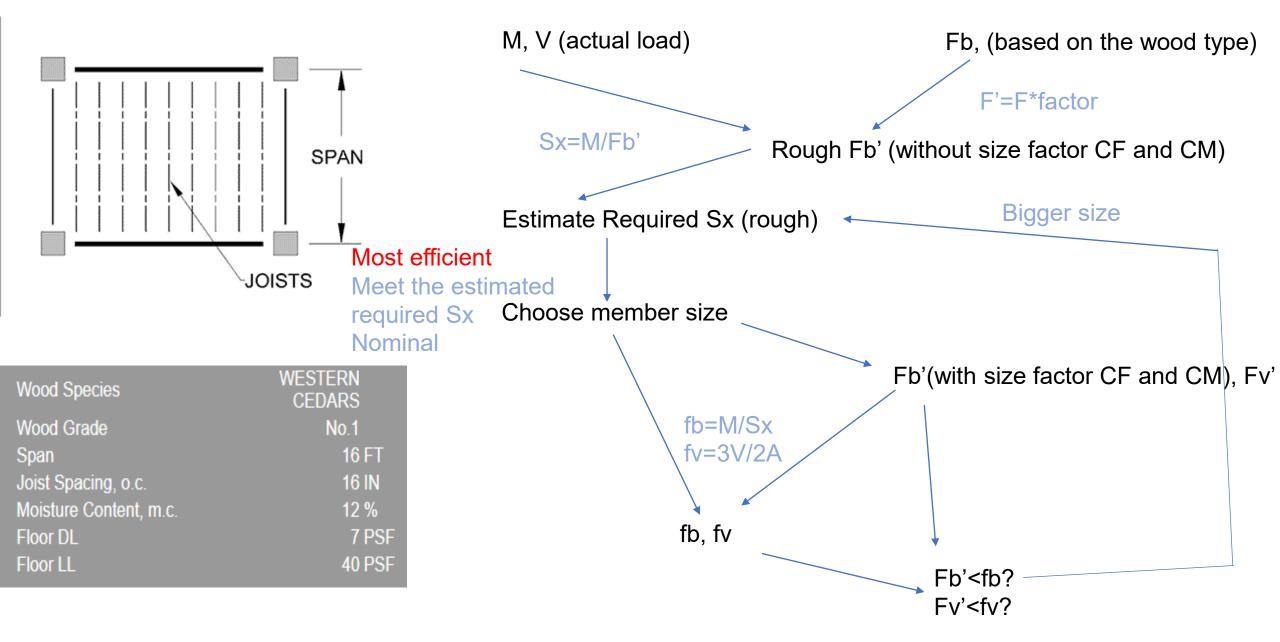

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

	F_{b}	F_t	$F_{\rm v}$	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\tiny min}}$					
2.	0.85*	1.0	0.97	0.67	0.8**	0.9					
*	when $(\Gamma_b)(C_F) \le 1,150$ psi, $C_M = 1.0$										
** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$											
$\langle CE \rangle$ size factor											
Bending Stress CF: size factor											


Moisture Content =12%, 12%<19%, CM_b = CM_v = 1



Fb' = Fb x(CD x CM_b x Ct x CL x CF x Cfu x Ci x Cr) = 725*1*1*1.15 = 833.75 psi fb = M/Sx = 2005.12*12/31.64 = 760.47 psi < 833.75 psi Pass

Fv' = Fvx (CD x CM_v x Ct x Ci) = 155*1 = 155 psi fv = 3V/2A = 3*501.28/(2*16.88) = 44.54 psi < 155 psi Pass

Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSF
Floor LL	40 PSF

Input your answers to question 8-16

<u>#</u>	Question	Your Response	Correct Answer
1	Tabulated Allow. Bending Stress, Fb	725 PSI	725 PSI
2	Tabulated Allow. Shear Stress, Fv	155 PSI	155 PSI
3	Tabulated Modulus of Elasticity, E	1000000 PSI	1000000 PSI
4	Total Applied Floor Load, (DL+LL)	47 PSF	47 PSF
5	Load on Joist, w	62.66 PLF	62.66666667 PLF
6	Actual Beam Bending Moment, M	2005.12 FT-LB	2005.333333 FT-LB
7	Actual Maximum Shear Force (at reaction), V	501.28 LBS	501.3333333 LBS
8	Nominal Depth of the Final Joist Used	12 IN	12 IN
9	Size Factor, CF	1	1
10	Repetetive Member Factor, Cr	1.15	1.15
11	Wet Service Factor for Fb, CM_b	1	1
12	Wet Service Factor for Fv, CM_v	1	1
13	Factored Allow. Bending Stress, F'b	833.75 PSI	833.75 PSI
14	Factored Allow. Shear Stress, F'v	155 PSI	155 PSI
15	Actual Bending Stress, fb_actual	760.47 PSI	760.5412346 PSI
16	Actual Shear Stress, fv_actual	44.54 PSI	44.56296296 PSI

17. Factored Allow. Modulus of Elasticity, E'(PSI)

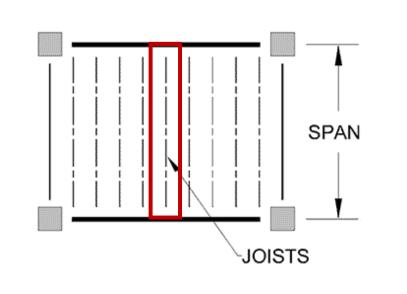
WESTERN CEDARS										
Select Structural		1,000	600	155	425	1,000	1,100,000	400,000		
No. 1	OT 0 wides	725	425	155	425	825	1,000,000	370,000		
No. 2	2" & wider	700	425	155	425	650	1,000,000	370,000		
No. 3		400	250	155	425	375	900,000	330,000	0.36	WCLIB
Stud	2" & wider	550	325	155	425	400	900,000	330,000	0.30	WWPA
Construction		800	475	155	425	850	900,000	330,000		
Standard	2" - 4" wide	450	275	155	425	650	800,000	290,000		
Utility		225	125	155	425	425	800,000	290,000		

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD									LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_t = F_t$	x	CD	См	Ct	-	C _F	-	Ci	-	-	-	-	K _F	φ _t	λ
$\mathbf{F_v}' = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\boldsymbol{\varphi}_v$	λ
$\mathbf{F}_{c\perp} = \mathbf{F}_{c\perp}$	x	-	См	Ct	-	-	-	Ci	-	-	-	Сь	K _F	φ _c	λ
$F_c = F_c$	x	CD	См	C_t	-	C _F	-	Ci	-	Ср	-	-	K _F	фе	λ
E' = E	x	-	См	Ct	-	-	-	Ci]-	-	-	-		-	-
$\mathbf{E}_{\min} = \mathbf{E}_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	CT	-	K _F	φ _s	-

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:


Wet Service Factors, C _M									
F _b	$\mathbf{F}_{\mathbf{t}}$	F_{v}	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{min}}$				
0.85*	1.0	0.97	0.67	0.8**	0.9				

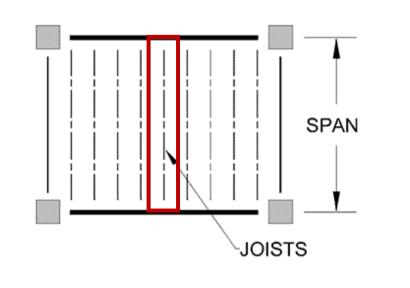
* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$ ** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Moisture Content =12%, CM_E = 1

E' = E * (CM * Ct * Ci) = 1000000 x 1= 1000000 psi

18. Short Term Deflection for 100% LL

$$\Delta_{LL} = \frac{5w - l^4}{384 EL}$$


w_LL = LL*o.c. = 40*16in/12 = 53.33 plf

Deflection = 5 * w_LL * Span⁴ / (384 * E' * I)
= 5 * (53.33 *
$$\frac{1}{12}$$
) * (16*12)⁴ / (384 * 1000000 * 178) = 0.44 in

 Table 1B
 Section Properties of Standard Dressed (S4S) Sawn Lumber DS
 Supplement table 1B

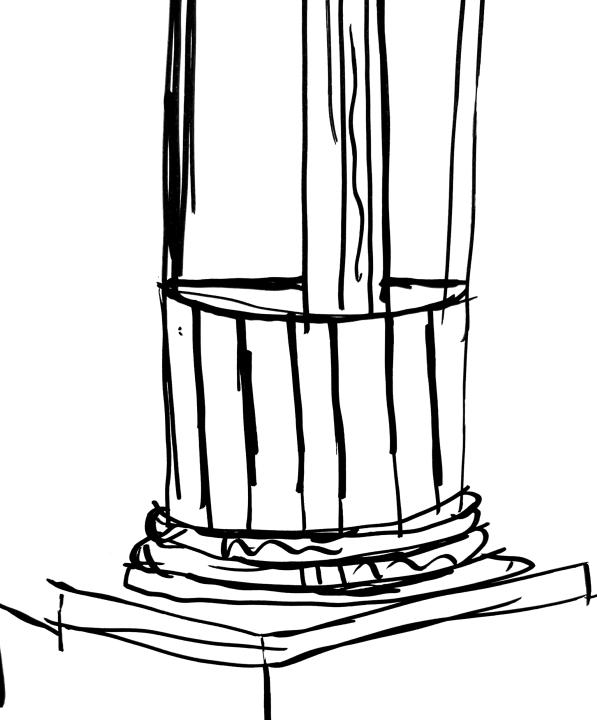
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PS
Floor LL	40 PS

			X->	(AXIS	Y-1	(AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	t (Ibs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of v	vood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
bxd	bxd	A	Sxx	I _{xx}	Syy	l _{yy}	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in.2	in. ³	in.4	in. ³	in.4						
Boards ¹												
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	0.326	0.391	0.456	0.521	0.586	0.651
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0,123	0.456	0.547	0.638	0.729	0.820	0.911
1x6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	0.716	0.859	1.003	1.146	1.289	1.432
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	0.944	1.133	1.322	1.510	1.699	1.888
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	1.204	1.445	1.686	1.927	2.168	2.409
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3							
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

19. Short Term Deflection Limit for L/360

Deflection_limit = L/360 = Span/360 = 16*12/360 = 0.53 in

20. Deflection Passing, 1 for pass, 0 for fail


0.44 in < 0.53 in Pass!

Wood Species	WESTERN CEDARS
Wood Grade	No.1
Span	16 FT
Joist Spacing, o.c.	16 IN
Moisture Content, m.c.	12 %
Floor DL	7 PSF
Floor LL	40 PSF

Any Questions?

yifanma@umich.edu

Thank You!

